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Transportation amongst cities is found as one of the main factors which affect the outbreak of diseases. To
understand the effect of transport-related infection on disease spread, an SEIRS (Susceptible, Exposed,
Infectious, Recovered) epidemic model for two cities is formulated and analyzed. The epidemiological
threshold, known as the basic reproduction number, of the model is derived. If the basic reproduction
number is below unity, the disease-free equilibrium is locally asymptotically stable. Thus, the disease
can be eradicated from the community. There exists an endemic equilibrium which is locally asymptot-
ically stable if the reproduction number is larger than unity. This means that the disease will persist
within the community. The results show that transportation among regions will change the disease
dynamics and break infection out even if infectious diseases will go to extinction in each isolated region
without transport-related infection. In addition, the result shows that transport-related infection inten-
sifies the disease spread if infectious diseases break out to cause an endemic situation in each region, in
the sense of that both the absolute and relative size of patients increase. Further, the formulated model is
applied to the real data of SARS outbreak in 2003 to study the transmission of disease during the move-
ment between two regions. The results show that the transport-related infection is effected to the num-
ber of infected individuals and the duration of outbreak in such the way that the disease becomes more
endemic due to the movement between two cities. This study can be helpful in providing the information
to public health authorities and policy maker to reduce spreading disease when its occurs.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The spread of infectious diseases between discrete geographic
regions (or cities) is a phenomenon that involves many different
compartments. To control the spread of an infectious disease, one
has to understand how the growth and spread of the disease affect
its outbreak. There are many factors that lead to the dynamics of an
infectious disease of humans. They include such human behaviors
as population dislocations, living styles, sexual practices and rising
international travel. In current, population dispersal by human
transportation plays an important role in the spread of infectious
disease around the world. SARS (severe acute respiratory syn-
drome) spread along the routes of international air travel and
infection was carried to many places [33,34]. Khan et al. [14]
pointed out a correlation between inter-regional spread of a novel
influenza A (H1N1) virus and travelers. From these observations a
number of authors have proposed epidemic models describing dis-
ease transmission dynamics among multiple locations due to the
population dispersal (see [3,4,10,23–26,29–32] and the references
therein). Recently, Cui et al. [7] have proposed a SIS epidemic mod-
el to understand the effect of transport related infection on disease
spread. Takeuchi et al. [27] proved the global dynamics of model in
[7]. They found that the global stabilities of equilibria disease-free
and endemic equilibriums, still required additional condition be-
sides the condition for their existence. Considering entry screening
and exit screening to detect infected individuals, Liu and Takeuchi
[20] proposed an SIQS model to study the effect of transport-re-
lated infection and entry screening. Subsequently, Liu and Zhou
[21] analyzed global stability of an SIRS epidemic model with
transport-related infection. Their results shown transport-related
infection can make the disease endemic even if both the isolated
regions are disease free. Obviously, the models in [7,20,27] as-
sumed that a susceptible individual becomes infectious immedi-
ately after infected. However, for many diseases, a host stays in a
latent period before becoming infectious after infected, Wan and
Cui [29] formulated an SEIS epidemic model to describe the trans-
mission of infectious diseases related by transports. When the indi-
viduals have immunity to the disease after recover, the SEIR or
SEIRS models are more general than the SEI or SEIS types depending
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http://dx.doi.org/10.1016/j.mbs.2013.07.001
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Fig. 1. Schematic diagram of the SEIRS model for the transmission of communicable disease during the movement of population between two cities.

A. Denphedtnong et al. / Mathematical Biosciences 245 (2013) 188–205 189
on whether the acquired immunity is permanent or otherwise.
These kinds of models have These kinds of models have been stud-
ied to gain insights into the transmission dynamics of disease in
community. For example, Greenhalgh [11] considered an SEIR
model that incorporates density dependence in the death rate.
Cooke and Driessche [6] introduced and analyzed the SEIRS model
with two delays. Greenhalgh [12] studied Hopf bifurcations in the
SEIRS type models with density dependent contact rate and death
rate. Li and Muldowney [16] and Li et al. [17] studied the global
dynamics of the SEIR models with a non-linear incidence rate as
well as standard incidence rate. Li et al. [18] analyzed the global
dynamics of the SEIR model with vertical transmission and a bilin-
ear incidence. Recently, Zhang and Ma [36] analyzed the global
dynamics of the SEIR model with saturating contact rate. However,
those models have not applied to real data of outbreak to investi-
gate the effect of transport-related infection when individuals tra-
vel among two cities.

The aim of this paper is to formulate an SEIRS epidemic model to
describe the transmission of infectious diseases related by trans-
ports. The formulated model is applied to real data of SARS out-
break in 2003 in order to investigate the transmission of disease
when individuals in a population suffer from diseases and possibly
become infected during the movement between two cities.

This paper is organized as follows. An SEIRS model with trans-
port-related infection is formulated in Section 2. In Section 3, the
basic reproduction number of the formulated model is derived
and the local stability of the model is analyzed to verify that the
equilibria of the model are locally asymptotically stable under
the condition of the basic reproduction number. Simulation results
are presented in Section 4 to illustrate the effect of transport-re-
lated infection on its outbreak and the final size of all individuals
for the populations. The SEIRS model and SEIRS model with trans-
port-related infection are applied to predict the SARS outbreak
within a city and if there is the movement of population between
two cities, respectively.
2. Model formulation

The epidemic model for transmission of a communicable dis-
ease with population travel between two cities is based on moni-
toring the dynamics of the sub–populations (susceptible; SiðtÞ,
exposed (latent); EiðtÞ, infected; IiðtÞ, and recovered; RiðtÞ, in the
city i, i ¼ 1;2 at time t). Thus, the total population in city i at time
t is given by Ni ¼ SiðtÞ þ EiðtÞ þ IiðtÞ þ RiðtÞ for i ¼ 1;2. It is assumed
that both cities are identical, i.e. the demographic parameters are
the same for each city.

The population of susceptible individuals is increased by the
recruitment of individuals which are all newborn into the popula-
tion at the rate a and the loss of infection–acquired immunity
among recovered individuals at the rate a2 and by the susceptible
individuals of city j leave to city i ðj – i; i ¼ 1;2Þ at the rate a1. In
the other hand, it is decreased when the susceptible individuals
in city i leave to city j at the rate a1 and by natural death at the rate
b. It is assumed that susceptible individuals can acquire exposed
individuals via effective contacts with infected individuals. The dis-
ease is transmitted horizontally within and between cities accord-
ing to standard the incidence rate (that is, the number of new cases
of infection per unit time)

bSiIi

Ni
; for i ¼ 1;2;

where b is the transmission rate within a city. This population is
further decreased when the individuals in city j travel to city i,
and the disease is transmitted with the incidence rate

cða1SjÞða1IjÞ
ða1Sj þ a1Ej þ a1Ij þ a1RiÞ

¼ ca1SjIj

Nj
; for j ¼ 1;2;

where c is the transport-related transmission rate. Thus, the rate of
change of population of susceptible class is given by

dSi

dt
¼ a� bSi �

bSiIi

Ni
þ a2Ri � a1Si þ a1Sj �

ca1SjIj

Nj
: ð2:1Þ

The population of exposed individuals is generated by the infected
of susceptible individuals at the rate bSiIi

Ni
and at the rate ca1SjIj

Nj
when

the individuals in city j travel to city i. It is reduced by progression
to symptoms development at the rate c, travel to city j at the rate a1

and natural death at the rate b. Thus

dEi

dt
¼ bSiIi

Ni
� bþ c þ a1ð ÞEi þ a1Ej þ

ca1SjIj

Nj
: ð2:2Þ

The population of infected individuals in city i is generated when
exposed individuals develop symptoms at the rate c, and when
infected individuals of city j leave to city i at the rate a1. It is
decreased by progression to the recovered class at the rate d,
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natural death and disease induced mortality at the rate e, and when
infected individuals of city i move to city j at the rate a1. Thus,

dIi

dt
¼ cEi � eþ dþ a1ð ÞIi þ a1Ii: ð2:3Þ

The population of recovered individuals is generated when infected
individuals recover and move to the recovered class at the rate d,
and when recovered individuals of city j leave to city i. It is
decreased by the loss of infection–acquired immunity at the rate
a2, by natural death at the rate b, and when recovered individuals
of city i move to city j at the rate a1. Thus,

dRi

dt
¼ dIi � bþ a1 þ a2ð ÞRi þ a1Rj: ð2:4Þ

It is assumed that the individuals have no infectious force in the la-
tent period and the exposed individuals cannot recover to suscepti-
ble individuals. The individuals who are travelling do not give birth
and do not take die. Infected individuals do not recover during tra-
vel. Thus, An SEIRS with transport-related infection consists of the
following system of non–linear differential equations:

dS1
dt ¼ a� bS1 � b S1 I1

N1
þ a2R1 � a1S1 þ a1S2 � c a1S2I2

N2
;

dE1
dt ¼

b S1 I1
N1
� bþ c þ a1ð ÞE1 þ a1E2 þ c a1S2 I2

N2
;

dI1
dt ¼ cE1 � eþ dþ a1ð ÞI1 þ a1I2;

dR1
dt ¼ dI1 � bþ a1 þ a2ð ÞR1 þ a1R2;

dS2
dt ¼ a� bS2 � b S2 I2

N2
þ a2R2 � a1S2 þ a1S1 � c a1S1I1

N1
;

dE2
dt ¼

b S2 I2
N2
� bþ c þ a1ð ÞE2 þ a1E1 þ c a1S1 I1

N1
;

dI2
dt ¼ cE2 � eþ dþ a1ð ÞI2 þ a1I1;

dR2
dt ¼ dI2 � bþ a1 þ a2ð ÞR2 þ a1R1:

ð2:5Þ

A flow diagram of the model is depicted in Fig. 1. The standard inci-
dence is used in the model. If initial conditions are set as Sið0ÞP 0,
Eið0ÞP 0, Iið0ÞP 0 and Rið0ÞP 0, it is easy to check that all solu-
tions of (2.5) are nonnegative (that is Sið0ÞP 0, Eið0ÞP 0,
Iið0ÞP 0 and Rið0ÞP 0 for t > 0, i ¼ 1;2) under the assumption
0 6 c � 1. Note that the last two terms in the first and fifth equa-
tions of (2.5) satisfy that

a1Si �
ca1SiIi

Ni
P 0 ði ¼ 1;2Þ;

for any Si P 0, Ei P 0, Ii P 0 and Ri P 0 when 0 6 c � 1. This is rea-
sonable from a biological point of view, since the first term a1Si rep-
resents the susceptible individuals leaving city i and the second
term ca1SiIi

Ni
denotes individuals in a1Si becoming infected during tra-

vel from city i to j. Hence, the difference between these two num-
bers should be nonnegative. It is supposed that 0 6 c � 1.

3. Analysis of the model

In this section, the model (2.5) is analyzed for stability of its
associated equilibrium at some different cases. In particular, the
Routh–Hurwitz theorem in [1], reproduced below for convenience,
will be used for the kind of the following matrix J:

J ¼

a11 a12 a13 a14

a21 a22 a23 a24

0 a32 a33 0
0 0 a43 aa44

0
BBB@

1
CCCA: ð3:1Þ

Lemma 3.1. A1 ¼ �trðJÞ, A2 ¼ J1 þ J2 þ J3, A3 ¼ Q1 þ Q2 þ Q3,
A4 ¼ detðJÞ, where J1 ¼ a44a33 þ a44a22 þ a44a11 þ a33a11, J2 ¼
a33a22 � a32a23, J3 ¼ a22a11 � a21a12, Q1 ¼ �a44ðJ2 þ J3Þ, Q2 ¼ �a33
ðJ2Þ, Q3 ¼ �ða32ða21a13 þ a43a24Þ þ a11ða44a33 � a32a23ÞÞ: Then J is
stable (i.e. each eigenvalue of J has negative real part) if and only if the
following conditions hold:

(i) Ai > 0,
(ii) A1A2 � A3 > 0,

(iii) A1A2A3 � A2
3 � A2

1A4 > 0.
Remark 3.1. The characteristic polynomial of matrix J in (3.1) is

k4 þ A1k
3 þ A2k

2 þ A3kþ A4 ¼ 0:
3.1. No individual travel

The movement of individuals is neglected, this case a1 ¼ 0, then
model (2.5) reduces to the SEIRS model:

dS
dt ¼ a� b SI

N � bSþ a2R;
dE
dt ¼

b SI
N � bþ cð ÞE;

dI
dt ¼ cE� eþ dð ÞI;
dR
dt ¼ dI � bþ a2ð ÞR:

ð3:2Þ

From biological considerations, we study (3.2) in the closed set

D ¼ fðS; E; I;RÞ 2 R4
þjS P 0; E P 0; I P 0;R P 0; Sþ Eþ I þ R

6 a=bg;

where R4
þ denotes the non–negative cone of R4 including its lower

dimensional faces. It can be verified that D is positively invariant
with respect to (3.2).

The disease-free equilibrium, obtained by setting the right–
hand sides of equations in (3.2) to zero, is given by

P0ðS0;0;0;0Þ ¼ a
b
;0;0;0

� �
: ð3:3Þ

The linear stability of P0 can be established using the next genera-
tion method [8,10] by writing the right hand sides of second and
third equation in (3.2) in term of two matrices F and V , where F
is a matrix consisting of all term with b and V is M-matrix consist-
ing of the remaining transition term in two equations (it should be
recalled that a matrix A is an M-matrix if and only if every off-diag-
onal entry of A is non-positive and the diagonal entries are all non-
negative). That is, for the model (3.2), the next generation matrices
F and V are given by

F ¼
0 b

0 0

� �
and V ¼

bþ c 0
�c eþ d

� �
:

Using the next generation method, the local stability of disease-free
equilibrium, P0, is based on whether or not qðFV�1Þ < 1, where q is
the spectral radius. If qðFV�1Þ < 1, then all eigenvalues of the line-
arized model have negative real parts, so that the disease-free equi-
librium is locally asymptotically stable (LAS). For qðFV�1Þ > 1, at
least one of the eigenvalues of the linearization has positive real
part, thus, the disease-free equilibrium is unstable in this case. Let
R0 ¼ qðFV�1Þ, it is easy to show that

R0 ¼
bc

eþ dð Þ bþ cð Þ : ð3:4Þ

Consequently, using Theorem 2 of [28], the following results is
established.

Theorem 3.1. The disease-free equilibrium (DFE), P0, of the system
( 3.2) is locally asymptotically stable (LAS) if R0 < 1 and unstable if
R0 > 1.



Fig. 2. Time series plot of the model (3.2) with parameter values in Table 1 and initial conditions Sð0Þ ¼ 2, Eð0Þ ¼ 1, Ið0Þ ¼ 1, Rð0Þ ¼ 0: (a)–(d) profiles of all populations for
b = 0.6, R0 ¼ 0:72 < 1; (e)–(h) profiles of all populations for b = 0.95, R0 ¼ 1:14 > 1.
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The quantity R0 in (3.4) is called the basic reproduction number of
infection [2]. It is generally known that if R0 < 1, then the disease-
free equilibrium is locally asymptotically stable (and the disease
will be eradicate from the community if the initial sizes of the four
state variables are within the vicinity of P0). Therefore, in the event
of an epidemic, the theoretical determination of conditions that can
make R0 less than unity is of great public health interest. If R0 > 1,
the system (3.2) has an endemic equilibrium P�ðS�; E�; I�;R�Þ, where

S� ¼ a bþa2ð ÞðcþdþeÞþcdf g
X

; E� ¼ a R0�1ð Þ bþa2ð Þ eþdð Þ
X

; ð3:5Þ

I� ¼ ac R0�1ð Þ bþa2ð Þ
X

; R� ¼ acd R0�1ð Þ bþa2ð Þ
X

; ð3:6Þ

with X ¼ R0bðbeþ cdþ da2 þ ea2 þ bdÞ þ cðbþ a2ÞððR0 � 1Þeþ bÞ,
and N� ¼ S� þ E� þ I� þ R� ¼ R0S�:

Evaluating the Jacobian of (3.2) at P� gives

JðP�Þ ¼

�b� w1 w2 �w3 w2 þ a2

w1 �b� c � w2 w3 �w2

0 c �e� d 0
0 0 d �b� a2

0
BBB@

1
CCCA; ð3:7Þ
where

w1 ¼
bI�ðN� � S�Þ

N�2 ¼ bc R0 � 1ð Þ2 bþ a2ð Þ
R2

0 ðbþ a2Þðc þ dþ eÞ þ cdð Þ
;

w2 ¼
bS�I�

N�2 ¼
bc R0 � 1ð Þ bþ a2ð Þ

R2
0 ðbþ a2Þðc þ dþ eÞ þ cdð Þ

;

w3 ¼
bS�ðN� � I�Þ

N�2 ¼ ðbc þ bR0ðdþ eÞÞðbþ a2Þ þ bcdR0

R2
0 ðbþ a2Þðc þ dþ eÞ þ cdð Þ

: ð3:8Þ

Note that Jacobian matrix (3.7) has the form as (3.1), using Lemma
3.1 (see Appendix A), we have the following result:

Theorem 3.2. If R0 > 1, the endemic equilibrium, P�, is LAS.
3.2. Only susceptible and exposed individuals travel

When the infected and recovered individuals are inhibited from
traveling to another city, that is a1 ¼ c ¼ 0, the model (2.5)
becomes



Fig. 3. Simulations of the model (3.9) showing the number of all individuals in two cities as a function of time using the parameter values in Table 1 with b ¼ 0:6 and
R00 ¼ 0:72 < 1: (a)–(d) the profiles of all populations in city 1; (e)–(h) the profiles of all populations in city 2.
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dS1
dt ¼ a� bS1 � b S1 I1

N1
þ a2R1 � a1S1 þ a1S2;

dE1
dt ¼

b S1 I1
N1
� bþ c þ a1ð ÞE1 þ a1E2;

dI1
dt ¼ cE1 � eþ dð ÞI1;

dR1
dt ¼ dI1 � bþ a2ð ÞR1;

dS2
dt ¼ a� bS2 � b S2 I2

N2
þ a2R2 � a1S2 þ a1S1;

dE2
dt ¼

b S2 I2
N2
� bþ c þ a1ð ÞE2 þ a1E1;

dI2
dt ¼ cE2 � eþ dð ÞI2;

dR2
dt ¼ dI2 � bþ a2ð ÞR2:

ð3:9Þ

From calculations, there are possible two steady states for model
(3.9); namely, disease-free equilibrium, P1ðab ;0;0; 0; a

b ;0;0; 0Þ and
endemic equilibrium, P2ðS�; E�; I�;R�; S�; E�; I�;R�Þ, respectively. Here
S�; E�; I�;R�;R0 are given by Eqs. 3.5,3.6.

According to the concept of next generation matrix [8] and
reproduction number presented in van den Driessche and Watm-
ough [28], the matrices F and V are given by

F¼

0 b 0 0
0 0 0 0
0 0 b 0
0 0 0 0

0
BBB@

1
CCCA and V ¼

bþ cþa1 0 �a1 0
�c eþd 0 0
�a1 0 bþ cþa1 0

0 0 �c eþd

0
BBB@

1
CCCA;respectively:
Therefore, the basic reproduction number of model (3.9) is given by

R00 ¼ qðFV�1Þ ¼ bc
eþ dð Þ bþ cð Þ: ð3:10Þ

Note that the basic reproduction numbers of (3.2) and (3.9) are
identical.

The Jacobian matrix of the model (3.9) at equilibrium point, P, is
given by

JðPÞ ¼
A1 B

B A2

� �
ð3:11Þ

where, for i ¼ 1;2;

Ai¼

�b�a1� bIiðNi�SiÞ
N2

i

bSiIi

N2
i

�bSiðNi�IiÞ
N2

i

bSiIi

N2
i
þa2

bIiðNi�SiÞ
N2

i
�b�c�a1� bSiIi

N2
i

bSiðNi�IiÞ
N2

i
�bSiIi

N2
i

0 c �e�d 0
0 0 d �b�a2

0
BBBBB@

1
CCCCCA

and B ¼

a1 0 0 0
0 a1 0 0
0 0 0 0
0 0 0 0

0
BB@

1
CCA: From calculations in Appendix B, the

following result is established:

Theorem 3.3. If R00 < 1, then P1 is LAS. (ii) If R00 > 1, then P2 is LAS.



Fig. 4. Simulations of the model (3.9) showing the number of all individuals in two cities as a function of time using the parameter values in Table 1 with b ¼ 0:95 and
R00 ¼ 1:14 > 1: (a)–(d) the profiles of all populations in city 1; (e)–(h) the profiles of all populations in city 2.
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Remark 3.2. There is, from Theorem 3.3, some import implica-
tions. First, if the disease have appeared in both cities then the tra-
vel of susceptible and exposed individuals does not change the
dynamics of disease spreading, and the final size of susceptible,
exposed, infected and recovered individuals does not change, see
Fig. 4. Second, if a disease has appeared only in city 1 with
E1ð0Þ > 0, I1ð0Þ > 0, E2ð0Þ ¼ 0, I2ð0Þ ¼ 0 and R00 > 1 (see
Figs. 4(b)–(c)), the traveling of exposed individuals will bring the
disease to city 2 and the disease will break out later in city 2
(see Figs. 4(f)–(g)). On the contrary, if R00 < 1, there is not the pos-
sibility for disease spreading in both cities, as shown in Figs. 4(b)–
(c)), and Figs. 3(f)–(g).
3.3. All individuals travel between two cities

In this section, the full model (2.5) is explored to study the ef-
fect of transport-related infection when all individuals can travel
between two cities. The extended model (2.5) has a disease-free
equilibrium, given by P1ðab ;0;0;0; a

b ;0;0;0Þ. Here, the next genera-
tion matrices, F and V , are given by

F¼

0 b 0 ca1

0 0 0 0
0 ca1 0 b

0 0 0 0

0
BBB@

1
CCCA and V ¼

bþcþa1 0 �a1 0
�c eþdþa1 0 �a1

�a1 0 bþcþa1 0
0 �a1 �c eþdþa1

0
BBB@

1
CCCA:
It follows that, using the next generation approach, the basic repro-
duction number of the model (2.5), denoted by R0c, is

R0c ¼ R0 þ
ca1c

ðbþ cÞðdþ eÞ : ð3:12Þ

Consequently, using Theorem 2 of [28], the following result is
established.

Lemma 3.2. The disease-free equilibrium, P1, of the model (2.5) is
LAS if R0c < 1, and unstable if R0c > 1.

The model (2.5) has a unique coexistence endemic equilibrium
denoted by P�cðS

�
c; E

�
c; I
�
c;R

�
c; S

�
c; E

�
c; I
�
c;R

�
cÞ,

S�c ¼
a bþa2ð ÞðcþdþeÞþ cdf g

Xc
; E�c ¼

a R0c�1
� �

bþa2ð Þ eþdð Þ
Xc

; ð3:13Þ

I�c ¼
ac R0c�1
� �

bþa2ð Þ
Xc

; R�c ¼
acd R0c�1
� �

bþa2ð Þ
Xc

; ð3:14Þ

with
Xc ¼ R0cbðbeþ cdþ da2 þ ea2 þ bdÞ þ cðbþ a2ÞððR0c � 1Þeþ bÞ:

The local stability of the coexistence endemic equilibrium is
now explored. The Jacobian matrix of system (2.5) at the equilib-
rium point, P, is given by

JðPÞ ¼
A1 B2

B1 A2

� �
; ð3:15Þ



Fig. 5. Simulations of the model (2.5) showing the number of all individuals in two cities as a function of time using the parameter values in Table 1 with b ¼ 0:6, c ¼ 0:09,
R0 ¼ 0:72 < 1 and R0c ¼ 0:82 < 1: (a)–(d) the profiles of all populations in city 1; (e)–(h) the profiles of all populations in city 2.

Table 1
Description and parameter values for the models (2.5), (3.2) and (3.9).

Parameters Descriptions Values References

a Recruitment rate 1 [29]
(by birth and by immigration)

b Natural death rate 0.2 [29]
c Rate that exposed individuals 0.3 [29]

become infected individuals
d Transfer rate from infected 0.1 [22]

individuals to recovered individuals
e Mortality rate for infected individuals 0.4 [29]
a2 Rate that recovered individuals 0.03 [22]

become susceptible individuals
a1 Rate that individuals of city i leave 0.9 [29]

to city jðj – iÞ
b Transmission rate 0 6 b � 1 Assumed
c Transport-related transmission rate 0 6 c � 1 Assumed

194 A. Denphedtnong et al. / Mathematical Biosciences 245 (2013) 188–205
where, for i ¼ 1;2, Ni ¼ Si þ Ei þ Ii þ Ri,

Ai¼

�b�a1� bIiðNi�SiÞ
N2

i

bSiIi

N2
i

�bSiðNi�IiÞ
N2

i

bSiIi

N2
i
þa2

bIiðNi�SiÞ
N2

i
�b�c�a1� bSiIi

N2
i

bSiðNi�IiÞ
N2

i
�bSiIi

N2
i

0 c �e�d�a1 0
0 0 d �b�a1�a2

0
BBBBB@

1
CCCCCA

and

Bi ¼

a1 � ca1 IiðNi�SiÞ
N2

i

ca1SiIi

N2
i

� ca1SiðNi�IiÞ
N2

i

ca1SiIi

N2
i

ca1IiðNi�SiÞ
N2

i
a1 � ca1SiIi

N2
i

ca1SiðNi�IiÞ
N2

i
� ca1SiIi

N2
i

0 0 a1 0
0 0 0 a1

0
BBBBB@

1
CCCCCA:

From calculations in Appendix C, we have the following results:

Theorem 3.4. The endemic equilibrium, P�c, of (2.5) is LAS if R0c > 1:

From Theorem 3.4, the disease eradication is possible for a
sufficient small parameter c when the both cities are disease-
free without traveling (that is, R0c < 1 for small c when
R0 < 1). Comparing R0c with R0, on the other hand, we find that
even a small transmission rate c is unfavorable or harmful to
disease eradication since R0c > R0 for c > 0. In fact, if c ¼ 0
and R0 < 1 hold, then infectious disease should disappear in
both cities from (3.12) (see Figs. 5–6). Further, if infected indi-
viduals can travel and there is transport-related infection such
that R0c > 1 then the endemic steady state
P�cðS

�
c; E

�
c; I
�
c;R

�
c; S

�
c; E

�
c; I
�
c;R

�
cÞ appears in two cities to become stable.

This situation is illustrated in Figs. 7–8.



Fig. 6. Simulations of the model (2.5) showing the number of all individuals in two cities as a function of time using the parameter values in Table 1 with b ¼ 0:6, c ¼ 0:2,
R0 ¼ 0:72 < 1 and R0c ¼ 0:936 < 1: (a)–(d) the profiles of all populations in city 1; (e)–(h) the profiles of all populations in city 2.
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As above results, it can be concluded that if the disease is ende-
mic in both isolated cities, then transport-related infection will
surely lead to the disease becoming endemic. When the two iso-
lated cities are disease-free, transport-related infection may also
have the possibility to lead to the disease becoming endemic. In
addition, to see clearly the effect of transport-related infection,
the relations among two reproduction number, R0 in (3.4) and
R0c in (3.12), are compared. It is found that R0c > R0 for c > 0,
and R0c ¼ R0 for c ¼ 0. Since @R0c

@c ¼
a1

ðbþcÞðeþdÞ > 0 for all c > 0, it im-
plies that R0c increases with the increase of c. Consider the coexis-
tence steady state P�cðS

�
c; E

�
c; I
�
c;R

�
c; S

�
c; E

�
c; I
�
c;R

�
cÞ of the model (2.5)

given by Eqs. 3.13,3.14, it is clear that S�c ! S�, E�c ! E�, I�c ! I�,
R�c ! R� as c! 0. Comparing coexistence steady state values of
susceptible, exposed, infected and recovered individuals in the case
of c ¼ 0 with those of c > 0, respectively, give S�c < S�, E�c > E�,
I�c > I� and R�c > R� for c > 0 because of

@S�c
@c
¼�a½ðbþa2ÞðcþdþeÞþ cd�@R0c=@c

X2
c

<0;

@E�c
@c
¼ aKðbþa2ÞðeþdÞ@R0c=@c

X2
c

>0;

@I�c
@c
¼ acKðbþa2Þ@R0c=@c

X2
c

>0;

@R�c
@c
¼ acKðbþa2Þ@R0c=@c

X2
c

>0;
with K ¼ bðbc þ ca2 þ beþ cdþ da2 þ ea2 þ bdÞ. It is also found that
S�c ¼ S�, E�c ¼ E�, I�c ¼ I� and R�c ¼ R� when c ¼ 0. This implies that, at
steady–state, the total number of susceptible individuals in the both
cities decreases with the increase of c, while the total number of
exposed, infected and recovered individuals increase with the in-
crease of c.

Next, the effect of transport-related infection to the final size of
population is discussed. Note that

N�c ¼ S�c þ E�c þ I�c þ R�c ¼
a½ðbþ a2Þðc þ dþ eÞ þ cd�

Dþ @ ; ð3:16Þ

where D ¼ bðbeþ cdþ da2 þ ea2 þ bdþ ceÞ þ cea2 and

@ ¼ cðbþa2Þðb�eÞðeþdÞðbþcÞ
bþca1

.

The partial derivative of N�c with respect to c is given by

@N�c
@c
¼ � a½ðbþ a2Þðc þ dþ eÞ þ cd�

ðDþ @Þ2
@@
@c

with

@@
@c
¼ ca1ðbþ a2Þðe� bÞðeþ dÞðbþ cÞ

ðbþ ca1Þ2
:

Since e > b then @@
@c > 0. It follows that @N�c

@c < 0: Therefore, N�c < N� for
c > 0 and N�c ¼ N� for c ¼ 0. This implies that the final size of pop-
ulations decreases with the increase of c.

By the way, it is found that



;

Fig. 7. Simulations of the model (2.5) showing the number of all individuals in two cities as a function of time using the parameter values in Table 1 with b ¼ 0:6, c ¼ 1,
R0 ¼ 0:72 < 1 and R0c ¼ 1:8 > 1: (a)–(d) the profiles of all populations in city 1; (e)–(h) the profiles of all populations in city 2.
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@

@c
E�c þ I�c þ R�c

N�c

 !
¼ 1

N�c
2

@ðE�c þ I�c þ R�cÞ
@c

S�c �
@S�c
@c
ðE�c þ I�c þ R�cÞ

" #
> 0

@

@c
S�c
N�c

 !
¼ 1

N�c
2

@S�c
@c
ðE�c þ I�c þ R�cÞ � S�c

@ðE�c þ I�c þ R�cÞ
@c

" #
< 0;

since @S�c
@c < 0. These imply that the proportion of the total number of

exposed, infected and recovered individuals (i.e. the total number of
individuals affected by the disease) increases with the increase of c.
On the contrary, the proportion of the susceptible individuals
decreases with the increase of c. Therefore, as above described, it
can be suggested that transport-related infection will cause an
endemic disease more seriously on spreading disease. Moreover,
from these epidemiological implications, it is very essential to
strengthen restrictions of passengers once when an infectious dis-
ease appears.

4. Numerical experiments

The models (2.5), (3.2) and (3.9) are solved by using fourth–
order Runge kutta method with the parameter values/ranges in
Table 1. The results are shown in two experiments. Experiment 1
presents the various theoretical results under the conditions of
the basic reproduction numbers, R0 and R0c, in order to illustrate
the effect of transport-related infection on its outbreak. Experi-
ment 2 shows the SEIRS model (3.2) is applied to study the out-
break of SARS in a city and the SEIRS model with transport-
related infection (2.5) is applied to study the SARS outbreak during
the movement between two cities.
4.1. Experiment 1: numerical simulations of the models

Firstly, the dynamics of model (3.2) which neglects the
movement of individuals are investigated by setting the transmis-
sion rate within a city, b ¼ 0:6, 0.95 due to give R0 ¼ 0:72 < 1
and R0 ¼ 1:14 > 1, respectively. The typical behaviors of all indi-
viduals at steady-states as a function of R0 are shown in
Fig. 2. Figs. 2(a)–(d) verifies that the numerical solutions of the
model (3.2) converge to disease-free equilibrium, P0ðS0;0;0;0Þ,
whenever R0 < 1, and to endemic equilibrium in (3.5), (3.6),
P�ð4:219;0:317;0:19;0:083Þ, if R0 > 1, (see Figs. 2(e)–(h)), respec-
tively. These results are in line with Theorems 3.1 and 3.2,
respectively.

Next, assume that only susceptible and exposed individuals tra-
vel to another city at the same rate a1 while the infected and recov-
ered individuals are inhibited from traveling to another city. Thus,
model (3.2) is extend to model (3.9). The model (3.9) is simulated
with parameter values in Table<br/>1. For numerical simulation



Fig. 8. Simulations of the model (2.5) showing the number of all individuals in two cities as a function of time using the parameter values in Table 1 with b ¼ 0:95, c ¼ 1,
R0 ¼ 1:14 > 1 and R0c ¼ 2:22 > 1: (a)–(d) the profiles of all populations in city 1; (e)–(h) the profiles of all populations in city 2.

Fig. 9. The number of all populations in a city produced by the model (3.2) with the parameter values: a ¼ 3 day�1, b ¼ 0:000034 day�1, c ¼ 1
6:4 day�1, d ¼ 1

4 day�1,
e ¼ 0:007934 day�1, a2 ¼ 0:001 day�1, k ¼ 1

3 day�1 and b ¼ 0:679 day�1.
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purposes, the transmission rate within a city, b, is set to be 0.6 and
0.95, respectively. The initial conditions are used: S1ð0Þ ¼ 2,
E1ð0Þ ¼ 1, I1ð0Þ ¼ 1, R1ð0Þ ¼ 0, S2ð0Þ ¼ 2, E2ð0Þ ¼ 0, I2ð0Þ ¼ 0 and
R2ð0Þ ¼ 0. The profiles of susceptible, exposed, infected and



Fig. 10. Comparison the cumulative numbers of SARS between actual data by WHO [35] (dotted lines) and predicted by SEIRS model(3.2) (solid lines).
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recovered individuals at steady–state are depicted in Figs. 3–4. Let
b ¼ 0:6, then R00 ¼ 0:72. It is seen that the obtained results conver-
gence to the disease-free equilibrium P1 ¼ ðS0;0;0;0; S0;0;0;0Þ
¼ ð5;0;0;0;5;0;0;0Þ if R00 < 1, as shown in Fig. 3. According to
Theorem 3.3, the disease-free equilibrium P1 is locally asymptoti-
cally stable whenever R00 < 1. It interprets that the infected indi-
viduals in city 1 decrease while the infected individuals in city 2
Fig. 11. The cumulative number of SARS cases obtained by the model (2.5) with various
cumulative number of SARS cases in city 2.
appear to be pandemic initially, and are eventually extinct. There-
fore, the disease die out separately in two cities if R00 < 1. When
b ¼ 0:95, then R0 ¼ 1:14. All solutions of the model (3.9) admit
an endemic equilibrium P2 ¼ ðS�; E�; I�;R�; S�; E�; I�;R�Þ ¼
ð4:219;0:317;0:19;0:083;4:219;0:317;0:19;0:083Þ, see Fig. 4. This
confirms that the endemic equilibrium, P2, is locally asymptotically
stable whenever R00 > 1 (as guaranteed by Theorem 3.3).
of c: c ¼ 0, c ¼ 0:2, c ¼ 1: (a) the cumulative number of SARS cases in city 1; (b) the



Fig. 12. The trajectory of infected individuals of the model (2.5) with various of c and other parameter values: a ¼ 3 day�1, b ¼ 0:000034 day�1, c ¼ 1
6:4 day�1, d ¼ 1

4 day�1,
e ¼ 0:007934 day�1, a2 ¼ 0:001 day�1, k ¼ 1

3 day�1, b ¼ 0:679 day�1, and a1 ¼ 0:9 day�1.

A. Denphedtnong et al. / Mathematical Biosciences 245 (2013) 188–205 199
Finally, two basic reproductions numbers, R0 and R0c, are
compared,

R0 ¼
bc

bþ cð Þ eþ dð Þ and R0c ¼ R0 þ
ca1c

ðbþ cÞðeþ dÞ : ð4:17Þ

It is clear that, from (4.17), R0c > R0, and R0c depends on R0 and
transport-related infection rate, c. When b ¼ 0:6 and the other
parameters b; c;d; e;a1 given in Table 1, it is found that R0 < 1
and R0c < 1 whenever 0 < c < 7=27, and R0 > 1 and R0c > 1
whenever 7=27 < c � 1. Whereas b ¼ 0:95 then R0 > 1 and
R0c > 1 for all c > 0. Thus, this experiment investigates the
dynamics of disease transmission into two cases by solving model
(2.5) with various values of b and c: b ¼ 0:6; 0:95 and
c ¼ 0:09;0:2;1, whilst retaining the same values of the other
parameters. In all computations, the initial conditions are taken
to be S1ð0Þ ¼ 2, E1ð0Þ ¼ 2, I1ð0Þ ¼ 2, R1ð0Þ ¼ 2, S2ð0Þ ¼ 1,
E2ð0Þ ¼ 1, I2ð0Þ ¼ 1, R2ð0Þ ¼ 1.

Case 1. When R0 < 1 and R0c < 1, the parameters b and c are
chosen to be b ¼ 0:6 and c ¼ 0:09;0:2, respectively. The
profiles of susceptible, exposed, infected and recovered
individuals, as depicted in Figs. 5–6, reveal that the
numerical solutions of model (2.5) converge to disease-
free equilibrium, P1, whenever R0c < 1 (as guaranteed
by Lemma 3.2). This study suggests that the transport-
related infection may not lead to the disease becoming
endemic when R0 < 1 and R0c < 1 for small c.

Case 2. Taking the values of c ¼ 1, b ¼ 0:6 and c ¼ 1, b ¼ 0:95
give R0 ¼ 0:72, R0c ¼ 1:8 and R0 ¼ 1:14, R0c ¼ 2:22,
respectively. These lead to study the dynamics of model
(2.5) in the cases R0 < 1 < R0c, and 1 < R0 < R0c. All
experiments are guaranteed by Theorem 3.4 in the
way that the number of all individuals asymptotically
approach to coexistence endemic equilibrium for
R0c > 1, see Figs. 7–8. Therefore, the results suggest that
if there is transport – related infection such thatR0c > 1,
then the disease is endemic in both two cities.

4.2. Experiment 2: effect of transport-related infection to SARS
outbreak in Hongkong 2003

The SEIRS model (3.2) is first applied to study the SARS outbreak
in Hongkong 2003 by adding the cumulative number of SARS cases
[5] which is given by

C 0 ¼ kI; ð4:18Þ

where C denotes cumulative number of SARS cases and k is the rate
of progression from infective to diagnosed. Simulations are ob-
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tained by choosing the most proper parameters (base-case esti-
mates) to SARS on 17 March 2003 to 26 April 2003 [35]:

a¼3 day�1
; b¼0:000034 day�1

; c¼ 1
6:4 day�1

; d¼ 1
4 day�1

;

e¼0:007934 day�1
; a2¼0:001 day�1 and k¼ 1

3 day�1
:

ð4:19Þ

The values of b, c and d correspond to life expectancy of 80 years
[13], an average incubation period of 6.4 days and infectious period
of approximately 4 days [9], respectively. The rate of SARS induced
mortality is 0.0079 day�1 [13]. The rate k is progression from infec-
tive to diagnosed and is set to be 1/3 day�1 [5]. The natural death
rate is 0.000034 day�1 [13], then the rate e is 0.007934 day�1 (sum-
mation of natural death rate and SARS induced mortality rate). The
basic reproduction number (R0) values for SARS is in the range 2.2
to 3.7 [19], then R0 is selected as 2.7 [19]. Substituting R0 ¼ 2:7 in
(3.4) give the transmission rate

b ¼ 0:679 day�1
: ð4:20Þ

For numerical simulations, the initial conditions are assumed to be
Sð0Þ ¼ 1;100, Eð0Þ ¼ 95, Ið0Þ, Rð0Þ ¼ 0 and Cð0Þ ¼ 95. For Ið0Þ ¼ 95
corresponds to number of infectious cases on 17 March 2003. The
numerical results of model (3.2) and (4.18) are shown in Figs. 9–
10. Fig. 9 shows that the number of susceptible individuals decrease
whereas the number of exposed, infected and recovered individuals
increase. This means that when the disease spread occurs, the num-
ber of susceptible individuals decrease since the susceptible indi-
viduals contact with infected individuals. Thus, susceptible
individuals can require exposed individuals. After 2–10 days [9],
the exposed individuals is progression to symptoms development,
therefore, exposed individual is called infected individuals. After
that infected individuals is hospitalized about 3–5 days [9] and then
infected individuals is becomes recovered individuals. It can be con-
cluded that SARS is highly infectious base on the gradient of the sus-
ceptible curve. Fig. 10 shows the predicted total cases obtained by
(4.18). The resulting curve for C fits very well with the observed to-
tal cases from 17 March 2003 to 26 April 2003 (totally 54 days). This
implies that SEIRS model (3.2) can be used to predict the SARS trans-
mission in Hongkong 2003.

Next, an SEIRS model with transport-related infection (2.5) is
applied to study the dynamic of SARS during the movement among
two cities. It is assumed that the all individuals can travel from one
city to another city at the rate a1. It is also assumed that both cities
are identical, i.e. the demographic are the same for each city. When
the disease spread occurs, the disease is transmitted with transi-
tion rate ca1. Thus, the effect of transport-related infection, c, is
monitored to forecast the total number of infected individuals
and duration of its outbreak. In this case the model (2.5) is simu-
lated by using parameter values a1 ¼ 0:9 and various values of c:
c ¼ 0, c ¼ 0:2 and c ¼ 1, whilst retaining the same values of other
parameters in the previous experiment. The initial conditions are
used S1ð0Þ ¼ 1;100, E1ð0Þ ¼ 95, I1ð0Þ ¼ 95, R1ð0Þ ¼ 0, C1ð0Þ ¼ 95,
S2ð0Þ ¼ 1;100, E2ð0Þ ¼ 5, I2ð0Þ ¼ 5, R2ð0Þ ¼ 0, C2ð0Þ ¼ 0. The cumu-
lative number of cases and trajectory of infected individuals, in two
cities, are shown in Figs. 11,12, respectively. The results show that
the total number of SARS in both cities increases with increase of c
(see Fig. 11). It is also seen that the maximum number of infected
individuals are 130, 150, 240 and the outbreak reached its peak
about 22 days, 20 days, 10 days as c increase, c ¼ 0, c ¼ 0:2,
c ¼ 1, respectively (see Fig. 12). This confirms that the size and
duration of an outbreak can be influenced by transport-related
infection. Thus, to reduction and to prevention the spread of SARS,
it should have the control measure of the traveling of individual
from one city to another city.
5. Conclusions

This paper presents an SEIRS with transport-related infection for
studying the spreading disease during the movement between two
cities. The model was rigorously analyzed into three cases in order
to gain insights into their qualitative dynamics. The following
results are obtained:

(i) Each of the three models considered in this study has a locally
asymptotically stable if a certain threshold quantity, known as
the basic reproduction number, is less than unity; indicating
that the numberof infectious individual in the communitywill
be brought to zero if public health measures that make (and
keep) the threshold to a value less than unity are carried out;

(ii) The basic reproduction number of the models (3.2) and (3.9)
are identical, then the traveling of susceptible and exposed
(means exposed but not yet infectious) individuals does
not change the dynamics of the corresponding epidemic
model when the disease had appeared in both regions. But
if the basic reproduction number is greater than unity, the
traveling of the exposed individuals can bring the disease
from one region to other regions according to Theorem 3.3;

(iii) If there is no restriction on the traveling of the exposed and
infectious individuals, according to Theorem 3.7 and the dis-
cussion behind this theorem, then transport-related infection
intensifies the disease spread in the sense of that both the
absolute and relative size of patients increase when R0c > 1;

(iv) The result of the SEIRS model without transport related infec-
tions (3.2) is good agreement with the real data of SARS out-
break in Hongkong 2003. When there is the movement of
exposed and infectious individuals between two cities, the
SEIRS model with transport related infection (2.5) is used to
investigate the outbreak of SARS when the individuals in
one city travel to another city. The results show that the trans-
port-related infection is effected to the number of infected
individuals and the duration of outbreak in such the way that
the disease becomes more endemic due to the movement
between two cities. This study can be helpful in providing
the information to public health authorities and policy maker
to reduce spreading disease when its occurs. However, the
results of the model (2.5) has not yet forecasted the real size
of the SARS epidemics in two city and one can see that in the
model (2.5), it is assumed that the two regions share an iden-
tical parameter set. It may be necessary to consider two differ-
ent population sizes and different dispersal rates in order to
discuss precisely the impact of the transport-related infection
on the disease dynamics. Moreover, to make the model more
realistic, gravity models introduced by Murray and Cliff [15] is
applied. We leave these to future work.
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Appendix A. Proof of Theorem 3.2

Proof. From Jacobian matrix (3.7) has the form as (3.1), it suffices
to check (3.7) satisfy in Lemma 3.1 to stability of P�. We check for
JðP�Þ as following steps.
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(i) A1 > 0. Obviously, wi > 0 for i ¼ 1;2;3 when R0 > 1, and
aii < 0 for i ¼ 1;2;3;4. Thus, A1 ¼ �ða11 þ a22 þ a33

þa44Þ > 0:
(ii) A2 ¼ J1 þ J2 þ J3 where J1 ¼ a44a33 þ a44a22 þ a44a11 þ a33a11,

J2 ¼ w2ðeþ dþ cÞ and J3 ¼ w2bþ ðbþ cÞðw1 þ bÞ. Obviously,
J2 > 0, J3 > 0 and J1 > 0 since aii < 0 for i ¼ 1;2;3;4. Thus,
A2 ¼ J1 þ J2 þ J3 > 0:

(iii) A3 ¼ Q 1 þ Q2 þ Q3 where Q 1 ¼ �a44ðJ2 þ J3Þ, Q 2 ¼ �a33J3,
Q3 ¼ w2cðbþ dÞ þ ðeþ dÞ½w1ðbþ a2Þ þ ba2� � cbðeþ dÞ. Since
�a33 > 0, �a44 > 0, J2 > 0 and J3 > 0, then Q1 > 0 and
Q2 > 0. Furthermore, Q 2 þ Q 3 ¼ w2cðbþ dÞ þ ðeþ dÞ½w1ðbþ
a2Þ þ ba2 þ bðbþ w1Þ þ w1c þ w2b� > 0: Thus, A3 ¼ Q 1 þ Q 2þ
Q3 > 0:

(iv) A4 ¼ detðJðP�ÞÞ ¼ L1 þ L2 þ L3 where L1 ¼ ðbþ a2Þðeþ dÞJ3,
L2 ¼ dcðbw2 � w1a2Þ; and L3 ¼ �ðbþ a2Þcw3b: Since a33 < 0,
a44 < 0 and J3 > 0, it is found that
A4¼bðeþdÞðbþa2Þðw1þw2Þþcbw2ðbþa2þcdÞ
þbw1ðeþdÞðbþa2þcÞþca2ew1 >0:
(v) A1A2 � A3 > 0. Since aii < 0 for i ¼ 1;2;3;4, and Ji > 0 for
i ¼ 1;2;3, it follows that
A1A2 � A3 ¼ �a11ðJ2 þ J3Þ � a22ðJ1 þ J3Þ
� a33ðJ1 þ J2Þ � a44J1 � a11ða44a22 þ a44a11

þ a33a11Þ þ ðbþ w2ÞJ2 þ cw2ðeþ cÞ þ bcw3 > 0:
(vi) Finally, it can be shown that A1A2A3 � A2
3 � A2

1A4 > 0. We
have A4 ¼ L1 þ L2 þ L3; then
A1A2A3 � A2
3 � A2

1A4 ¼ ðA1A2 � A3ÞA3 � A2
1L1 þ A2

1ð�L2 � L3Þ:
It is revealed that A1A2A3 � A2
3 � A2

1A4 > 0 since
� L2 � L3 ¼ cdw1a2 þ cbðbþ a2Þ

ðbc þ bR0ðeþ dÞÞðbþ a2Þ þ bcd
R2

0 ðbþ a2Þðc þ dþ eÞ þ cdð Þ

 !
> 0
and
ðA1A2 � A3ÞA3 � A2
1L1

¼ ð�ða11 þ a33ÞJ2 þ ðbþ w2ÞJ2 þ cw2ðeþ cÞ þ bcw3ÞA3

þ ca2
11a2

33a44 � ða22 þ a33 þ a44ÞðJ1A3 � L1A1Þ
� ða11 þ a22ÞðJ3A3 � a11L1Þ þ a11a44ð�ða11 þ a22ÞA3 � L1Þ
þ a11a33ð�a11A3 � ca11a33a44 � L1Þ > ðbþ w1Þðeþ dÞC1

þ ð2bþ c þ w1 þ w2ÞC4 þ ðbþ w1Þðbþ a2ÞC6

þ ð2bþ c þ w2 þ eþ dþ a2ÞC7 > 0
where
C1 ¼ w2ðbþ a2Þ½w1ðeþ dÞ þ cðbþ w1Þ� þ ðbþ w1Þðbþ a2ÞJ3

þ ðbþ w1Þ½w2cðbþ dÞ þ ðeþ dÞðw1ðbþ a2Þ þ w1ðbþ cÞ
þ w2bÞ� > 0;

C2 ¼ Q1 þ w2cðbþ dÞ þ ðeþ dÞ½w1ðbþ a2Þ þ w1ðbþ cÞ
þ w2b� > 0;

C3 ¼ Q1 þ w2cðbþ dÞ þ ðeþ dÞ½w1ðbþ cÞ þ w2b� > 0;

C4 ¼ J3C3 > 0;

C5 ¼ ðeþ dÞ½ðbþ a2ÞJ2 þ Q 2 þ Q 3� > 0;

C6 ¼ bA3 þ ðbþ w1 þ w2ÞC2 þ C3 > 0;

C7 ¼ ðbþ w1ÞC5 þ ðbþ c þ eþ dþ w2Þðbþ a2ÞðQ 1 þ Q 3Þ
þ ðbþ a2ÞC1 > 0:
Hence, by Lemma 3.1, all eigenvalues of JðP�Þ have negative real part
when R0 > 1. Thus, P� is LAS.

Appendix B. Proof of Theorem 3.3

Proof of Theorem 3.3 (i). Evaluating (3.11) at P1 gives

JðP1Þ ¼
A B

B A

� �
;

where

A ¼

�b� a1 0 �b a2

0 �b� c � a1 b 0
0 c �e� d 0
0 0 d �b� a2

0
BBB@

1
CCCA

and

B ¼

a1 0 0 0
0 a1 0 0
0 0 0 0
0 0 0 0

0
BBB@

1
CCCA:

By Cui et al. [7], the eigenvalues of JðP1Þ are identical to those of
Aþ B and A� B, where

Aþ B ¼

�b 0 �b a2

0 �b� c b 0
0 c �e� d 0
0 0 d �b� a2

0
BBB@

1
CCCA;

and

A� B ¼

�b� 2a1 0 �b a2

0 �b� c � 2a1 b 0
0 c �e� d 0
0 0 d �b� a2

0
BBB@

1
CCCA:

It is found that the eigenvalues of Aþ B and A� B are the roots of
equations

fAþBðkÞ ¼ ðkþ bÞðkþ bþ a2Þðk2 þ a1kþ a2Þ ¼ 0;

fA�BðkÞ ¼ ðkþ bþ 2a1Þðkþ bþ a2Þðk2 þ a3kþ a4Þ ¼ 0;

respectively, where a1 ¼ bþ c þ dþ e, a2 ¼ ðbþ cÞðdþ eÞð1�R00Þ,
a3 ¼ðbþcþdþeþ2a1Þ; a4¼ðeþdÞðbþ cþ2a1Þ 1� bc

ðdþeÞðbþcþ2a1Þ

h i
. It

is easy to see that a1 >0, a3 >0 and a2 >1 when R00 <1. Since
bc

ðdþeÞðbþcþ2a1Þ
<R00 <1 then a4 >0. These imply that, using the

Routh–Hurwitz criterion, all eigenvalues of AþB and A�B have
negative real part. Hence P1 is LAS if R00 <1.

Proof of Theorem 3.3 (ii). Evaluating (3.11) at P2 yields

JðP2Þ ¼
A B

B A

� �
;

where

A ¼

�b� a1 � w1 w2 �w3 w2 þ a2

w1 �b� c � a1 � w2 w3 �w2

0 c �e� d 0
0 0 d �b� a2

0
BBB@

1
CCCA

and

B ¼

a1 0 0 0
0 a1 0 0
0 0 0 0
0 0 0 0

0
BBB@

1
CCCA:
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Since Aþ B ¼ JðP�Þ, by the proof of Theorem 3.2, Aþ B is stable if
R00 > 1. For the matrix A� B, we have

A� B ¼

�b� 2a1 � w1 w2 �w3 w2 þ a2

w1 �b� c � 2a1 � w2 w3 �w2

0 c �e� d 0
0 0 d �b� a2

0
BBB@

1
CCCA:

It suffices to check that matrix A� B satisfies the conditions in Lem-
ma 3.1 as following six steps. For simplification, the entries of A� B
is denoted by aij for i; j ¼ 1;2;3;4. It is obvious that aii < 0 for
i ¼ 1;2;3;4. Since R0 ¼ R00, wi(i ¼ 1;2;3) give in (3.8) are positive
when R00 > 1.

(i) A1 ¼ �ða11 þ a22 þ a33 þ a44Þ > 0:
(ii) A2 ¼ J1 þ J2 þ J3 > 0 where J1 ¼ a44a33 þ a44a22 þ a44a11þ

a33a11 > 0; J2 ¼ ðw2 þ 2a1Þðeþ dÞ þ cw2 > 0; and J3 ¼ w2

ðbþ 2a1Þ þ ðbþ c þ 2a1Þðw1 þ bþ 2a1Þ > 0: Thus, A2 > 0.
(iii) A3 ¼ Q 1 þ Q 2 þ Q3. Since J2 > 0, J3 > 0 and a33 < 0, a44 < 0,

these yield Q1 ¼ �a44ðJ2 þ J3Þ > 0 and Q 2 ¼ �a33J3 > 0: For
Q3 ¼ dcw2 þ ðbþ 2a1Þcw2 þ ðeþ dÞ½w1ðbþ a2Þ
þa2ðbþ 2a1Þ� � cðbþ 2a1Þðeþ dÞ, it can be verified that
Q2 þ Q3 ¼ cw2ðbþ dþ 2a1Þ þ ðeþ dÞ½w1ðbþ a2Þ
þ a2ðbþ 2a1Þ� þ ðeþ dÞ½w2ðbþ 2a1Þ
þ w1ðbþ c þ 2a1Þ þ ðbþ 2a1Þ2� > 0:
Thus, A3 ¼ Q1 þ Q2 þ Q3 > 0.
(iv) A4 ¼ detðA� BÞ ¼ ðbþ a2Þðeþ dÞðbþ 2a1Þðw1 þ w2Þ þ cw2ðbþ

2a1Þðbþ a2 þ cdÞ þ w1ðbþ 2a1Þðeþ dÞðbþ a2 þ cÞ þca2ew1 >

0:
(v) A1A2 � A3 > 0. Since Ji > 0 for i ¼ 1;2;3, and aii < 0 for

i ¼ 1;2;3;4,
A1A2 � A3 ¼ �a11ðJ2 þ J3Þ � a22ðJ1 þ J3Þ � a33ðJ1 þ J2Þ
� a44J1 � a11ða44a22 þ a44a11 þ a33a11Þ þ ðbþ w2 þ 2a1ÞJ2

þ ceðw2 þ 2a1Þ þ c2w2 þ ðbþ 2a1Þcw3 > 0:
(vi) Finally, A1A2A3�A2
3�A2

1A4¼ðA1A2�A3ÞA3�A2
1L1þA2

1ð�L2�L3Þ
where L1¼ðbþa2ÞðeþdÞJ3, L2¼dcðw2ðbþ2a1Þ�w1a2Þ;
L3¼�ðbþa2Þðbþ2a1Þcw3:

Since
�L2 � L3 ¼ cdw1a2 þ cðbþ 2a1Þðbþ a2Þ

ðbc þ bR0ðeþ dÞÞðbþ a2Þ þ bcd
R2

0 ðbþ a2Þðc þ dþ eÞ þ cdð Þ

 !
> 0;
and
ðA1A2 � A3ÞA3 � A2
1L1 P ðbþ 2a1 þ w1Þðeþ dÞC1

þ ð2bþ 2a1 þ c þ w1 þ w2ÞC4 þ ðbþ 2a1 þ w1Þ
ðbþ a2ÞC6 þ ð2bþ 2a1 þ c þ w2 þ eþ dþ a2ÞC7 > 0;
where
C1 ¼ ðbþ a2Þ½ðeþ dÞðw1w2 þ 2a1ðbþ 2a1 þ w1ÞÞ
þ cw2ðbþ 2a1 þ w1Þ�ðbþ 2a1 þ w1Þðbþ a2ÞJ3

þ ðbþ 2a1 þ w1Þðcw2ðbþ dþ 2a1ÞÞ
þ ðbþ 2a1 þ w1Þðeþ dÞ½w1ðbþ a2Þ þ w1ðbþ c þ 2a1Þ�
þ ðbþ 2a1 þ w1Þðeþ dÞ½w2ðbþ 2a1Þ þ 2a1ðbþ 2a1Þ� > 0;

C2 ¼ ðeþ dÞ½w1ðbþ a2Þ þ w1ðbþ c þ 2a1Þ þ w2ðbþ 2a1Þ
þ 2a1ðbþ 2a1Þ� þ Q 1 þ cw2ðbþ dþ 2a1Þ > 0;

C3 ¼ ðeþ dÞ½w1ðbþ c þ 2a1Þ þ w2ðbþ 2a1Þ
þ 2a1ðbþ 2a1Þ� þ Q 1 þ cw2ðbþ dþ 2a1Þ > 0;
C4¼ J3C3 >0; C5¼ðeþdÞ½ðbþa2ÞJ2þQ 2þQ3�>0;
C6¼ðbþ2a1ÞA3þðbþ2a1þw1þw2ÞC2þcC3 >0;
C7¼ðbþ2a1þw1ÞC5þðbþcþeþdþw2þ2a1Þðbþa2Þ
ðQ1þQ 3Þþðbþa2ÞC1 >0:
From (i)–(vi), all the eigenvalues of A� B have negative real part.
Since all the eigenvalues of A� B and Aþ B have negative real part
whenever R00 > 1, P2 is LAS.
Appendix C. Proof of Theorem 3.4

Proof. Evaluating the Jacobian matrix of (2.5) at P�c gives

JðP�cÞ ¼
A B

B A

� �
;

where

A¼

�b�a1�w1 w2 �w3 w2þa2

w1 �b�c�a1�w2 w3 �w2

0 c �e�d�a1 0
0 0 d �b�a1�a2

0
BBB@

1
CCCA;

and B ¼

a1 � l1 l2 �l3 l2
l1 a1 � l2 l3 �l2
0 0 a1 0
0 0 0 a1

0
BB@

1
CCA; with

w1 ¼
bI�cðN

�
c � S�cÞ

N�c
2 ¼

bc R0c � 1
� �2 bþ a2ð Þ

R2
0c ðbþ a2Þðc þ dþ eÞ þ cdð Þ

;

w2 ¼
bS�cI�c
N�c

2 ¼
bc R0c � 1
� �

bþ a2ð Þ
R2

0c ðbþ a2Þðc þ dþ eÞ þ cdð Þ
;

w3 ¼
bS�cðN

�
c � I�cÞ

N�c
2 ¼ ðbc þ bR0cðdþ eÞÞðbþ a2Þ þ bcdR0c

R2
0c ðbþ a2Þðc þ dþ eÞ þ cdð Þ

;

l1 ¼
ca1I�cðN

�
c � S�cÞ

N�c
2 ¼

ca1c R0c � 1
� �2 bþ a2ð Þ

R2
0c ðbþ a2Þðc þ dþ eÞ þ cdð Þ

;

l2 ¼
ca1S�cI�c

N�c
2 ¼

ca1c R0c � 1
� �

bþ a2ð Þ
R2

0c ðbþ a2Þðc þ dþ eÞ þ cdð Þ
;

l3 ¼
ca1S�cðN

�
c � I�cÞ

N�c
2 ¼ ðca1c þ ca1R0cðdþ eÞÞðbþ a2Þ þ ca1cdR0c

R2
0c ðbþ a2Þðc þ dþ eÞ þ cdð Þ

;

and N�c ¼ S�c þ E�c þ I�c þ R�c. The eigenvalues of JðP�cÞ are equivalent to
calculate the eigenvalues of Aþ B and A� B as in the following.
First, according to Lemma 3.1, the matrix Aþ B:

Aþ B ¼

�b� h1 h2 �h3 h2 þ a2

h1 �b� c � h2 h3 �h2

0 c �e� d 0

0 0 d �b� a2

0
BBBBB@

1
CCCCCA;

where h1 ¼ w1 þ l1, h2 ¼ w2 þ l2, h3 ¼ w3 þ l3, is checked into six
step. For simplification, the entries of Aþ B are denoted by aij for
i; j ¼ 1;2;3;4: It is clear that aii < 0 for i ¼ 1;2;3;4.

(i) A1 ¼ �ða11 þ a22 þ a33 þ a44Þ > 0:
(ii) A2 ¼ J1 þ J2 þ J3 > 0 since J1 ¼ a44a33 þ a44a22 þ a44a11þ

a33a11 > 0, J2 ¼ h2ðeþ dþ cÞ > 0 and J3 ¼ ðbþ cÞðbþ h1Þþ
bh2 > 0: It follows that A2 ¼ J1 þ J2 þ J3 > 0.
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(iii) Obviously, Q1 ¼ �a44ðJ2 þ J3Þ > 0 and Q2 ¼ �a33J3 > 0. Let
Q3 ¼ h2cðbþ dÞ þ ðeþ dÞ½h1ðbþ a2Þ þ ba2� � cbðeþ dÞ; it fol-
lows that Q2 þ Q3 ¼ h2cðbþ dÞ þ ðeþ dÞ½h1ðbþ a2Þ þ ba2þ
bðbþ h1Þ þ h1c þ h2b� > 0: Thus, A3 ¼ Q1 þ Q2þ Q 3 > 0:

(iv) A4 ¼ detðJÞ ¼ bðeþ dÞðbþ a2Þðh1 þ h2Þ þ cbh2ðbþ a2 þ cdÞ
þbh1ðeþ dÞðbþ a2 þ cÞ þ ca2eh1 > 0:

(v) From (i)–(iii), it can be seen that
A1A2 � A3 ¼ �a11ðJ2 þ J3Þ � a22ðJ1 þ J3Þ
� a33ðJ1 þ J2Þ � a44J1 � a11ða44a22 þ a44a11 þ a33a11Þ
þ ðbþ h2ÞJ2 þ ch2ðeþ cÞ þ bch3 > 0:
(vi) Finally, from ðiÞ � ðvÞ, it is see that
A1A2A3 � A2
3 � A2

1A4 ¼ ðA1A2 � A3ÞA3 � A2
1L1 þ A2

1ð�L2 � L3Þ
where L1 ¼ ðbþ a2Þðeþ dÞJ3, L2 ¼ dcðbh2 � h1a2Þ, L3 ¼ �ðbþ a2Þch3b
and
� L2 � L3 ¼ cdh1a2 þ cbððbþ a2Þh3 � dh2Þ

> cbðbþ a2Þ2
ðbþ ca1Þc þR0cðbþ ca1Þðeþ dÞ
R2

0c ðbþ a2Þðc þ dþ eÞ þ cdð Þ

 !

þ cbðbþ a2Þ
ðbþ ca1Þcd

R2
0c ðbþ a2Þðc þ dþ eÞ þ cdð Þ

 !
> 0;
and
ðA1A2 � A3ÞA3 � A2
1L1 > ðbþ h1Þðeþ dÞC1

þ ð2bþ c þ h1 þ h2ÞC4 þ ðbþ h1Þðbþ a2Þ
C6 þ ð2bþ c þ h2 þ eþ dþ a2ÞC7 > 0;
where
C1¼ðbþa2Þh2ðh1ðeþdÞþcðbþh1Þþðbþh1Þðbþa2ÞJ3

þðbþh1Þ½h2cðbþdÞþðeþdÞðh1ðbþa2Þþh1ðbþcÞ
þh2bÞ�>0;

C2¼Q 1þh2cðbþdÞþðeþdÞ½h1ðbþa2Þþh1ðbþcÞþh2b�>0;
C3¼Q 1þh2cðbþdÞþðeþdÞ½h1ðbþcÞþh2b�>0;
C4¼ J3C3 >0; C5¼ðeþdÞ½ðbþa2ÞJ2þQ 2þQ 3�>0;
C6¼ bA3þðbþh1þh2ÞC2þcC3 >0;
C7¼ðbþh1ÞC5þðbþcþeþdþh2Þðbþh2ÞðQ 1þQ3Þ
þðbþa2ÞC1 >0:
By Lemma 3.1, all eigenvalues of Aþ B have negative real part when
R0c > 1.

Next, the matrix A� B is given by

A� B ¼

a11 /2 �/3 /2 þ a2

/1 a22 /3 �/2

0 c a33 0
0 0 d a44

0
BBB@

1
CCCA

where /1 ¼ w1 � l1, /2 ¼ w2 � l2, /3 ¼ w3 � l3,
a11 ¼ �b� 2a1 � /1, a22 ¼ �b� c � 2a1 � /2, a33 ¼ �e� d� 2a1

and a44 ¼ �b� 2a1 � a2: The eigenvalues of A� B are evaluated.

(i) Obviously, aii < 0 for i ¼ 3;4. For 0 6 c � 1 and
0 < R0c � 1 < R0c < R2

0c when R0c > 1, it is found that
a11 ¼ �b� w1 � 2 2�
cc R0c � 1
� �2 bþ a2ð Þ

R2
0c ðbþ a2Þðc þ dþ eÞ þ cdð Þ

 !
a1 < 0
and � � !

a22 ¼ �b� c � w2 � 2�

cc R0c � 1 bþ a2ð Þ
R2

0c ðbþ a2Þðc þ dþ eÞ þ cdð Þ
a1 < 0; respectively:
Hence, A1 ¼ �ða11 þ a22 þ a33 þ a44Þ > 0.
(ii) A2 ¼ J1 þ J2 þ J3 where J1 ¼ a44a33 þ a44a22 þ a44a11þ

a33a11 > 0, J2 ¼ ðeþ dþ 2a1Þðbþ 2a1 þ cÞ þðeþ dþ 2a1Þ
ðb�ca1ÞS�cI�c

N�c
2 �

ðb�ca1ÞcS�cðN
�
c� I�cÞ

N�c
2 and J3¼ðbþcþ2a1Þða1þ/1Þ

þðbþ2a1Þðbþa1þ/2Þþcðbþa1Þ. Clearly, aii <0 for i¼1;2;3;4, then
J1 >0. There is two cases for testing J2 >0.
Case 1: bPca1,
J2 ¼ J2 ¼ ðeþ dþ 2a1Þðbþ 2a1 þ cÞ

þ ðeþ dþ 2a1Þ
ðb� ca1ÞS�cI�c

N�c
2 �

ðb� ca1ÞcS�cðN
�
c � I�cÞ

N�c
2

P ðeþ dþ 2a1Þðbþ 2a1 þ cÞ �
ðb� ca1ÞcS�cðN

�
c � I�cÞ

N�c
2

P ðeþ dþ 2a1Þðbþ 2a1 þ cÞ �
ðbþ ca1ÞcS�cðN

�
c � I�cÞ

N�c
2

P ðbþ cÞðeþ dÞ �
ðbþ ca1ÞcS�cðN

�
c � I�cÞ

N�c
2

P ðbþ ca1Þc
1
R0c
�

S�c
N�c
þ

S�cIc�

N�c
2

 !
P
ðbþ ca1ÞcS�cIc�

N�c
2 > 0:
Case 2: b < ca1, � �
J2 ¼ ðeþ dþ 2a1Þðbþ 2a1 þ cÞ þ ðeþ dþ 2a1Þ
ðb� ca1ÞScIc

N�c
2

þ
ðca1 � bÞcS�cðN

�
c � I�cÞ

N�c
2

P ðeþ dþ 2a1Þðbþ 2a1 þ cÞ þ ðeþ dþ 2a1Þ
ðb� ca1ÞS�cI�c

N�c
2

P ðeþ dÞðbþ cÞ þ 4a2
1 � ðeþ dþ 2a1Þ

ðca1ÞS�cI�c
N�c

2

P 2a2
1 2�

cc R0c � 1
� �

bþ a2ð Þ
R2

0c ðbþ a2Þðc þ dþ eÞ þ cdð Þ

 !
;

þ ðeþ dÞc 1�
ca1 R0c � 1

� �
bþ a2ð Þ

R2
0c ðbþ a2Þðc þ dþ eÞ þ cdð Þ

 !
> 0:
From case 1 and case 2, therefore, J2 > 0. When 0 6 c � 1 and
R0c > 1, it is clear that
a1þ/1¼ 1�
cc R0c�1
� �2 bþa2ð Þ

R2
0c ðbþa2ÞðcþdþeÞþcdð Þ

 !
a1 >0; ðAÞ

and a1þ/2¼ 1�
cc R0c�1
� �

bþa2ð Þ
R2

0c ðbþa2ÞðcþdþeÞþcdð Þ

 !
a1 >0: ðBÞ
Hence, J3 > 0.
(iii) A3 ¼ Q 1 þ Q 2 þ Q 3 where Q 1 ¼ �a44ðJ2 þ J3Þ, Q2 ¼ �a33J3

and Q 3 ¼ cdða1 þ /2Þ þ ðbþ 2a1 þ /1Þðbþ 2a1 þ a2Þ
ðeþ dþ 2a1Þ � ðbþ 2a1Þc/3 � cda1. It can be shown
that
A3 ¼ Q 1 þ Q 2 þ Q3

> ðbþ 2a1Þ ðbþ cÞðeþ dÞ �
cðb� ca1ÞS�cðN

�
c � I�cÞ

N�c
2

" #
> 0;
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as the following two cases.
Case 1: b P ca1,
A3 P ðbþ 2a1Þ ðbþ cÞðeþ dÞ �
cðbþ ca1ÞS�cðN

�
c � I�cÞ

N�c
2

" #

P
ðbþ 2a1Þðbþ ca1ÞcS�cI�c

N�c
2 > 0:
Case 2: b < ca1, � � �" #

A3 P ðbþ 2a1Þ ðbþ cÞðeþ dÞ þ

cðca1 � bÞScðNc � IcÞ
N�c

2 > 0:
From case 1 and case 2, it is clear that A3 > 0.
ðivÞ A4 ¼ detðA� BÞ ¼ L1 þ L2 þ L3 > 0; where L1 ¼ ðbþ a2þ

2a1Þðeþ dþ 2a1ÞJ3, L2 ¼ dc½/2ðbþ 2a1Þ � /1a2� and L3 ¼
�ðbþ a2 þ 2a1Þðbþ 2a1Þc/3:

Furthermore,
L1þL2þL3¼ðbþa2þ2a1Þ

� ðeþ2a1ÞJ3þcðbþ2a1Þ
ðb�ca1ÞS�cðN

�
c� I�cÞ

N�c
2

" #

þdðbþ2a1ÞðJ2�ca1Þþda2ðJ3�c/1Þ>

�ðbþ2a2þ2a1Þ ðeþ2a1Þ J3�
cca1S�cðN

�
c� I�cÞ

N�c
2

 !" #

þdðbþ2a1ÞðJ2�ca1Þþda2ðJ3�c/1Þ
with
J3 þ c/3 > J3 �
cca1S�cðN

�
c � I�cÞ

N�c
2

> cðbþ a1Þ �
cca1S�cðN

�
c � I�cÞ

N�c
2

> cbþ ca1 1�
ca1S�cðN

�
c � I�cÞ

N�c
2

 !

> cbþ ca1 1� c
R0c

� �
> 0; ðCÞ

J2 � ca1 ¼ ðeþ dþ a1Þðbþ c þ /2 þ 2a1Þ
þ a1ðbþ /2 þ 2a1Þ � c/3 > 0;

J3 � c/1 ¼ ðbþ 2a1Þð/1 þ a1Þ þ ca1

þ ðbþ 2a1Þðbþ a1 þ /2Þ þ cðbþ a1Þ > 0:
Thus, A4 > 0:
(v) From (i)–(iii), Ji > 0 for i ¼ 1;2;3 and aii < 0 for i ¼ 1;2;3;4.

It is found that
A1A2�A3¼�ða11þa22ÞðJ1þ J2þ J3Þ�a33ðJ1þ J2Þ�a44J1�Q 3

>�ða11þa22ÞJ3�a11J1�a22�Q 3

>�ða11þa22ÞJ3�a11½J1�a33a44��a11a33a44

þð�a22�cÞJ2þcJ2�Q 3

>�a11a33a44�ða11þa22ÞJ3þcJ2�Q3

> cðJ2�/2dÞþð2bþcþ2a1þð/1þa1Þþð/2þa1ÞÞJ3

þðbþ2a1Þc/3

> cðJ2�/2dÞþðbþ2a1ÞðJ3þc/3Þ

> cðJ2�/2dÞþðbþ2a1Þ J3�
cca1S�ðN� � I�Þ

N�2

� �

> cðJ2�/2dÞþðbþ2a1Þ 1� c
R0c

� �
>0;
where

J2 � /2d > ðeþ dþ 2a1Þð/2 þ a1Þ � /2d

> ðeþ 2a1Þð/2 þ a1Þ þ da1 > 0:
Thus, A1A2 � A3 > 0:
ðviÞ Finally, it is shown that A1A2A3 � A2

3 � A2
1A4 > 0. Here,
/1 ¼
ðb� ca1Þc R0c � 1

� �2 bþ a2ð Þ
R2

0c ðbþ a2Þðc þ dþ eÞ þ cdð Þ
;

/2 ¼
ðb� ca1Þc R0c � 1

� �
bþ a2ð Þ

R2
0c ðbþ a2Þðc þ dþ eÞ þ cdð Þ

;

/3 ¼
ðb� ca1Þ½ðc þR0cðdþ eÞÞðbþ a2Þ þ cdR0c�

R2
0c ðbþ a2Þðc þ dþ eÞ þ cdð Þ

;

it can be shown that A1A2A3 � A2
3 � A2

1A4 > 0 as the following two
cases. Case 1, if b > ca1 then /1 > 0, /2 > 0 and /3 > 0. It can be
seen that
A1A2A3�A2
3�A2

1A4¼ðA1A2�A3ÞA3�A2
1L1þA2

1ð�L2�L3Þ>0;
since
�L2 � L3 > cbðbþ a2Þ2
ðb� ca1Þc þR0cðb� ca1Þðeþ dÞ
R2

0c ðbþ a2Þðc þ dþ eÞ þ cdð Þ

 !

þ cbðbþ a2Þ
ðb� ca1Þcd

R2
0c ðbþ a2Þðc þ dþ eÞ þ cdð Þ

 !
> 0;
and
ðA1A2�A3ÞA3�A2
1L1 P ðbþ2a1þ/1Þðeþdþ2a1ÞC1

þð2bþ4a1þcþ/1þ/2ÞC4

þðbþ2a1þ/1Þðbþ2a1þa2ÞC6

þð2bþ6a1þcþ/2þeþdþa2ÞC7 >0;
with
C1¼ðbþa2þ2a1Þ½ðeþdþ2a1Þð/1/2þ2a1ðbþ2a1þ/1ÞÞ
þc/2ðbþ2a1þ/1Þ�

þðbþ2a1þ/1Þ½ðbþa2þ2a1ÞJ3þc/2ðbþdþ2a1Þ�
þðbþ2a1þ/1Þðeþdþ2a1Þ½/1ð2bþa2þcþ4a1Þ
þð/2þ2a1Þðbþ2a1Þ�>0;

C2¼Q1þc/2ðbþdþ2a1Þþðeþdþ2a1Þð/1ðbþ2a1

þa2Þþ/2ðbþ2a1ÞÞþðeþdþ2a1Þðbþcþ2a1Þ/1 >0;

C3¼Q1þc/2ðbþdþ2a1Þþðeþdþ2a1Þð/1ðbþ2a1þa2Þ
þ/2ðbþ2a1ÞÞ;

C4¼ J3C3 >0;
C5¼ðeþdþ2a1Þ½ðbþa2þ2a1ÞJ2þQ 2þQ3�>0;
C6¼ðbþ2a1ÞA3þðbþ2a1þ/1þ/2ÞC2þcC3 >0;
C7¼ðbþ2a1þ/1ÞC5þðbþcþeþdþ/2þ4a1Þðbþa2

þ2a1ÞðQ 1þQ3Þþðbþa2þ2a1ÞC1 >0;
Case 2, if b < ca1, � �2
/1 ¼ �
ðca1 � bÞc R0c � 1 bþ a2ð Þ
R2

0c ðbþ a2Þðc þ dþ eÞ þ cdð Þ
< 0;

/2 ¼ �
ðca1 � bÞc R0c � 1

� �
bþ a2ð Þ

R2
0c ðbþ a2Þðc þ dþ eÞ þ cdð Þ

< 0;

and /3 ¼ �
ðca1 � bÞ½ðc þR0cðdþ eÞÞðbþ a2Þ þ cdR0c�

R2
0c ðbþ a2Þðc þ dþ eÞ þ cdð Þ

< 0:
From (A) – (C), it is revealed that /1 þ a1 > 0, /2 þ a1 > 0 and
J3 þ c/3 > 0, respectively. Next, the inequality
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A1A2A3�A2
3�A2

1A4¼ðA1A2�A3ÞA3�A2
1ðL1þL2þL3Þ ðDÞ
is proved as follows. Calculating L2 þ L3, J2 � J3, give
L2 þ L3 ¼ dc½/2ðbþ 2a1Þ � ð/1 þ a1Þa2� � ðJ3 þ c/3Þ
ðbþ a2 þ 2a1Þðbþ 2a1Þ
þ dca1a2 þ J3ðbþ a2 þ 2a1Þðbþ 2a1Þ ¼ gþ m;
J2 � J3 ¼ ðeþ dþ 2a1Þðbþ c þ /2 þ 2a1Þ � ðbþ c þ 2a1Þ
ðbþ 2a1Þ � /1ðbþ c þ 2a1Þ � /2ðbþ 2a1Þ � c/3

¼ ðbþ c þ 2a1Þðe� bÞ þ dðbþ c þ 2a1 þ /2Þ
� /1ðbþ c þ 2a1Þ � /2b� /3c > 0;
where g ¼ dc½/2ðbþ 2a1Þ � ð/1 þ a1Þa2� � ðJ3 þ c/3Þðbþ a2 þ 2a1Þ
ðbþ 2a1Þ < 0 and m ¼ dca1a2 þ J3ðbþ a2 þ 2a1Þðbþ 2a1Þ > 0:
Substituting L2 þ L3 into (D) yields
ðA1A2�A3ÞA3�A2
1ðL1þmþgÞP ðbþ2a1þ/1Þðeþdþ2a1ÞC1

þð2bþ4a1þcþ/1þ/2ÞC4

þðbþ2a1þ/1Þðbþ2a1þa2ÞC6

þð2bþ6a1þcþ/2þeþdþa2ÞC7 >0;
where
C1 ¼ ðbþ 2a1 þ /1ÞA3 þ cðbþ 2a1 þ /1Þðeþ dþ 2a1Þðbþ 2a1

þ a2Þ � ðbþ a2 þ 2a1Þðeþ dþ 2a1ÞJ3 þ ð/1 þ a1Þdca2

þ ðJ3 þ c/3Þðbþ a2 þ 2a1Þðbþ 2a1Þ � dc/2ðbþ 2a1Þ
� dca1a2 � J3ðbþ a2 þ 2a1Þðbþ 2a1Þ

> ðbþ a2 þ 2a1Þ½ðeþ dþ 2a1Þ/1/2 þ ðbþ /1 þ 2a1Þ
ð2a1ðeþ dþ 2a1Þ þ c/2Þ� þ ð/1 þ a1Þðbþ /1

þ a1Þðeþ dþ 2a1Þðbþ a2 þ 2a1 þ cÞ
þ ðbþ 2a1Þð/1 þ /2 þ 2a1Þðbþ /1 þ a1Þ
ðeþ dþ 2a1Þ þ ð/1 þ a1Þðbþ a2 þ 2a1ÞJ3 > 0;

C2 ¼ ðbþ 2a1 þ a2Þ½J2 þ J3 � ðbþ 2a1Þðeþ dþ 2a1Þ�
þ ðeþ dþ 2a1ÞJ3 þ Q 3

> ðbþ 2a1 þ a2Þ½2a1ðbþ cÞ þ ðbþ c þ 2a1Þða1 þ /1Þ
þ ðbþ 2a1Þðbþ a1 þ /2Þ� þ cðbþ a1Þðbþ 2a1 þ a2Þ > 0;

C3¼C2þ
cðca1�bÞ R0c�1

� �2 bþa2ð Þðeþdþ2a1Þðbþ2a1þa2Þ
R2

0c ðbþa2ÞðcþdþeÞþcdð Þ
>0;

C4¼ J3C3>0;
C5¼ðeþdþ2a1Þ½ðbþa2þ2a1ÞJ2þQ 2þQ 3�þð/1þa1Þdca2

þðJ3þc/3Þðbþa2þ2a1Þðbþ2a1Þ�dc/2ðbþ2a1Þ
�dca1a2� J3ðbþa2þ2a1Þðbþ2a1Þ
> ðbþa2þ2a1Þðeþ2a1ÞðJ2� J3Þþðeþdþ2a1ÞðQ 2þQ3Þ

þ
dc2ðca1�bÞ R0c�1

� �
bþa2ð Þðbþ2a1Þ

R2
0c ðbþa2ÞðcþdþeÞþcdð Þ

>0;

C6¼ðbþ2a1ÞA3þðbþ2a1þ/1þ/2ÞC2þcC3

þð/1þa1Þdca2þðJ3þc/3Þðbþa2þ2a1Þðbþ2a1Þ
�dc/2ðbþ2a1Þ�dca1a2� J3ðbþa2þ2a1Þðbþ2a1Þ
> ðbþ2a1Þððbþa2þ2a1ÞJ2þQ 2þQ 3Þ
þðbþ2a1þ/1þ/2ÞC2þcC3>0;

C7¼ðbþcþeþdþ/2þ4a1Þ½ðbþa2þ2a1ÞðQ1þQ 3Þ�m�g�
þðbþ2a1þ/1ÞC5þðbþa2þ2a1ÞC1> ðbþcþeþdþ/2

þ4a1Þðbþa2þ2a1Þa2J3>0:
Thus, A1A2A3 � A2
3 � A2

1A4 > 0: By Lemma 3.1, all the eigenvalues of
A� B have negative real part. Therefore, it can be concluded that
all the eigenvalues of Aþ B and A� B have negative real part. These
imply that P�c isLAS when R0c > 1.
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