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Abstract

Magnetic resonance (MR) images with both high resolutions and high signal-to-noise ratios 

(SNRs) are desired in many clinical and research applications. However, acquiring such images 

takes a long time, which is both costly and susceptible to motion artifacts. Acquiring MR images 

with good in-plane resolution and poor through-plane resolution is a common strategy that saves 

imaging time, preserves SNR, and provides one viewpoint with good resolution in two directions. 

Unfortunately, this strategy also creates orthogonal viewpoints that have poor resolution in one 

direction and, for 2D MR acquisition protocols, also creates aliasing artifacts. A deep learning 

approach called SMORE that carries out both anti-aliasing and super-resolution on these types of 

acquisitions using no external atlas or exemplars has been previously reported but not extensively 

validated. This paper reviews the SMORE algorithm and then demonstrates its performance in 

four applications with the goal to demonstrate its potential for use in both research and clinical 

scenarios. It is first shown to improve the visualization of brain white matter lesions in FLAIR 

images acquired from multiple sclerosis patients. Then it is shown to improve the visualization of 

scarring in cardiac left ventricular remodeling after myocardial infarction. Third, its performance 

on multi-view images of the tongue is demonstrated and finally it is shown to improve 

performance in parcellation of the brain ventricular system. Both visual and selected quantitative 

metrics of resolution enhancement are demonstrated.

*Corresponding Author: czhao20@jhu.edu (Can Zhao). 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Magn Reson Imaging. Author manuscript; available in PMC 2020 December 01.

Published in final edited form as:
Magn Reson Imaging. 2019 December ; 64: 132–141. doi:10.1016/j.mri.2019.05.038.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Deep learning; MRI; super-resolution; aliasing; segmentation; reconstruction; SMORE

1. Introduction

In many clinical and research applications, MR images with high resolution and high signal-

to-noise ratio (SNR) are desired. However, acquiring such MR images takes a long time, 

which is costly, lowers patient throughput, and increases both patient discomfort and motion 

artifacts. A common compromise in practice is to acquire MRI with good in-plane resolution 

and poor through-plane resolution. With a reasonable acquisition time, the resulting 

elongated voxels have good SNR and one viewpoint (the in-plane view) with good 

resolution in two directions that yields acceptable diagnostic quality. Though they are 

acceptable in diagnosis, these elongated voxels are not ideal for automatic image processing 

software, which is generally focused on 3D analysis and needs isotropic resolution. A 

common first step in automatic analysis is to interpolate (nearest neighbor, linear, b-spline, 

zero-padding in k-space, etc.) the data into isotropic voxels. Unfortunately, since 

interpolation does not restore the high frequency information that was not acquired in the 

actual scan itself, the interpolated images have blurry edges in the through-plane direction. 

Also, for 2D MRI acquisitions the low sampling rate in the through-plane direction causes 

aliasing artifacts which appear as unnatural high-frequency textures that cannot be removed 

through interpolation.

To address the problem of low through-plane resolution, researchers have developed a 

number of super-resolution (SR) techniques, including multi-image SR and single-image SR 

methods, that attempt to restore the missing and attenuated high frequency information. 

Multi-image SR methods reconstruct a high resolution (HR) image from the acquisition of 

multiple low-resolution (LR) images each with degraded resolution in a different direction 

[1, 2], such that the methods can combine high-frequency information from multiple 

orientations. Although multi-image SR methods [1, 2] can be effective, there are two major 

disadvantages. First, it takes extra time to acquire the multiple images, which is costly and 

inconvenient. Second, the images must be registered together, an operation that is prone to 

errors because of differences in both image resolution and geometric distortions (both 

caused by differences in the orientations of the acquired images). Single-image SR, on the 

other hand, only involves one acquired LR image, which solves the problem of acquisition 

time and focuses our attention on the SR algorithms. The most successful algorithms for 

single-image SR in MRI have been learning-based including sparse coding [3], random 

forests [4], and convolutional neural networks (CNNs) [5, 6, 7]. The basic strategy of these 

methods is to learn a mapping from LR atlas images (also called training images or 

examplars) to HR atlas images and apply the learned mapping to the acquired LR subject 

images (also called testing images). Methods like sparse coding and random forests need a 

manually designed feature as the input for the mapping. On the other hand, CNNs take either 

images or patches directly as input, and learn the features automatically during training. 

Some CNNs are trained with aliased LR images [7, 8]. These networks do anti-aliasing and 

super-resolution at the same time.
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Many of these learning-based methods provide good results, especially the state-of-the-art 

methods CNNs [9, 10]. In NTIRE CVPR 2017 [11, 12] and PIRM ECCV 2018 super-

resolution challenge [13], a variety of SR methods were evaluated. Among them, generative 

adversarial network (GAN)-based models provide results with better visual quality, while a 

CNN model called Enhanced Deep Residual Network (EDSR) [9] achieves the best 

accuracy, which is more important than visual quality for medical imaging. Although these 

SR methods provide far better results than interpolation, they have not been universally 

adopted in MRI for two major reasons. First, training data requires paired LR and HR MR 

images which can be difficult to obtain, primarily because high-SNR HR MR images take a 

long time to acquire and may suffer from motion artifacts. Second, to avoid overfitting in 

deep networks, the tissue contrast of external training images must closely match with the 

subject data, but this is difficult because MRI has no standardized intensity scale. Because of 

these two reasons, it is highly desirable for SR in MR to avoid external atlases.

SR methods that do not require external atlases have been developed in the past. Methods 

include total variation methods [14, 15], non-local means [16, 17], brain hallucination [18], 

and self super-resolution methods (SSR) [19, 20, 21, 22]. These methods all have features 

that make them non-optimal. For example, total variation SR methods are essentially image 

enhancement methods designed to strengthen edges and suppress noise, where the 

parameters need to be carefully tuned to decide how much high frequency information to be 

restored. Non-local means SR assumes that small patches repeat themselves at different 

resolutions within the same image, which may not be true in medical images. Brain 

hallucination assumes that the LR/HR properties in a T1-weighted image are the same as 

those in a T2-weighted image, which may not be true. Self super-resolution methods, with 

the exception of [22], assume that images obey a spatial self-similarity wherein the LR/HR 

relationship at a coarse scale applies to that at a finer scale. The SR method presented in Jog 

et al. [22] is the first SR method to improve resolution in the through-plane direction using 

the higher resolution data that is already present in the in-plane directions. Our method is 

motivated by and improves upon this prior work, which we refer to as JogSSR in this paper.

We previously developed an SSR algorithm called Synthetic Multi-Orientation Resolution 

Enhancement (SMORE) [23, 8]. SMORE does not use external training data, there are no 

parameters to tune, there is no intensity smoothing or regularization, and the only pre-

processing that is required is N4 intensity inhomogeneity correction [24]. SMORE takes 

advantage of the fact that the in-plane slices have high resolution data and can be used to 

extract paired LR/HR training data by downsampling. For 3D MRI, SMORE uses the state-

of-the-art network EDSR as the underlying SSR CNN [23]. For 2D MRI, SMORE uses a 

self anti-aliasing (SAA) deep CNN that precedes the SSR CNN, also using EDSR as the 

underlying CNN model [8]. We have already demonstrated that SMORE can give results 

with better SR accuracy than competing methods, including standard interpolation and 

JogSSR. Also Dewey et al. [25] have demonstrated that SMORE can be used to improve the 

performance of image synthesis and white matter lesion segmentation.

In this paper, we use four applications to demonstrate the potential of SMORE in both 

research and clinical scenarios. The first application is on T2 FLAIR MR brain images 

acquired from multiple sclerosis (MS) patients. MS is an auto-immune disease in which 
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myelin, the protective coating of nerves, is damaged and can be visualized as hyperintense 

lesions in FLAIR images. We show that visualization of MS lesions using SMORE is better 

than that obtained using cubic b-spline interpolation and JogSSR. The second application is 

on cardiac MRI where we explore the visualization of myocardial scarring from cardiac left 

ventricular remodeling after myocardial infarction. Characterizing such scarring is important 

factor in assessing the long-term clinical outcome after myocardial infarction [26] and it is 

challenging due to the competing requirements of high-resolution imaging and rapid 

scanning due to cardiac motion and breathing. We show improved visualization of such scars 

when using SMORE.

The third application of SMORE is on multi-orientation MR images of the tongue in tongue 

tumor patients. Because of the involuntary requirement to swallow during lengthy MR scans, 

acquisition times are very limited–less than 3 minutes—in tongue imaging. A previous 

approach to obtaining super-resolution in the tongue used a computational combination of 

axial, sagittal, and coronal image stacks, each obtained in a separate stationary phase and 

registered together [2]. We demonstrate how the use of SMORE on a single acquisition is 

comparable to the result of combining three acquisitions. The fourth application of SMORE 

is on brain ventricle labeling in subjects with normal pressure hydrocephalus (NPH). NPH is 

a brain disorder usually caused by disruption of the cerebrospinal fluid (CSF) flow, leading 

to ventricle expansion and brain distortion. Having accurate parcellation of the ventricular 

system into its sub-compartments could potentially help in diagnosis and surgical planning 

in NPH patients [27]. Both visual and selected quantitative metrics of resolution 

enhancement are demonstrated.

In this paper, we make three important contributions about the implementation and utility of 

SMORE. First, we give a complete explanation of the method (previously described more 

briefly in conference publications [23, 8]) in Sec. 2.1. Second, in order to show the 

versatility of SMORE, we present results on four MRI datasets from different pulse 

sequences and different organs, with three of them being real acquired LR MR datasets. 

Finally, we demonstrate that the proposed SR algorithm yields improvements not only in 

apparent image quality but, in the fourth experiment, show quantitative improvements when 

SMORE is applied as a preprocessing step for a segmentation task.

2. Material and Methods

2.1 Overview of SMORE

Fig. 1 shows the workflow of SMORE for MRI acquired with 3D and 2D protocols 

assuming that axial slices are in-plane slices. For 3D MRI, SMORE(3D) simulates LR axial 

slices from HR axial slices by applying a filter h(x) consisting of a rect filter as well as an 

anti-ringing filter in k-space that yields the through-plane resolution, and then uses the 

paired LR/HR data to train a self super-resolution (SSR) network. This trained network is 

applied on LR coronal slices to improve through-plane resolution, resulting in a HR volume. 

Details can be found in [23], with a modification that the anti-ringing filter is changed to a 

Fermi filter to better mimic the behavior in scanners. SMORE(2D) uses the same general 

concept as SMORE(3D), but adds a self anti-aliasing (SAA) network trained with aliased 

axial slices. The aliased slices are created by first applying the filter h(x), which in this case 

Zhao et al. Page 4

Magn Reson Imaging. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mimics the through-plane slice profile, and then a downsampling/upsampling sequence that 

produces aliasing at the same level as that found in the through-plane direction. We first 

apply the trained SAA network on sagittal slices to remove aliasing in the sagittal plane. We 

then apply the trained SSR network on the coronal plane to both remove aliasing in the 

coronal plane and improve through-plane resolution, resulting in an anti-aliased HR volume. 

Details can be found in [8]. For both SMORE(3D) and SMORE(2D), we only apply the 

trained networks in one orientation instead of two (or more) as described in our previous 

conference papers [23, 8]. This reduces computation time from 20 min to 15 min for 

SMORE(3D), and from 35 min to 25 min for SMORE(2D) on a Telsa K40 GPU, with only a 

minor impact on performance. Also we omit SAA network and directly apply SSR network 

to the LR image to further reduce time cost from 25 min to 15 min for SMORE(2D) if the 

ratio r between through-plane and in-plane resolution is less than 3, since the aliasing is 

empirically not severe in this case.

The SAA and SSR neural networks currently used in SMORE are both implemented using 

the state-of-the-art super-resolution EDSR network [9]. In this paper, we implement patch-

wise training with randomly extracted 32×32 patches. Training on small patches restricts the 

effect receptive field [28] to avoid structural specificity so that this network can better 

preserve pathology. It also reduces spatial correlation of the training data, which can 

accelerate convergence in theory [29]. To reduce training time, the networks are fine-tuned 

from pre-trained models that were trained from arbitrary data. When applying the trained 

networks, we apply them to entire coronal or sagittal slices (depending on whether it is SAA 

or SSR) rather than just 32 × 32 patches. This is possible since EDSR is a fully 

convolutional network (FCN) which allows an arbitrary input size [30].

2.2. Application to visual enhancement for MS lesions

In this experiment, we test whether super-resolved T2 FLAIR MR images can give better 

visualization of white matter lesions in the brain than the acquired images. The T2 Flair MR 

images were acquired from multiple sclerosis (MS) subjects using a Philips Achieva 3T 

scanner with a 2D protocol and the following parameters: 0.828 × 0.828 × 4.4 mm, TE = 

68ms, TR = 11s, TI = 2.8s, flip angle = 90°, turbo factor = 17, acquisition time = 2m56s. We 

performed cubic b-spline interpolation, JogSSR [22], and SMORE(2D) on the data using a 

0.828 × 0.828 × 0.828 mm digital grid. We show a visual comparison on the regions of white 

matter lesions in axial, sagittal, and coronal slices for the three methods. We also plot 1D 

intensity profiles of the three methods across selected paths through different lesions.

2.3. Application to visual enhancement of scarring in cardiac left ventricular remodeling

In this experiment, we test whether super-resolved images can give better visualization of 

the scarring caused by left ventricular remodeling after myocardial infarction than the 

acquired images. We acquired two T1-weighted MR images from an infarcted pig, each with 

a different through-plane resolution. One image, which serves as the HR reference image, 

was acquired with resolution equal to 1.1 × 1.1 × 2.2 mm, and then it was sinc interpolated 

on the scanner (by zero padding in k-space) to 1.1 × 1.1 × 1.1 mm. The other image was 

acquired with resolution equal to 1.1 × 1.1 × 5 mm. Both of these images were acquired with 

a 3D protocol, inversion time = 300ms, flip angle = 25°, TR = 5.4 ms, TE = 2.5 ms, and 
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GRAPPA acceleration factor R = 2. The HR reference image has a segmented centric phase-

encoding order with 12 k-space segments per imaging window (heart beat), while the LR 

subject image has 16 k-space segments.

In our experiment, we performed sinc interpolation, JogSSR, and SMORE(3D) on the 1.1 × 

1.1 × 5.0 mm data using a 1.1× 1.1× 1.1 mm digital grid. These images were then rigidly 

registered to the reference image for comparison. We are interested in the regions of thinning 

layer of midwall scar between the endocardial and epicardial layers of normal myocardium 

and the thin layer of normal myocardium between the scar and epicardial fat. These two 

regions of interest are cropped and zoomed to show the details.

2.4. Application to multi-view reconstruction

In this experiment, we test whether a super-resolved image from a single acquisition can 

give a comparable result to a multi-view super-resolution image reconstructed from three 

acquisitions. MR images of the tongue were acquired from normal speakers and subjects 

who had tongue cancer surgically resected (glossectomy). Scans were performed on a 

Siemens 3.0 T Tim Treo system using an eight-channel head and neck coil. A T2-weighted 

Turbo Spin Echo sequence with an echo train length of 12, TE = 62ms, and TR = 2500ms 

was used. The field-of-view (FOV) was 240 × 240 mm with a resolution of 256 × 256. Each 

dataset contained a sagittal, coronal, and axial stack of images containing the tongue and 

surrounding structures. The image size for the high-resolution MRI was 256 × 256 × z (z 
ranges from 10 to 24) with 0.9375 × 0.9375 mm in-plane resolution and 3 mm slice 

thickness. The datasets were acquired at a rest position and the subjects were required to 

remain still for 1.5–3 min for each orientation. For each subject, the three axial, sagittal, and 

coronal acquisitions were interpolated onto a 0.9375 × 0.9375 × 0.9375 mm digital grid and 

N4 corrected [24].

We applied both JogSSR and SMORE(3D) on single acquisitions to compare to the multi-

view super-resolution reconstruction. The multi-view reconstruction algorithm we used for 

comparison is an improved version of the algorithm described in Woo et al. [2]. This 

approach takes three interpolated image volumes, aligns them using ANTs affine registration 

[31] and SyN deformable registration [32], and then uses a Markov random field image 

restoration algorithm (with edge enhancement) to reconstruct a single HR volume.

2.5. Application to brain ventricle parcellation

This experiment demonstrates the effect of super-resolution on brain ventricle parcellation 

and labeling using the Ventricle Parcellation Network (VParNet) described in Shao et al. 

[33]. In particular, we test whether super-resolved images can give better VParNet results 

than images from either interpolation or JogSSR. The data for this experiment are from an 

NPH data set containing 95 T1-w MPRAGE MRIs (age range: 26–90 years with mean age 

of 44.54 years). They were acquired on a 3T Siemens scanner with scanner parameters: TR 

= 2110 ms, TE = 3.24 ms, FA = 8°, TI = 1100 ms, and voxel size of 0.859 × 0.859 × 0.9 

mm. There are also 15 healthy controls from the Open Access Series on Imaging Studies 

(OASIS) dataset involved in this experiment. All the MRIs were interpolated to a 0.8 × 0.8 × 
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0.8 mm digital grid, and then pre-processed using N4-bias correction [24], rigid registration 

to MNI 152 atlas space [34], and skull-stripping [35].

VParNet was trained to parcellate the ventricular system of the human brain into its four 

cavities: the left and right lateral ventricles (LLV and RLV), and the third and the fourth 

ventricles. It was trained on 25 NPH subjects and 15 healthy controls (not involved in the 

evaluations). In the original experiment of Shao et al. [33], the remaining 70 NPH subjects 

were used for testing. In this experiment, we downsampled the 70 NPH subject images first 

so that we could study the impact of super-resolution. In order to remove the impact of pre-

processing, we downsampled the 70 pre-processed test datasets instead of the raw datasets. 

In particular, we downsampled the data to a resolution of 0.8 × 0.8 × 0.8r mm following a 

2D acquisition protocol, where r is the through-plane to in-plane resolution ratio. The slice 

number of the HR images happens to be a prime number. Since the downsampled images 

must have integer slice numbers, the downsample ratio r which is also the ratio between the 

slice number of HR images and downsampled images must be non-integers. In the 

experiment, we choose ratio r of 1.50625, 2.41, 3.765625, 4.82, 6.025. The downsampled 

images have voxel length (0.8r mm) in z-axis of 1.205 mm, 1.928 mm, 3.0125 mm, 3.856 

mm, 4.82 mm. To apply VParNet, which was trained on 0.8 × 0.8 × 0.8 mm images, to these 

downsampled images, we used cubic b-spline interpolation, JogSSR, and SMORE(2D) to 

produce images on a 0.8 × 0.8 × 0.8 mm digital grid. These images were then used in the 

same trained VParNet to yield ventricular parcellation results.

The HR NPH images have physical resolution in z-axis of 0.9 mm. We used them as ground 

truth and evaluated the accuracy of super-resolved images using the Structural Similarity 

Index (SSIM) and the Peak Signal to Noise Ratio (PSNR) within brain masks. As for the 

ventricle parcellation performance, we evaluated the automated parcellation results using 

manual delineations. We computed Dice coefficients [36] to evaluate the parcellation 

accuracy of the same network on different super-resolved and interpolated images. By 

comparing the parcellation accuracy, we can evaluate how much improvement we get from 

SMORE(2D) compared with interpolation.

3. Results

3.1. Application to visual enhancement for brain white matter lesions

Fig. 2 shows an example of T2 FLAIR images reconstructed from the acquired resolution of 

0.828 × 0.828 × 4.4 mm input image onto a 0.828 × 0.828 × 0.828 mm digital grid using 

cubic-bspline interpolation, JogSSR, and SMORE(2D). On these images, MS lesions appear 

as bright regions in the brain’s white matter. We can see that both JogSSR and SMORE(2D) 

give sharper edges than interpolation and the SMORE(2D) result looks more realistic than 

JogSSR. This is in part because JogSSR does not carry out anti-aliasing, which allows 

aliasing artifacts, which are seen in the original and interpolated images, to remain. We note 

that in Fig. 2, SMORE also enhances resolution in the axial slice slightly, which is originally 

0.828 × 0.828 mm HR. Although we apply super-resolution in the through-plane, structures 

like edges that pass through-plane slices obliquely also gets enhanced, permitting in-plane 

edges to also be enhanced.
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Aside from the visual impression of performance differences gleaned from looking at the 

images directly, we also examined selected intensity profiles within the images. Each 

reconstructed image in Fig. 2 contains a small colored arrow. These arrows depict the line 

segment and direction over which intensity profiles shown in the bottom row of the figure 

are extracted. For example, the three colored arrows in the axial images of the first column 

yield the profiles on the bottom right graph. These axial profiles show that other than some 

differences in overall intensity, the resolutions of the methods appear to be very similar. This 

is to be expected since the axial image already has good resolution. The profiles through the 

ventricle and lesion in the sagittal orientation, however, show significant differences. Both 

super-resolution approaches show a steeper edge than the interpolated image (although the 

JogSSR result is inexplicably shifted relative to the true position of the edge). The profiles 

from the lesion in the coronal images show a similar property—steeper edges from the 

super-resolution approaches. Overall, the selected intensity profiles suggest resolution 

enhancement from both SMORE(2D) and JogSSR.

3.2. Application to visual enhancement for scarring in cardiac left ventricular remodeling

Cardiac imaging data that were acquired with a resolution of 1.1 × 1.1 × 5.0 mm are shown 

in Fig. 3 after application of interpolation (zero-padding in k-space), JogSSR, and 

SMORE(3D) applied on a 1.1 × 1.1 × 1.1 mm digital grid. A thin layer of the midwall scar 

between the endocardium and and epicardium of normal myocardium appears as bright strip 

in the megenta boxes. A thin layer of normal myocardium between scar and epicardial fat 

appears as dark strip in the cyan boxes. They are zoomed in to show the details below the 

short-axis (SAX) slices with acquired resolution of 1.1 × 1.1 mm and long-axis (LAX) slices 

with originally acquired resolution of 1.1 × 5 mm for the first three columns, or 1.1 × 2.2 

mm for the column of ”HR ref.”. Each zoomed box contains a colored arrow which depicts a 

line segment. The corresponding line profiles are shown on the bottom.

As seen in the long-axis (LAX) images and zoomed regions, the borders between normal 

myocardium, enhanced scar and blood are significantly clearer in SMORE(3D) compared 

with JogSSR and interpolation. The intensity profile of SMORE(3D), the green line shown 

in the magenta box marked ”LAX (1)”, very closely matches that of the HR reference 

image. For the short-axis (SAX(1) and SAX(2)), the resolution was already high and there is 

less to be gained. Nevertheless, it is apparent that the image clarity is slightly improved by 

SMORE(3D) while faithfully representing the patterns from the input images.

Furthermore, we computed the SSIM and PSNR between each method and HR reference 

image. The SSIM for interpolation, JogSSR, and SMORE results are 0.5070, 0.4770, and 

0.5146, correspondingly. The PSNR for interpolation, JogSSR, and SMORE are 25.8816, 

24.4142, and 25.3002, correspondingly. SMORE gives best SSIM, yet worse PSNR than 

sinc interpolation. Note that the registration cannot be perfect among different sets of cardiac 

images, due to motion or changing physiological state. When computing SSIM, images are 

prefiltered. Therefore, SSIM is less sensitive to image distortion. On the other hand, PSNR 

is a measure of noise level. SMORE does not consider noise reduction. This might be the 

reason why the SMORE result has better SSIM but worse PSNR. Also this evaluation is 

done on only one pair of LR/HR data, and is not very informative statistically.
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3.3. Application to multi-frame reconstruction

Tongue data with 0.9375 × 0.9375 mm in-plane resolution and 3 mm through-plane 

resolution were acquired with in-plane view of axial, sagittal, and coronal. They are shown 

in Fig. 4 on a 0.9375 × 0.9375 × 0.9375 mm digital grid after both cubic b-spline 

interpolation (blue boxes) interpolation, JogSSR (red boxes), and SMORE(2D) (green 

boxes). The in-plane views are only shown for interpolation since they are already HR slices. 

In through-plane views, SMORE(2D) always gives visually better results than both 

interpolation and JogSSR. In particular, we can see the edges are sharper in SMORE(2D) 

and no artificial structures are created.

A comparison of interpolation and SMORE(2D) (where each used only the coronal image) 

and the multi-view reconstruction (which used all three images) is shown in Fig 5. The 

arrows point out at the bright pathology region—i.e., scar tissue formed after removing a 

tumor. We can see that SMORE has visually better resolution than the interpolated image, 

but several places within the multi-view reconstruction have visually better detail. On the 

other hand, the pathology region in the multi-view reconstruction appears to be somewhat 

degraded in appearance over both the SMORE(2D) and interpolation result. We believe that 

this loss of features may be caused by regional mis-registration between the three 

acquisitions.

3.4. Application to brain ventricle parcellation

Example images from an NPH subject, all reconstructed on a 0.8 × 0.8 × 0.8 mm digital 

grid, are shown in Fig. 6. The LR image depicted using cubic-bspline interpolation has 

resolution 0.8 × 0.8 × 3.856 mm LR while the ground truth image has resolution 0.859 × 

0.859 × 0.9 mm. The JogSSR and SMORE(2D) results are also shown. To reveal more 

detail, the second row shows zoomed images of the 4th ventricle, where the zoomed region 

is shown using blue boxes in the first row. The VParNet [33] parcellations as well as the 

manually delineated label of the 4th ventricle are shown using purple voxels on the third 

row. Visually, of all the results derived from the LR data, SMORE(2D) gives the best super-

resolution and parcellation results. In particular, the VParNet parcellation on the 

SMORE(2D) result is very close to the VParNet on the HR image.

We also evaluated these results quantitatively. The mean values of SSIM and PSNR are 

shown in Table 1. Paired two-tail Wilcoxon signed-rank tests [37] were performed between 

results from interpolation, JogSSR, and SMORE(2D). The ‘*’ (p < 0.005) and ‘†’ (p < 0.05) 

indicate the method is significantly better than the other two methods. We can see that the 

SR results from SMORE(2D) are always significantly more accurate than interpolation and 

JogSSR, with SSIM and PSNR as accuracy metrics. For images with thickness of 1.205 mm, 

the significance is weak, indicating that the improvement is not dramatic. For images with 

thicker slices, the significance is strong, and therefore the improvement is large. The Dice 

coefficient of the parcellation results of the four cavities (RLV, LLV, 3rd, 4th) and the whole 

ventricular system are also shown in Table 1. From the table, we can find that for example, 

VParNet on SMORE(2D) results of thickness 4.82 mm is better than interpolation results of 

3.856 mm, while the later needs 56.25% longer scanning time. It shows the potential of 

reducing scanning time by using SMORE.
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We wondered whether the parcellation results from HR images are significantly better than 

SMORE(2D) from images with thickness 1.205 mm. In the column of ‘HR’ of Table 1, we 

show results of paired two-tail Wilcoxon signed-rank tests between HR and the results from 

the three methods. The ‘*’ and ‘†’ indicate that HR images give significantly better 

evaluation values than SMORE(2D) for thickness of 1.205 mm. The strong significance 

always holds, except for the Dice of LLV for which only weak significance holds. It shows 

that acquiring HR images with adequate SNR gives better parcellation results than LR 

images, even with SMORE(2D) applied to improve spatial resolution. However, if the 

acquired data are already limited to be anisotropic LR, which is common in clinical and 

research, SMORE(2D) can give better parcellation than interpolation.

4. Discussion and Conclusions

This paper demonstrates the applications of a self super-resolution (SSR) algorithm, 

SMORE, on four different MRI datasets, and shows the improved MRI resolution both 

visually and quantitatively. The methodology of SMORE has been introduced in our 

previous conference papers [23, 8]. While in this paper, we make important contributions 

about the implementation and utility of SMORE, which are useful and necessary to 

appreciate that SMORE can be reliably and widely used in practice. First, this paper 

provides a complete explanation of SMORE, while previous conference papers have been 

incomplete due to their required brevity. Second, this paper shows the application of 

SMORE on MR images produced from different pulse sequences and contrasts, in different 

organs. To our best knowledge, no other published deep-learning SR method has been 

demonstrated for improvement of such diverse MRI data sets without training data. Finally, 

we have demonstrated how SMORE can improve segmentation accuracy, a result which 

shows there are quantifiable improvements from using SMORE, in additional to the visual 

improvement in image quality.

In this paper, we demonstrate the applications of SMORE in real world scenarios for MR 

images. First of all, we consider an important distinction between general SR on natural 

images and SR on real acquired MR images. Although the general SR problem has been 

discussed a lot in computer vision application, the common SR problem setting requires 

well-established LR/HR paired external training data. In contrast to natural images, such 

external training data is much more difficult to obtain for MR images. In this paper, we 

develop SMORE to be a SSR algorithm, which requires no external training data; in other 

words, what it needs is only the input subject image itself. This makes SMORE more 

applicable in real world scenarios. Second, SMORE is developed for a common type of MRI 

acquisition which has high in-plane resolution but low through-plane resolution (thick 

slices). This type of MRI is widely acquired in clinical and research applications. Third, the 

four experiments in this paper are performed on four different MRI datasets, with three out 

of them being real acquired LR datasets. From a visual comparison, we find that SMORE 

enhances edges but does not create structures out of nothing; this reduces the risk of wrongly 

altering anatomical structures. Finally, the experiment in Sec. 3.4 shows that SMORE is not 

only visually appealing, it also gives quantitative improvements on SSIM and PSNR. More 

importantly, applying SMORE as a preprocessing step significantly improves ventricular 

segmentation accuracy on this brain MRI dataset. Furthermore, we note that sometimes 
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lower resolution images processed with SMORE yield better segmentation results than those 

from higher resolution images processed with interpolation. This suggests that SMORE 

post-processing may allow shorter scan times.

The SMORE method has limitations. First, we use EDSR as the SR deep network in 

SMORE, since it was evaluated as one of the state-of-the-art SR architecture by extensive 

comparisons [11, 13]. We note that these evaluations were performed on natural images, not 

MR images, and it is possible that there might be another SR network that performs better 

on MR images. Fortunately, EDSR can be easily replaced under the framework of SMORE 

if a better SR network becomes available. Second, the best resolution that can be achieved 

by SMORE is limited to the in-plane resolution. Because of this, for example, there is no 

way to use SMORE to enhance images that have been acquired with isotropic resolution. 

Also, SMORE does not consider cases where resolution differs in three orientations. Third, 

SMORE does not address motion artifacts. Finally, both SMORE(2D) and SMORE(3D) 

require knowledge of h(x), the point spread function (or slice profile), which may not be 

known accurately in some cases. Future work should address these issues.

In conclusion, SMORE produces results that are not only visually appealing, but also more 

accurate than interpolation. More importantly, applying it as a preprocessing step can 

improve segmentation accuracy. All these SMORE results were obtained without collecting 

any external training data. This makes SMORE a useful preprocessing step in many MRI 

analysis tasks.
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Figure 1: Overview of SMORE.
Workflow of SMORE for MRI acquired with 3D protocols and 2D protocols, referred as 

SMORE(3D) and SMORE(2D). They are simplified version of algorithms described in our 

previous conference papers [23, 8].
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Figure 2: T2 Flair MRI from an MS subject:
Axial, sagittal, and coronal views of the acquired 0.828 × 0.828 × 4.4 mm image, and the 

reconstructed volumes with 0.828 × 0.828 × 0.828 mm digital grid through cubic b-spline 

interpolation, JogSSR, and SMORE(2D). In each view, we pick a path across lesions, shown 

as colored arrows in the images, and plot the line profiles of the three methods in the same 

plot on the bottom of each view.
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Figure 3: Late gadolinium enhancement (LGE) from an infarct swine subject:
Short-axis (SAX) and long-axis (LAX) views arranged in columns using 1.1 × 1.1 × 1.1 mm 

digital grid: output of 1) sinc-interpolation, 2) JogSSR and 3) SMORE(3D) for the subject 

LR image acquired at 1.1 × 1.1 × 5 mm; 4) sinc-interpolated HR reference image for 

comparison acquired at 1.1 × 1.1 × 2.2 mm. SAX(1) and LAX(1) boxes contain a thinning 

layer of enhanced midwall scar between endo- and epi layers of normal myocardium (hypo-

intense). SAX(2) boxes contain a thin layer of normal myocardium (hypo-intense) between 

scar and epicardial fat (both hyper-intense). In each box, we pick a path across the region of 

interest, shown as colored arrows, and plot the profiles in the last row.
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Figure 4: T2w MRI from a tongue tumor subject:
Axial, Sagittal, and Coronal views of the three acquisitions in Axial, Sagittal, and Coronal 

planes (not registered). We show the through-plane views of the resolved volumes with 

isotropic digital resolution that result from cubic b-spline interpolation (blue boxes), JogSSR 

(red boxes), and our SMORE(2D) (green boxes). The in-plane views are only shown with 

interpolation results since they are already HR slices.
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Figure 5: Comparison between SMORE(2D) and multi-view reconstruction for a tongue tumor 
subject:
Axial, Sagittal, and Coronal views of the tongue region in cubic b-spline interpolation and 

SMORE(2D) results for a single coronal acquisition, and multi-view reconstructed image [2] 

using three acquisitions. The arrows point out the bright looking scar tissue from a removed 

tumor.
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Figure 6: Coronal views of brain ventricle parcellation on an NPH subject:
The volumes with digital resolution of 0.8 × 0.8 × 0.8 mm that resolved from 0.8 × 0.8 × 

3.856 mm LR image using cubic-bspline interpolation, JogSSR, SMORE(2D), and the 

interpolated 0.8 × 0.8 × 0.9 mm HR image. The patches in blue boxes are zoomed in the 

second row to show details of the 4th ventricle. The last row shows the VParNet [33] 

parcellation results and the manual labeling for the 4th ventricle.
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Table 1:

Evaluation of brain ventricle parcellation on 70 NPH subjects. We performed paired two-tail Wilcoxon signed-

rank tests between interpolation, JogSSR, and SMORE.

Metrics Thickness Interp. JogSSR SMORE HR(0.9 mm)

SSIM

1.205 mm 0.9494 0.9507 0.9726* 1*

1.928 mm 0.9013 0.9106 0.9389*

3.0125 mm 0.8290 0.8400 0.8893*

3.856 mm 0.7677 0.7812 0.8387*

4.82 mm 0.7003 0.7170 0.7817*

PSNR

1.205 mm 35.0407 34.0472 39.5053*

1.928 mm 31.9321 30.6444 35.7429*

3.0125 mm 29.2785 27.4384 31.9878* –

3.856 mm 27.7562 25.7118 29.6050*

4.82 mm 26.4127 24.2377 28.1593*

Dice(RLV)

1.205 mm 0.9704 0.9705
0.9712

† 0.9715*

1.928 mm 0.9678 0.9690 0.9706*

3.0125 mm 0.9610 0.9635 0.9693*

3.856 mm 0.9527 0.9578 0.9648*

4.82 mm 0.9405 0.9498 0.9629*

Dice(LLV)

1.205 mm 0.9710 0.9709
0.9715

†
0.9717

†

1.928 mm 0.9690 0.9693 0.9710*

3.0125 mm 0.9638 0.9641 0.9699*

3.856 mm 0.9571 0.9585 0.9663*

4.82 mm 0.9469 0.9510 0.9638*

Dice(3rd)

1.205 mm 0.9149 0.9149
0.9163

† 0.9174*

1.928 mm 0.9095 0.9097 0.9141*

3.0125 mm 0.8945 0.8940 0.9073*

3.856 mm 0.8779 0.8761 0.8937*

4.82 mm 0.8560 0.8545 0.8832*

Dice(4th)

1.205 mm 0.8954 0.8941 0.8973* 0.8983*

1.928 mm 0.8891 0.8851 0.8947*

3.0125 mm 0.8741 0.8657 0.8878*

3.856 mm 0.8550 0.8463 0.8753*

4.82 mm 0.8254 0.8216 0.8629*
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Metrics Thickness Interp. JogSSR SMORE HR(0.9 mm)

Dice(whole)

1.205 mm 0.9690 0.9690
0.9696

† 0.9699*

1.928 mm 0.9665 0.9672 0.9690*

3.0125 mm 0.9602 0.9614 0.9675*

3.856 mm 0.9524 0.9552 0.9632*

4.82 mm 0.9408 0.9470 0.9607*

The ‘*’ (p < 0.005) and ‘†’ (p < 0.05) indicate the method is significantly better than the other two methods. For the column of ‘HR’, they indicate 
that HR images give significantly better parcellation results than resolved images from the three methods with thickness of 1.205 mm.
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