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Abstract

Pathogen evolution is a potential threat to the long-term benefits provided by public health
vaccination campaigns. Mathematical modeling can be a powerful tool to examine the forces
responsible for the development of vaccine resistance and to predict its public health implications.
We conducted a systematic review of existing literature to understand the construction and
application of vaccine resistance models. We identified 26 studies that modeled the public health
impact of vaccine resistance for 12 different pathogens. Most models predicted that vaccines
would reduce overall disease burden in spite of evolution of vaccine resistance. Relatively few
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pathogens and populations for which vaccine resistance may be problematic were covered in the
reviewed studies, with low- and middle-income countries particularly under-represented. We
discuss the key components of model design, as well as patterns of model predictions.
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Introduction

Biomedical public health interventions can place strong selective pressure on pathogens,
potentially leading to the emergence and spread of pathogens that are resistant to
antimicrobial drugs or vaccines [1]. While the evolution of resistance to antimicrobials is
considered more common and well documented [2,3], and includes cases of antibiotic,
antifungal, antiparasitic, and antiviral/antiretroviral resistance, pathogens can evolve in
response to pressure from vaccination of populations as well [4]. Vaccine resistance has been
reported with Bordetella pertussis, poliovirus, Streptococcus pneumoniae, hepatitis B, as
well as veterinary vaccines [3]. For example, the spread of vaccine-resistant strains is
thought to have contributed to the 1996 epidemic of pertussis in the Netherlands that
occurred despite high coverage of immunization [5].

Here we define vaccine resistance as a general term that refers to reduced vaccine efficacy
due to evolution of the targeted microorganism. Pathogen evolution in response to
vaccination can occur through a number of mechanisms, but the best studied are escape
mutation and strain replacement [7]. Both escape mutation and strain replacement involve
population-level genetic diversity in pathogen susceptibility to the vaccine: escape mutation
is the development of a de novo mutation in the vaccine-targeted (VT) strain that confers
resistance after immunization rollout, and strain replacement is the increase in incidence of
an already circulating resistant or non-vaccine targeted strain (NVT) following the decrease
in incidence of the VT strain after vaccine rollout. Both strain replacement and escape
mutation can affect disease transmission dynamics in a vaccinated population, and can alter
disease severity as well as prevalence and incidence. Higher virulence, or degree of harm to
host, is associated with higher replication and a greater chance of transmission to new hosts,
but is also associated with increased mortality in the host, potentially cutting short the
opportunity to transmit [8,9]. Vaccines that extend infected host lifespans reduce that fitness
cost, potentially selecting for more virulent pathogens [4]. This higher virulence could occur
via genotypes or strains that either allow for better evasion of the host immunity or for
higher replication rates. Not all reductions in vaccine effectiveness are necessarily due to
vaccine resistance: e.g. resurgence of pertussis in Sweden was shown to be explained by
changes in age-specific contact patterns rather than pathogen evolution [10].

The public health value of vaccines is evaluated using information from animal models,
safety trials, efficacy trials, and larger observational studies of real-world effectiveness [11].
Efficacy trials, by design, are insufficiently powered to detect population-level emergence
and spread of vaccine resistance, while many observational studies of effectiveness occur
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over too short a time span to observe this phenomenon. Mathematical models are an
important tool for understanding transmission of infectious diseases in the context of public
health interventions like vaccination, because they allow researchers to simplify complicated
environments into controllable model components [12]. Depending on the research question,
model designs tend to be structured as either compartmental, agent-based, or statistical
models. Compartmental models provide epidemic information calculated from the rates of
movement between disease categories: susceptible, infected, and other disease states, if
relevant, e.g. recovered or re-infected. Agent-based models also incorporate movement into,
out of, and within disease states in a population, but this is determined at an individual level
for each agent in a population. Statistical models use observational data with statistical
methods like regression to make predictions about transmission dynamics. Compartmental
models are typically preferred in scenarios where transmission systems of limited
complexity allow for simpler representation of disease dynamics, while agent-based models
gain realism at the expense of computational feasibility and more intensive assumptions.
Investigators parameterize their models with information from epidemiological studies or
theoretical values and can vary factors of interest to their questions. While no model can
fully represent a disease scenario, models aim to include (and identify) the key mechanisms
that drive public health outcomes. Because investigators control every aspect of their model,
it is necessary to explicitly account for any phenomena at play, such as vaccine resistance, in
order for it to factor into predictions.

Many of the existing model-based projections of vaccine impact were estimated without
incorporating potential mechanisms for the evolution of vaccine resistance. Without
accounting for vaccine resistance, these models may overestimate the positive impact of
certain vaccines. We propose that our understanding of vaccines as public health instruments
is incomplete without representation of the potential for vaccine resistance. While modeling
studies have increased our theoretical understanding of vaccine resistance by testing the
conditions under which vaccine resistance may emerge and spread, very few of them have
predicted the epidemiological consequences of resistance. We conducted a systematic
literature search for epidemic models that examined the public health consequences of
vaccine resistance with the intention of summarizing model-based predictions for vaccine
resistance, discussing key themes that arise in this diverse collection of work, and informing
future modeling studies by describing the design and implementation of published vaccine
resistance models.

We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) framework for identifying and evaluating literature related to our research
questions. A record search of peer-reviewed studies published in English was conducted in
PubMed in June 2018. Three search term groupings were used to capture studies that
addressed resistance, vaccines, and models:

1. Host-pathogen interactions [mesh term] or microbial interactions/immunology™
[mesh term] or immune evasion or vaccine resistan* or serotype replacement or
strain replacement
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2. andimmunization [mesh term] or vaccines [mesh term] or vaccination* or
vaccin* or immunization

3. and model*

The lead author (MCR) reviewed the resultant list of publications to determine if each met
the guidelines for inclusion. Studies must have mathematically modeled the impact of
immunization on pathogen evolution. We were interested in actionable modeling research
with explicit consideration of public health outcomes of vaccine resistance, and therefore we
excluded studies that did not extend their analyses to predict epidemiological outcomes in
metrics such as vaccine effectiveness or disease incidence, and we excluded primarily
analytical models, defined as those with the objective of exploring theoretical concepts and
with limited or no parameterization based on existing or historical epidemics. Human and
veterinary vaccination scenarios were included. During the full text review, we noted any
relevant studies referenced by the authors that were not captured in the PubMed search and
screened them according to the same review process. We reviewed all study titles for and
included those with possible relevance to our interests. We then reviewed study abstracts and
further excluded studies if they did not look at vaccine resistance or did not use a
mathematical model. Finally, in reviewing the remaining full-texts, we eliminated studies
that did not report outcomes in epidemiological terms or were not public health motivated. A
flow diagram of the study screening process is shown in Figure 1.

After selecting the relevant literature, we looked to synthesize three main take-aways from
the reviewed studies. First, we outline the state of the field of vaccine resistance modeling by
describing the design and components of the reviewed models. For this, we used the
descriptions of model parameters provided in each text to develop categories for the
common modeling components among the studies and identify additional factors included in
the studies. Second, we reviewed the key findings of each study in order to provide a general
summary of model predictions for vaccine resistance. This component of the review is
predominantly narrative, rather than quantitative, as heterogeneity across studies in the
modeled disease and populations precludes meta-analysis.. Last, we describe the factors that
were identified as important in influencing the development of vaccine resistance in different
studies, and discuss themes arising from in the reviewed literature.

We identified 765 studies in PubMed, with an additional seven titles retrieved from the
reference lists of the PubMed studies during our full-text reviews. We excluded 667 studies
with titles that fell unambiguously outside of the inclusion criteria and an additional 52
based on abstract review. A further 27 studies were removed during the full text review, most
commonly due to the model being analytical (vs. epidemiologically-driven), the model not
reporting outcomes in terms of public health impact (seven studies), or not using
mathematical modeling (five studies). A total of 26 studies were included in the final
analysis (Figure 1).
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Model types

A summary of the model design and pathogen studied in each study is presented in Table 1,
and a visual representation of key study characteristics is presented in Figure 2. The 26
studies explored twelve different pathogens: Streptococcus pneumoniae was most common
at eleven studies, followed by two studies each for avian influenza, human influenza A,
Neisseria meningitidis, rotavirus, and HIV, and one each for hepatitis B virus, Plasmodium
falciparum, enterovirus A, Mycobacterium tuberculosis, and human papillomavirus. Five of
the 26 studies were agent-based models [13-17], two studies were statistical models [18,19],
and the remaining 19 had a compartmental structure. Twenty-three studies modeled strain
replacement as the primary mechanism of resistance and three studies addressed the
likelihood and impact of de novo adaptive mutations [20-22].

Model components

All of the reviewed models included a set of core parameters, primarily to set the
proportions of the population in various health states (e.g. susceptible, immune, vaccinated),
as well as the likelihood and rate of moving between these health states. Vaccine-specific
parameters were also essential, including vaccination coverage, strain-specific efficacy, and
sometimes programmatic specifics like target age group and boosters.

Beyond these core model inputs, many studies included further components and parameters.
We categorized these into three main classes: 1) pathogen-level; 2) intra-host; and 3) inter-
host. Pathogen-level parameters were defined as those particular to the type of pathogen
studied (e.g. natural immunity was classed as a pathogen-specific parameter because while it
occurs in the host, the presence and magnitude of a host immune response depends on which
pathogen they are exposed to). Intra-host parameters were defined as those particular to
individuals in a population (e.g. individual age or distribution of ages in the population).
Inter-host parameters were defined as those pertaining to interaction between disease hosts
(e.g. contact rate). There is some conceptual overlap between these parameters, (e.g. genetic
factors that cause some individuals to have a more effective immune response to HIV were
considered an intra-host parameter, but are a facet of natural immunity which was attributed
to the pathogen-level factors).

Of the pathogen-level parameters, natural immunity was most frequently included in the
reviewed models (14 studies). The studies that did not include immunity were generally of
pathogens for which variation in innate and adaptive immune responses have negligible
impacts on infection, re-infection, or recovery (e.g., HIV, hepatitis B, and avian influenza)
[2,17,20,22-24]. Inclusion of natural immunity involved designation of the duration of
natural immunity following recovery from a first infection or after birth for maternal
antibody-mediated immunity [4,13-16,25-33]. For multi-strain models, investigators often
specified if infection with one strain incurred any protection against re-infection, co-
infection, or super-infection by other strains [2,4,13-16,20,21,25-28,33-36]. Other
pathogen-level parameters were mutation rate [20-22], and virulence [4]. Nine studies
included an invasiveness term to address when an individual is colonized by or is “carrying”
a pathogen without having symptoms or disease [14-16,19,21,27,34-36]. For example,
Nurhonen et al. (2013) calculate invasiveness as a ratio of observed invasive pneumococcal
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disease (IPD) incidence to the incidence of carriage episodes for each subtype of S.
pneumoniae studied.

The intra-host parameters most often included were adjustments for demographic factors. 16
studies made some adjustments for age, usually specifying risk of infection or contact rate
by age group [13-21,27,28,31,32,34-36]. Two studies also accounted for sex [17,20] and
Link-Gelles et a/ (2013) included race as parameters related to differential transmission or
infection. Geographic location was a component in four models [16,23,28,29]. Other host-
level considerations allowed for host genetic factors [17,22], or antiretroviral/antibiotic use
[17,36] to impact the risk of infection.

Inter-host considerations were made in 15 studies, and were typically represented by a
contact rate [14,15,20-22,25-27,31-35], or a contact network [13,16,17], all of which varied
in their complexity. One study, of theoretical malaria vaccines, also included mosquito
vector-related parameters necessary to describe the transmission dynamics of interest [4].

Model predictions

A summary of the design and epidemiological predictions of each model is given in Table 2.
Seven studies found that the impact of vaccine resistance on overall vaccine effectiveness
would be negligible [18,21,26,28-31]. 17 studies predicted overall positive vaccine impacts
despite some moderate resistance [2,4,13,16,17,19,20,22,24,26,27,31-36]. Four studies
found vaccine benefits were effectively canceled out due to vaccine resistance, resulting in
no net change in outcomes of interest [4,22,23,25]. In five studies, vaccines could cause
harm to the overall population either by increasing prevalence compared to pre-vaccination
through strain replacement or by changing the average virulence of the pathogen in
unvaccinated hosts under certain conditions [2,4,22,24,32,35]. [Note: Studies that are cited
multiple times in the above summaries offered multiple predictions based on their
experimental questions and had varied results.] To help explore what factors might be behind
whether a study predicted vaccine resistance, Table 3 presents potential explanations for the
variation and summarizes the evidence in support of these hypotheses.

Models of existing vaccines more often found overall beneficial vaccine effects, compared to
models of conceptual vaccines (or vaccines in early pre-trial stages of development), which
found a wider range of vaccine resistance predictions. Vaccines yet to be developed and
tested will have less information available to investigators, and so models may be more
exploratory. With the exception of the hand-foot-and-mouth-disease vaccine study by
Takahashi ef a/ (2016), the studies of primarily theoretical vaccines predicted a wide range
of potential public health outcomes that depended on intentionally varied parameters
[2,4,22]. In studies of existing vaccines, however, there was considerable agreement in
predictions despite disparate pathogens and research questions. Overall, the studies of
vaccines that have been in use, have trial data, or have existing homologs predicted positive
health outcomes despite vaccine resistance. The exceptions to this would be the studies of
established pneumococcal conjugate vaccines by Melegaro et a/ (2010), which varied a
parameter of interest, and Bottomley ef a/(2013), which studied carriage of S. pneumoniae
and not disease.
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Naturally, scenarios where vaccination may worsen public health outcomes are of great
concern. These observations did not stand alone as the key findings of any study; they
tended to be minor analyses to demonstrate what could happen under certain extreme
parameter values or assumptions. The two models of vaccines that modify disease severity
increased the lifespan of vaccinated infected individuals, favoring an increase in pathogen
virulence either because this increased the number of chances to transmit [22], or reduced
the fitness cost of high virulence (host death) and selecting for overall more harmful
pathogens [4]. lwami et a/ (2009) predicted that conditions of high vaccine coverage
combined with particularly ineffective vaccines for avian flu in a poultry population could
increase prevalence of avian influenza to higher levels than pre-vaccination through
emergence of a non-vaccine type (NVT) strain. For their findings of higher post-vaccination
prevalence, Worby et a/ (2017), Cohen et a/ (2008), and Melegaro et a/ (2010) required high
levels of cross-immunity between co-circulating strains, as well as greater infectiousness of
the NVT strain for Worby et a/ (2017) and Cohen et a/ (2008), and introduction of the NVT
strain after vaccine type (VT) epidemic peak for Worby et a/ (2017). Some of these negative
outcomes are due to cross-immunity (discussed below). As with most of the reviewed model
predictions, these six studies predicting poorer outcomes in the presence of vaccine
programs are illuminating for their insight into the range of potential evolutionary outcomes,
rather than concrete predictions of what vaccines will do in a population.

The pessimistic forecasts of Worby ef a/(2017), Cohen et a/ (2008), and Melegaro et a/
(2010) highlight the importance of cross-immunity in determining how co-circulating strains
interact, a theme that was common in many of the reviewed studies. Sometimes described as
heterotypic immunity, cross-immunity represents a variety of inter-strain interactions
relating to the ability of a strain to infect a host that was previously or is currently infected
with another strain, resulting in either reinfection (subsequent infection following recovery
from a previous infection), co-infection (simultaneous infection with multiple strains/types),
or super-infection (infection with a second strain that replaces the first strain). We will use
the term cross-immunity to refer only to pathogen-induced natural immune response, rather
than a vaccine-induced immune response to multiple strains. Cross-immunity was included
as an experimental parameter or set of parameters to vary in 10 studies [2,13—
15,26,27,29,32,33,35]. Homotypic immunity, where previous infection with a strain reduces
the chance of reinfection with the same strain, was also often considered, but was less often
identified or tested as a moderator of vaccine resistance. For all of the studies that tested
some measure of cross-immunity, the higher the level of cross-immunity, the greater the
degree of strain replacement. This relationship between cross-immunity and vaccine
resistance is thought to occur when, if cross-immunity exists between VT and NVT strains,
reducing the prevalence of a VT strain by vaccination will reduce the prevalence of people
naturally immune to NVT strains [37]. Elbasha and Galvani (2005) provided an interesting
counter-factual to this relationship by examining the potential for previous HPV infection to
increase susceptibility to reinfection by another strain, which they called synergistic, in
addition to cross-immunity. They demonstrate that if cross-immunity is assumed, strain
replacement will occur as expected, but if synergy is assumed, the NVT strain will actually
decrease in prevalence when it loses the extra host vulnerability provided by the VT strain
circulating in the population.
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Discussion

We reviewed 26 studies that predicted population health impacts of vaccine resistance,
covering 11 different infectious diseases. These represent a relatively small fraction of health
issues for which vaccines are currently used or under development. The US Centers for
Disease Control and Prevention currently recommends routine vaccination for 14 diseases,
only six of which are covered in the reviewed studies, primarily more recently developed
vaccines [38]. The most recent estimates from the World Health Organization report
candidate vaccines for 24 different infectious diseases, five of which are addressed by
models reviewed here: HIV, pneumococcal disease, tuberculosis, malaria, and rotavirus [39].
People in low and middle income countries (LMIC) stand to benefit the most from
expanding vaccination [40], though just six of the 26 reviewed studies drew on data from or
simulated epidemics in a LMIC. Populations for which limited data exist are naturally less-
studied, and many of the unaddressed vaccines have either too few data or sufficient
empirical evidence of long-term effectiveness, so the reviewed studies are by no means a
comprehensive representation of the global public health impact of vaccine resistance.

The relatively small coverage of vaccine resistance in mathematical models may be a
product of the recency of vaccine resistance as a concept. Published studies of vaccine
resistance emerged in the 1990s and early 2000s (reviewed in Gandon and Day, 2007). It
follows that there is not yet consensus in the language used to describe vaccine resistance:
the term vaccine resistance itself was relatively rarely used in published literature, while
specific mechanisms of resistance (e.g. Strain replacement, vaccine escape) were more
commonly used. Other terms such as vaccine failure, serotype replacement, or strain
aynamics were also used. No NCBI Mesh Term exists at the time of writing to capture
vaccine resistance or any of these related terms.

Notably, over a third of the reviewed studies concerned vaccines to prevent Streptococcus
pneumoniae infection. The careful attention paid to S. pneumoniae may be due to a number
of factors, not the least because it is a substantial contributor to child mortality worldwide,
but also likely because heptavalent pneumococcal conjugate vaccines were introduced fairly
recently in 2000, and there is sufficient epidemiological data with which to observe strain
replacement [41]. The eleven S. pneumoniae studies address pneumococcal conjugate
vaccines that were available or were close to public use at the time of study, primarily the
heptavalent PCV7 and later PCV10 and PCV13, with the exception of Zhang et a/ (2004)
and Flasche et a/ (2013), who studied purely theoretical vaccines. We see a range of
predictions about vaccine resistance, but most studies describe some strain replacement in
carriage and overall reductions in disease. While different from one another, these eleven
studies are also complementary: each study approaches a different research question or
epidemic scenario, yet together they describe the potential impact of pneumococcal
conjugate vaccination on circulating S. pneumoniae and public health. Insights range from
the theoretical importance of cross-immunity in determining degree of S. pneumoniae
vaccine resistance, to practical guidance for selecting an optimal PCV strain composition for
a European population.
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Several studies used minimal epidemiological data and designed their models to illuminate a
theoretical relationship. For example, the study by Gandon and coauthors (2001) used a
general model of malaria epidemics to demonstrate how theoretical vaccine mechanisms
could put evolutionary pressure on a pathogen and affect varied health outcomes, including
increased mortality in non-vaccinated hosts. To approach an actionable response to vaccine
resistance, however, models require more epidemiological data. This sensitivity to input
parameters was illustrated in three studies of pneumococcal conjugate vaccination in
England and Wales by the same research group. The first study, which used vaccine
transmission dynamic parameters derived from the United States PCV7 vaccination program
data, predicted a higher overall vaccine efficacy than England and Wales actually
experienced after their PCV7 introduction [35]. Later, when preliminary vaccine
surveillance data from England and Wales became available, the investigators observed that
the UK epidemic indicated a much higher level of cross-immunity than was detected in the
US. After refitting the same model with the more relevant local data, their predictions lined
up with the empirical S. pneumoniae epidemic dynamics [34]. The updated model was
adapted once more and used by the National Health Service to inform its decision to switch
to the PCV13 vaccine [14]. Because England and Wales collected and used vaccine
surveillance data, they were able curb the strain replacement threatening the success of their
PCV program. These studies support expansion of surveillance programs to include
pathogen evolution in response to vaccination.

As described in the results section, we observed that studies of more speculative vaccines
tended to produce more varied results, even finding that under certain conditions vaccine
resistance may overwhelm the benefits of the vaccine and cause population harm, while
models of extant vaccines tended to produce more conservative estimates of vaccine
resistance effects. While the motivation to do sensitivity analyses for less-studied pathogens/
vaccines and limitations of data availability plausibly explain this difference, but modeling
studies are not immune to publication bias as well, which may have influenced the
publication of studies that reflect positive evaluations of existing vaccines or more
newsworthy, dramatic results for potentially harmful vaccines. To our knowledge, tools to
determine risk of bias in reviewed studies, such as the Cochrane Bias tool for clinical
research [42], are not available for mathematical modeling studies, and we did not attempt to
systematically evaluate the reviewed studies.

This review has several further limitations. Seven of the included studies were not identified
in the PubMed search, but rather were identified in reference lists during full-text review,
suggesting that, due to the diversity of terms used to describe vaccine resistance, our chosen
search words may not have fully captured all of the existing mathematical models of vaccine
resistance. We included both human and animal vaccines, but we identified just two animal
vaccine models, limiting inference from these studies. The models were very diverse in their
designs, research goals, inputs, and outcomes, making direct comparisons difficult, and
limiting our ability to quantitatively summarize model predictions from included studies.

There are many exciting directions for future research to build on the foundation laid by the
studies reviewed here. Explanations for why the diphtheria, rubella, mumps, measles, and
tetanus vaccines, which have been in widespread use for many decades, never developed
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resistance are hypothetical [3], and a model of these successful vaccines may identify
correlates of vaccine effectiveness. Emphasis might be put on modeling epidemic scenarios
in LMIC, where disease burdens are high and immunization programs are expanding rapidly.
For vaccines that target multiple strains or subtypes of a pathogen, mathematical modeling is
a valuable tool for optimizing the strain composition of these vaccines for specific
populations. Similarly, targeted vaccination programs should be explored further to
determine how to distribute vaccines among risk groups to minimize resistance and
maximize overall benefit. For vaccines with well-understood patterns of vaccine resistance,
incorporating these into cost-effectiveness analyses could help inform pragmatic program
design. Finally, future vaccines are expected to offer novel designs, potentially imperfect
pathogen coverage, and alternative mechanisms for protecting the public beyond traditional
infection-blocking, all of which may interact with pathogens to foster resistance [43]. As
these innovations develop, models of their potential for resistance evolution should follow
close behind.

Conclusions

Mathematical models can illuminate the complicated relationships between pathogen
characteristics, vaccine components, the emergence of vaccine resistance and the consequent
impact of vaccine resistance on public health outcomes. We have seen how vaccine
resistance can develop in a wide range of pathogens, with diverse implications for the health
of the public. Informed vaccine development and public health policy now and in the future
will depend on an improved understanding of vaccine resistance dynamics.
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765 studies identified 7 additional studies
through PubMed search identified via reference

!

772 studies screened 5 667 studies excluded not
by title ) meeting inclusion criteria
105 studies screened 52 studies excluded not meeting
by abstract inclusion criteria
l ~ (24 no VR, 19 no model, 9 no PH)
53 studies i for | 27 studies excluded not meeting
full-text eligibility % inclusion criteria
-~ 15 anahtical & nn mndal 7 nn PHL

v

[ 26 studies included in review ]

Figure 1.
PRISMA flow diagram of study screening process

Study exclusion rationale:

“no VR” = study did not address vaccine resistance
“no model” = study did not use a mathematical model
“no PH” = study did not model public health outcomes
“analytical” = study was mainly theoretical/conceptual
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PATHOGENS MODEL STRUCTURE

N
meningitidis
Rotavirus (2) | 12)

REGION RESISTANCE TYPE

North Amerlca
(1] | Africa (5)

Strain replacement (23)

Escape mutation (3)

Asia (1)

Figure 2.
Tree maps of the proportion of studies (#) by pathogen, type of resistance, and region

studied, as well as model structure
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Table 1.
Model characteristics and parameters
Additional Components
Study Name Pathogen Structure Pathogen-level Intra-host level Inter-host level
Wilson et al, 2000 Hepatitis B Compartmental ~ Co-infection Mutation ~ Age Sex Contact rate
rate
Gandon et al, 2001 Plasmodium Compartmental  Super-infection Vector
falciparum Virulence Natural characteristics
immunity
Zhang et al, 2004 Streptococcus Compartmental ~ Co-infection Super- Contact rate
pneumoniae infection Natural
immunity
Elbasha and Galvani, Human Compartmental ~ Natural immunity Co- Contact rate
2005 papillomavirus infection
Temime et al, 2008 Streptococcus Compartmental ~ Co-infection Mutation ~ Age Contact rate
pneumoniae rate Invasiveness
Cohen et al, 2008 Mycobacterium Compartmental ~ Co-infection Super-
tuberculosis infection
lwami, Takeuchi et al, Avian influenza Compartmental Geographic area
2009
lwami, Suzuki et al, 2009  Avian influenza Compartmental
Melegaro et al, 2010 Streptococcus Compartmental ~ Co-infection Age Contact rate
pneumoniae Invasiveness
Van Effelterre et al, 2010  Streptococcus Compartmental ~ Co-infection Antibiotic use
pneumoniae
Invasiveness Age
Choi et al, 2011 Streptococcus Compartmental ~ Co-infection Age
pneumoniae Invasiveness
Pitzer et al, 2011~ Rotavirus Compartmental ~ Natural immunity Age Geographic
area
Choi et al, 2012 Streptococcus Agent-based Co-infection Natural Age
pneumoniae immunity Invasiveness
Fryer and McLean, 2011  HIV Compartmental ~ Mutation rate Host genetic factors ~ Contact rate
Alexander and Kobes, Influenza A Agent-based Natural immunity Age Contact network
2011
Flasche et al, 2013 Streptococcus Agent-based Co-infection Natural Age Contact rate
pneumoniae immunity Invasiveness
Bottomley et al, 2013 Streptococcus Compartmental ~ Co-infection Super- Contact rate
pneumoniae infection Natural
immunity
Link-Gelles et al, 2013 Streptococcus Statistical Age Race
pneumoniae
Nurhonen et al, 2013 Streptococcus Agent-based Co-infection Natural Age Neighborhood Contact network
pneumoniae immunity Invasiveness
Vickers et al, 2013 Neisseria Compartmental ~ Natural immunity Age Contact rate
meningitidis
Nurhonen and Auranen, Streptococcus Statistical Invasiveness Age
2014 pneumoniae
Pitzer et al. 2015~ Rotavirus Compartmental  Re-infection Natural Age Geographic
' immunity area
Hogea et al, 2016 Neisseria Compartmental  Co-infection Natural Age Contact rate
meningitidis immunity

Vaccine. Author manuscript; available in PMC 2020 August 14.
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Additional Components
Study Name Pathogen Structure Pathogen-level Intra-host level Inter-host level
Takahashi et al, 2016 Enterovirus A Compartmental ~ Natural immunity
Worby et al, 2017 Influenza A Compartmental ~ Natural immunity Age Contact rate
Herbeck et al, 2018 HIV Agent-based Anti-retroviral use Contact network

Host genetic factors
Condom use Age
Sex

See results section for baseline model components common to all studies.

*
These models also factored in seasonality, which does not fall directly into any of the three parameter categories

Vaccine. Author manuscript; available in PMC 2020 August 14.
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