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SKP1 drives the prophase I to metaphase I transition 
during male meiosis
Yongjuan Guan1, N. Adrian Leu1, Jun Ma1,2, Lukáš Chmátal2,3, Gordon Ruthel4,  
Jordana C. Bloom5, Michael A. Lampson2, John C. Schimenti5,  
Mengcheng Luo6*, P. Jeremy Wang1*

The meiotic prophase I to metaphase I (PI/MI) transition requires chromosome desynapsis and metaphase compe-
tence acquisition. However, control of these major meiotic events is poorly understood. Here, we identify an es-
sential role for SKP1, a core subunit of the SKP1–Cullin–F-box (SCF) ubiquitin E3 ligase, in the PI/MI transition. 
SKP1 localizes to synapsed chromosome axes and evicts HORMAD proteins from these regions in meiotic spermato-
cytes. SKP1-deficient spermatocytes display premature desynapsis, precocious pachytene exit, loss of PLK1 and 
BUB1 at centromeres, but persistence of HORMAD, H2AX, RPA2, and MLH1 in diplonema. Strikingly, SKP1-deficient 
spermatocytes show sharply reduced MPF activity and fail to enter MI despite treatment with okadaic acid. SKP1-
deficient oocytes exhibit desynapsis, chromosome misalignment, and progressive postnatal loss. Therefore, SKP1 
maintains synapsis in meiosis of both sexes. Furthermore, our results support a model where SKP1 functions as 
the long-sought intrinsic metaphase competence factor to orchestrate MI entry during male meiosis.

INTRODUCTION
During the prophase I (PI) of meiosis, homologous chromosomes 
undergo pairing, synapsis, and meiotic recombination (1, 2). The 
lengthy pachytene stage is characterized by full synapsis of homologs 
and completion of meiotic recombination, which are interdependent 
in many species including mouse. Chromosome synapsis requires 
the assembly of the synaptonemal complex (SC), a tripartite protein 
structure, along chromosome axes. Meiotic recombination involves 
repair of several hundred programmed DNA double-strand breaks 
(DSBs) into a finite number of crossovers. Coordinated execution 
of these meiotic events promotes proper segregation of homologous 
chromosomes during meiosis I, whereas meiotic abnormality can 
cause pregnancy loss, infertility, and birth defects.

The transition from PI to metaphase I (PI/MI) in meiosis involves 
chromosome desynapsis, chromatin condensation, and compaction 
of MI chromosomes. The meiotic PI/MI transition largely corresponds 
to the G2-M transition in the mitotic cell cycle. Okadaic acid (OA), 
an inhibitor of protein phosphatases PP1 and PP2A, induces prema-
ture PI/MI progression in pachytene spermatocytes (pachynema) 
(3). MI competence is acquired in mid-to-late, but not early, pachyne-
ma, because treatment of mid-to-late, but not early, pachytene sperma
tocytes with OA causes desynapsis, chromatin condensation, and 
chromosome compaction (4). The relatively long duration of the 
pachytene stage in male meiosis (6 days in mouse) is enigmatic. In 
females, the arrest of oocytes at the diplotene stage provides ample 
time to develop MI competence. Therefore, it is possible that the 
long time is necessary for pachynema in males to gain MI compe-

tence. However, the molecular nature of the meiotic MI competence 
acquisition is unknown.

SCF (SKP1–Cullin–F-box) is a family of ubiquitin E3 ligases and 
consists of four subunits: SKP1, CUL1, the RING finger protein 
RBX1, and an F-box protein. The cullin subunit CUL1 functions as 
a scaffold that interacts with both RBX1 and SKP1. RBX1 recruits 
an ubiquitin E2 enzyme. SKP1 (S-phase kinase-associated protein 1) 
associates with different F-box proteins to form distinct E3 ligase 
complexes to target specific proteins for proteasome-mediated degra-
dation, because the F-box proteins provide target specificity (5). SCF 
has emerged as a major E3 ligase crucial for the ubiquitin-mediated 
degradation of a host of cellular proteins, including cell cycle regulators 
and transcription factors.

Many species including yeast, mouse, and human have only one 
Skp1 gene. Other species have multiple Skp1 homologs due to gene 
duplications. For example, Caenorhabditis elegans has 21 Skp1-related 
(Skr) genes, which are involved in cell proliferation, development, 
and meiosis (6). Arabidopsis also has 21 Skp1-related genes (7). Mouse 
SKP1 was previously identified as one of the meiotic chromatin–
associated proteins in testis (8). Here, we find that SKP1 localizes to 
the SC in meiotic germ cells and plays critical roles in chromosome 
synapsis, meiotic progression, and oocyte survival. Strikingly, SKP1 
is essential for the PI/MI phase transition during male meiosis.

RESULTS
SKP1 associates with meiotic chromatin and localizes 
to the lateral elements of the SC
The SKP1 protein abundance increased sharply in testes at post-
natal day 14, when pachytene spermatocytes first appeared (Fig. 1A). 
Immunofluorescence showed that SKP1 was detected in spermato
gonia and preleptotene through zygotene spermatocytes, but at 
much higher levels in pachytene to MI spermatocytes and postmeiotic 
round spermatids (Fig. 1B). SKP1 was predominantly cytoplasmic 
(Fig. 1B). Strikingly, analysis of spermatocyte nuclear spread showed 
that SKP1 localized to the SC exclusively in the synapsed regions of 
meiotic chromosomes from zygotene, pachytene, and diplotene 
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Fig. 1. Localization of SKP1 to SC LEs coincides with chromosome synapsis. (A) Western blot analysis of SKP1 in developing mouse testes. Timing of the first appear-
ance of spermatogonium, pachytene spermatocytes, round spermatids (spt), and elongated spermatids in developing testes is shown. SYCP3, meiosis-specific protein 
control; ACTB, loading control. (B) Spatiotemporal expression pattern of SKP1 in postnatal male germ cells. DAPI, 4′,6-diamidino-2-phenylindole. (C) Localization of SKP1 
to synapsed regions of the SC (indicated by arrows) in wild-type (WT) spermatocytes. (D) Super-resolution localization of SKP1 and SYCP3 in pachytene spermatocytes. 
(E) Super-resolution localization of SKP1 and SYCP1 in pachytene spermatocytes. SYCP1 is a component of both CE and transverse filaments. (F) Localization of SKP1 to 
the SC between sister chromatids in Rec8−/− spermatocytes. (G) Super-resolution localization of SKP1 in Rec8−/− spermatocytes. (H) Super-resolution localization of HORMAD1 in 
Rec8−/− spermatocytes. Scale bars, 10 m.
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spermatocytes but not in unsynapsed regions, including the un
synapsed regions of X-Y chromosomes (Fig. 1C). We next examined 
the localization of SKP1 in meiotic chromosomes in oocytes and 
found a consistent localization pattern: localization to the SC in the 
synapsed, but not unsynapsed, regions in zygotene, pachytene, and 
diplotene stages (fig. S1). These results suggest a conserved function 
of SKP1 in both male and female meiosis.

The SC is composed of two lateral elements (LEs) and one cen-
tral element (CE) at the pachytene stage. Super-resolution imaging 
revealed that SKP1 localized to the LEs in the SC, marked by SYCP3, 
and that SKP1 localization appeared as both filaments and foci 
(Fig. 1D). As expected, the SKP1 filaments flanked the SC central 
element, marked by SYCP1 (Fig. 1E). We next sought to investigate 
whether SKP1 localizes to the synapsed sister chromatids using the 
Rec8 mouse model. REC8 is a meiosis-specific cohesin required for 
sister chromatid cohesion. Rec8−/− germ cells exhibit synapsis be-
tween sister chromatids rather than homologous chromosomes (9). 
We found that SKP1 localized to the synapsed sister chromatids and 
specifically to the LEs in Rec8−/− spermatocytes (Fig. 1, F and G, and 
fig. S2). These data suggest that SKP1 may play a critical role in 
chromosomal synapsis during meiosis.

SKP1 is essential for viability and male meiosis
To elucidate the function of Skp1 in meiosis, we generated Skp1f/f 
mice, in which exons 3 to 5 are flanked by loxP sites (fig. S3A). Skp1f/f 
mice were fertile. Germ cell–specific inactivation of Skp1 using 
the constitutively expressed Ddx4-Cre transgene caused a complete 
loss of germ cells in Skp1f/− Ddx4-Cre males after postnatal day 6, 
showing that Skp1 is essential for survival of mitotic germ cells in-
cluding spermatogonia (fig. S3B). Interbreeding of Skp1f/− mice 
failed to produce Skp1−/− offspring, showing that Skp1 is required 
for embryogenesis.

To circumvent the premeiotic germ cell loss in Skp1f/− Ddx4-Cre 
males, we carried out tamoxifen-induced inactivation of Skp1 spe-
cifically in germ cells using Ddx4-CreERT2 (Fig. 2A). Intraperitoneal 
injection of adult Skp1f/− Ddx4-CreERT2 (referred to as Skp1cKO) 
males with tamoxifen resulted in progressive decrease in testis 
weight over time (Fig. 2B). Histological analyses of Skp1cKO testes 
showed severe defects in spermatogenesis (Fig. 2, C to J). Notably, 
metaphase spermatocytes were absent in Skp1cKO testes at 4 days 
post-tamoxifen (dpt) and beyond (Fig. 2, E to J). Multinucleated 
giant cells were frequently observed in the mutant seminiferous 
tubules, indicative of spermatogenic defects (Fig. 2, H and I). Skp1cKO 
testes at 10 dpt and beyond contained diplotene spermatocytes but 
lacked postmeiotic spermatids (Fig. 2, G to J), demonstrating that 
SKP1 is essential for meiotic progression to MI in spermatogenesis.

Precocious chromosomal desynapsis and pachytene exit 
in Skp1-deficient spermatocytes
To probe the nature of meiotic block in Skp1cKO testes, we examined 
chromosomal synapsis by nuclear spread analysis. In untreated 
adult testes, pachynema and diplonema accounted for ~60% and 
~18% of spermatocytes, respectively. In contrast, in Skp1cKO testes, 
pachynema decreased to less than 40% at 4 and 6 dpt, and diplo
nema increased to more than 50% (Fig. 2K). SKP1 was absent from 
SCs in Skp1cKO pachynema, showing that the localization signal 
to synapsed chromosomal axes is specific (fig. S3C). Notably, in 
Skp1cKO testes, late pachynema were absent, and most pachynema 
contained unsynapsed chromosomal ends (termed Y pachynema), 

whereas the few pachynema had normal synapsis and were clearly 
at the early pachytene stage (Fig. 2K). Histone H1t is absent in early 
pachynema, begins to express in mid-pachynema, and is strongly 
expressed in late pachynema and diplonema (fig. S4A) (4). Most Y 
pachynema were H1t-negative and thus were early pachynema (Y1 
type), while the remaining were weakly H1t-positive (Y2 type) and 
thus were mid-pachynema (fig. S4B). In Y pachynema, only one 
end was unsynapsed and corresponded to the centromeric end 
(CREST-positive; fig. S4, C and D), showing that SKP1 is required 
for chromosomal synapsis only at the pericentromeric regions in 
early pachynema and a fraction of mid-pachynema. The Y pachynema 
could arise from early pachynema that underwent desynapsis at 
centromeric ends and/or from zygonema that failed to synapse at 
centromeric ends but still progressed to early pachytene stage. The 
lack of late pachynema and the concurrent increase of diplonema in 
Skp1cKO testes suggest that loss of SKP1 causes premature chromo-
some desynapsis and precocious pachytene exit in spermatocytes.

Loss of SKP1 leads to accumulation of HORMAD proteins 
through TRIP13 reduction in spermatocytes
HORMAD proteins are associated with unsynapsed or desynapsed 
chromosome axes (Fig. 3A) (10–12). HORMAD1 promotes DSB 
formation through interaction with IHO1 (13). In contrast with its 
exclusive localization to XY axes in wild-type (WT) pachynema, 
HORMAD1 was highly enriched on both synapsed and unsynapsed 
regions of all chromosomes in Skp1-deficient pachynema (Fig. 3A). 
In addition, this enrichment of HORMAD1 on the SC persisted in 
Skp1-deficient diplonema (Fig. 3A). Two categories of diplonema in 
Skp1cKO testes were observed: high HORMAD1 and low HORMAD1. 
The level of HORMAD1 in the low category of mutant diplonema 
was still higher than the WT. A similar pattern of enrichment in 
Skp1 mutant spermatocytes was observed for HORMAD2 (Fig. 3B). 
HORMAD2 localized only to XY axes in WT pachynema and 
diplonema, but in Skp1cKO spermatocytes, it localized strongly on 
unsynapsed centromeric regions and weakly on synapsed regions in 
pachynema and persisted in most diplonema (Fig. 3B). HORMAD2 
was only present on the XY axes in the remaining Skp1cKO (~30%) 
diplonema, as in the WT. We proposed that HORMAD-high and 
HORMAD-low diplonema were derived from spermatocytes, in 
which SKP1 was depleted in the late pachynema and diplonema, 
respectively. Super-resolution imaging revealed that HORMAD1 
localized to the LEs in Skp1cKO pachynema (Fig. 3C) and in Rec8−/− 
spermatocytes (Fig. 1H).

SKP1 was markedly depleted in Skp1cKO testes (Fig. 3D). In con-
trast, the abundance of CUL1, also a core component of SCF, re-
mained comparable between control and Skp1cKO testes (Fig. 3D). 
Western blot analyses confirmed the increased abundance of both 
HORMAD1 and HORMAD2 in Skp1cKO testes at 2, 4, and 6 dpt, in 
contrast with the marked depletion of the SKP1 protein (Fig. 3D). A 
slower migrating band of HORMAD1 appeared in Skp1cKO testes 
and could be due to phosphorylation (Fig. 3D). These results 
demonstrate that SKP1 is required for removal of HORMAD pro-
teins from synapsed chromosome axes in pachynema and reduces 
(HORMAD1) or eliminates (HORMAD2) their return to autosomal 
axes in diplonema. The TRIP13 protein is required for meiotic re-
combination but not synapsis (14). Like SKP1, TRIP13 is essential 
for excluding HORMAD1/2 from synapsed chromosome axes 
in pachynema, although it is not known to localize to SC (10). How-
ever, we found that SKP1 still localized to synapsed chromosome 
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axes in Trip13Gt/Gt pachynema, suggesting that SKP1 may exclude 
HORMAD proteins from SC in WT pachynema by stabilizing 
TRIP13 (fig. S5). We tested this possibility by Western blotting 
analysis and found that TRIP13 protein abundance decreased in 
Skp1cKO testes at 2, 4, and 6 dpt (Fig. 3D). These data demonstrate 
that loss of SKP1 leads to reduction in TRIP13 abundance, which, in 
turn, may cause accumulation of HORMADs on SCs in Skp1cKO 
pachynema and diplonema.

Impaired meiotic recombination in Skp1cKO spermatocytes
We monitored the progression of meiotic recombination in Skp1cKO 
spermatocytes. In WT, H2AX was abundant in leptonema/zygonema, 
reduced in early pachynema, and confined to the XY body in mid-late 
pachynema and diplonema (Fig. 4A). In Skp1cKO spermatocytes, 
H2AX persisted on autosomes in all Y pachytene spermatocytes 
and ~50% of diplotene spermatocytes; in addition, the H2AX-
positive domain (XY body) was much larger than the WT XY body 
and occupied some autosomes (Fig. 4A). Replication protein A (RPA) 
is a single-strand DNA binding heterotrimeric complex of RPA1, 
RPA2, and RPA3. RPA is essential for meiotic recombination (15). 
We examined the localization of RPA2 as a representative of the 
RPA complex. RPA2 localizes as foci on DSBs in leptonema through 
early pachynema in WT (Fig. 4B). In contrast, in Skp1cKO testes, 
RPA2 foci abnormally persisted in Y pachynema and a substantial 
fraction of diplonema (Fig. 4B). The persistence of H2AX on auto-

somes in Y pachytene spermatocytes were most likely due to unre-
paired DSBs as marked by RPA2 foci. The abundant H2AX signal 
in mutant diplotene spermatocytes could be due to a combination 
of unrepaired DSBs (RPA2 foci) and MSUC (meiotic silencing of 
unpaired chromatin) response (16). MLH1 foci, markers of future 
crossovers, were present in mid-late pachynema but not in diplonema 
in WT; however, MLH1 foci were present in 25% of Skp1cKO diplotene 
spermatocytes (Fig. 4C). MLH1-positive diplotene cells were most 
likely derived from premature desynapsis of chromosomes in mid-
late pachytene spermatocytes. The fact that the mutant diplotene 
spermatocytes are MLH1-positive is consistent with premature 
chromosomal desynapsis in Skp1-deficient pachytene spermatocytes. 
The ubiquitin-proteasome system regulates meiotic recombination 
in mouse and budding yeast (17, 18). SKP1 functions in resolution 
of meiotic recombination intermediates in fission yeast (19). There-
fore, in addition to its requirement for maintenance of chromosome 
synapsis, SKP1 plays an evolutionarily conserved role in meiotic 
recombination in mouse.

SKP1 maintains chromosomal synapsis and regulates 
meiotic recombination in oocytes
Western blot analysis showed that SKP1 was expressed in oocytes 
and preimplantation embryos (Fig. 5A). To examine the function of 
Skp1 in female fertility, Ddx4-Cre (constitutively active) was used to 
inactivate Skp1 in female germ cells in Skp1fl/− Ddx4-Cre mice. 
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Ddx4-Cre is expressed between embryonic day 15 (E15) and E18 (20). 
SKP1 localizes to the synapsed regions of meiotic chromosomes in 
both sexes (Fig. 1C and fig. S1). We next analyzed the impact of loss 
of SKP1 on chromosome synapsis in oocytes from E18.5 ovaries 
(fig. S6A). At E18.5, most oocytes (~80%) from WT ovaries were at 
the pachytene stage and ~20% were at the diplotene stage. However, 
<30% of oocytes from Skp1cKO ovaries were at the pachytene stage 
but >70% were at the diplotene stage. In addition, we monitored 
repair of meiotic DSBs by examining RPA2 in oocytes. In WT oocytes, 
RPA2 foci were present at the pachytene stage but absent at the 

diplotene stage due to repair of DSBs; however, RPA2 foci were 
present in Skp1cKO diplotene oocytes (fig. S6B). Collectively, in-
activation of SKP1 causes premature chromosomal desynapsis of 
pachytene-stage germ cells and impairs meiotic recombination in 
both males and females.

SKP1 is required for survival of postnatal oocytes and proper 
chromosome alignment
Histological analysis revealed that oocytes were present in the ova-
ries from Skp1cKO females at 2 months of age but were depleted in 
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the mutant ovaries at 4 months, showing that SKP1 is essential for 
maintenance of postnatal oocytes (Fig. 5B). Consistently, Western 
blotting analysis demonstrated that the SKP1 protein was absent in 
postnatal oocytes from Skp1cKO females (Fig. 5C).

Mating tests showed that Skp1cKO females were sterile. Thirteen 
2-month-old Skp1cKO females were mated with WT males for 
2 months: Only one dead pup from one Skp1cKO female was observed, 
whereas no pups were found from other Skp1cKO females. To further 
probe the cause of sterility of 2-month-old Skp1cKO females, we ex-
amined the morphology of superovulated oocytes. While WT oocytes 
were uniform in size at the germinal vesicle (GV) stage, oocytes from 
Skp1cKO females varied in size and appearance: Some were smaller 
and appeared darker (Fig. 5D). We next performed in vitro fertil-
ization (IVF) to examine the developmental potential of resulting 
embryos at two-cell, four-cell, and morula/blastocyst stages. The 
percentage of two-cell or four-cell embryos derived from Skp1cKO 
oocytes was much lower compared to the WT and rarely reached 
the morula/blastocyst stage (Fig. 5E). These results show that 
Skp1-deficient oocytes fail to sustain preimplantation embryonic 
development.

To further investigate the defects in Skp1-deficient oocytes, we 
examined chromosome alignment at MI. In WT MI oocytes, all 
chromosomes were aligned at the metaphase plate, as expected 
(Fig. 5F, i). However, >80% of Skp1-deficient MI oocytes exhibited 
various degrees of chromosome misalignment: mild misalignment, 
severe misalignment, and monopolar spindle (Fig. 5F, ii to iv). Con-
sistently, quantification of chromosomal signal across the spindle 
axes showed that chromosomes were frequently located out of the 
metaphase plate in the Skp1-deficient MI oocytes compared to WT 
oocytes (Fig. 5F). Together with the centromere protein localization 
defects observed in Skp1-deficient spermatocytes described below, 
this result suggests that SKP1 is essential for normal centromere be-
havior in MI oocytes.

Loss or reduction of centromere proteins  
in Skp1-deficient spermatocytes
Polo-like kinase 1 (PLK1) is implicated in SC disassembly (21). We 
found that PLK1 localized to the centromeric ends of SC in 
pachynema and diplonema in WT spermatocytes (fig. S7A). In 
Skp1cKO spermatocytes, PLK1 was still present at the SC end 
in pachynema but absent in diplonema (fig. S7A). We next inves-
tigated whether other centromere components were affected in the 
absence of SKP1. In yeast, SKP1 is a core kinetochore component 
and recruits BUB1, a component of the spindle checkpoint, to the 
centromere (22). Immunolocalization analysis revealed that BUB1 
localized prominently to centromeric regions in WT diplotene 
spermatocytes (fig. S7B). However, 89 of 92 Skp1cKO diplotene 
spermatocytes lacked BUB1 at centromeres, and only three had 
weak BUB1 signal, showing that SKP1 is required for BUB1 local-
ization at centromeres in diplotene spermatocytes (fig. S7B). Like-
wise, we analyzed CENP-C, a constitutive centromere protein. 
CENP-C signal was strong at the centromeres in WT diplotene 
spermatocytes but was sharply reduced at the centromeres in 
Skp1cKO diplotene spermatocytes (fig. S7C), implying defects in as-
sembly of the constitutive centromere-associated network (CCAN) 
of proteins (23). Collectively, our results demonstrate that SKP1 is 
required for localization of signaling molecules such as PLK1 and 
BUB1 to the centromeres and is also important for CCAN integrity 
in spermatocytes.

SKP1 is essential for MPF activity and MI entry 
in spermatocytes
To investigate the lack of MI spermatocytes in Skp1cKO testes, we 
examined phosphorylation of histone H3 at Ser10 (pHH3), a marker 
of chromatin condensation during the diplotene to MI transition 
(24). pHH3-positive MI spermatocytes were frequently observed in 
WT tubules (stage XII) but not in Skp1cKO testes (Fig. 6A). Consis-
tently, Western blotting showed that pHH3 was absent in Skp1cKO 
testes (Fig. 6B). Early meiotic inhibitor 2 (EMI2), an inhibitor of the 
anaphase-promoting complex APC/C, was also absent in Skp1cKO 
testes (Fig. 6B) (25). OA induces chromosomal desynapsis in 
pachynema and entry into MI in WT spermatocytes (Fig. 6C) (24). 
However, Skp1cKO spermatocytes were resistant to OA induction 
and failed to enter MI, further supporting the idea that Skp1cKO 
spermatocytes were incompetent for MI entry (Fig. 6C). Collectively, 
multiple lines of evidence have shown that SKP1 is required for PI 
to MI transition in male meiosis.

To probe the failure in MI entry of Skp1cKO spermatocytes, we 
examined the metaphase-promoting factor (MPF), which consists 
of cyclin-dependent kinase 1 (CDK1) and cyclin B1 (CCNB1). The 
MPF kinase activity is regulated by CCNB1 binding/dissociation 
and reversible phosphorylation of CDK1. In Skp1cKO testes (2 to 
6 dpt), pY15-CDK1 (inhibitory phosphorylation) and pT161-CDK1 
(activating phosphorylation) remained relatively constant; however, 
the abundance of CCNB1 increased significantly (Fig. 6B). CCNB1 
was predominantly cytoplasmic in zygonema and pachynema in 
both WT and Skp1cKO males (fig. S7D). While CCNB1 was still cyto
plasmic in WT diplonema, it accumulated in the nucleus of Skp1cKO 
diplonema (fig. S7D). We next tested the histone H1 kinase activity 
of immunoprecipitated MPF from testes and found that the MPF 
activity was sharply reduced in Skp1cKO testes at 2 and 6 dpt 
(Fig. 6D). This result provided further support for the lack of MI 
entry in Skp1cKO spermatocytes.

DISCUSSION
There is a wealth of information on the genetic requirement of 
chromosome synapsis (1). For instance, the SC physically holds 
together the homologous chromosomes and thus is required for 
chromosome synapsis (26, 27). However, little is known about the 
regulation of chromosome desynapsis. Homologs must undergo 
desynapsis at the diplotene stage in preparation for the first meiotic 
cell division. Mouse HSPA2 and PLK1 localize to the SC and have 
been postulated to promote chromosome desynapsis in pachynema 
(21, 28). Inactivation of HSPA2 causes arrest at the pachytene stage 
in mouse testis (28). The function of PLK1 in mouse meiosis has not 
been examined genetically (29). In budding yeast, Cdc5 (PLK1 ho-
molog) is required for SC disassembly and pachytene exit (30). In 
contrast, inactivation of Skp1 causes premature chromosome de-
synapsis in both pachytene spermatocytes and oocytes. The Skp1 
mutant reported here is the only mouse mutant known to display 
premature chromosome desynapsis.

Chromosome desynapsis is a prerequisite for the PI/MI transi-
tion in meiosis (Fig. 6E) (24). Spermatocytes lacking CCNA1 or 
EMI2 exhibit meiotic arrest at the diplotene stage (25, 31). However, 
pachytene spermatocytes from neither of these mutant (Ccna1 or 
Emi2) mice undergo premature chromosome desynapsis, suggest-
ing that these factors regulate PI/MI transition but not MI compe-
tence acquisition. Ccna1-deficient spermatocytes can be induced to 
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enter MI by OA treatment and thus are MI competent (32). Trip13Gt/Gt 
spermatocytes can also be induced to the MI phase by OA treat-
ment (14). However, the Trip13Gt mutant allele, a gene trap allele, 
appears to be hypomorphic rather than null (14). Mid-late, but not 
early, pachytene spermatocytes are competent for OA-induced MI 
entry (4). SKP1-deficient spermatocytes fail to progress to MI and 
are resistant to OA-induced MI entry, demonstrating that SKP1 
constitutes an intrinsic competence factor for MI entry in spermato
cytes. In addition, only mid-late pachytene Skp1-deficient spermato
cytes undergo extensive premature chromosome desynapsis, implying 

that synapsis maintenance and MI competence acquisition might 
be linked at least in spermatocytes. Therefore, we propose that 
SKP1 maintains chromosome synapsis at the prolonged pachytene 
stage (6 days in male mouse) to promote MI competence acquisi-
tion until the pachytene exit in spermatocytes (Fig. 6E). SKP1 is 
required for localization of PLK1 and BUB1 to the centromeres 
in diplotene spermatocytes. In addition, SKP1 is important for 
CENP-C localization to centromeres and thus CCAN integrity. It is 
possible that SKP1 might ensure MI licensing through centromeres 
in spermatocytes.
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The Skp1 conditional deletion mutants exhibit sexual dimor-
phism in meiotic progression, as in other meiotic mutants (33). 
While Skp1cKO spermatocytes fail to progress to the MI stage, Skp1cKO 
oocytes can proceed to the MI stage and complete meiosis. One 
possible explanation for the sex difference is that SKP1 is required 
for meiotic PI-MI phase transition in males but not females. Sexual 
dimorphism of infertility is also present in mice lacking CCNA1, 
EMI2, or HSPA2, in which only males are infertile (25, 28, 31). The 
duration of the meiotic PI including the diplotene (dictyate) stage is 
much longer in females than in males, as the oocytes are arrested at 
the dictyate stage at birth until ovulation. Different conditional 
knockout strategies were used for males and females and thus could, 
although less likely, contribute to the sexual dimorphism of the mu-
tant phenotypes. We propose that the extremely long duration of PI 
allows the oocytes to acquire MI competence independent of SKP1. 
Despite this difference, our results show that Skp1-deficient oocytes 
are defective, display various degrees of chromosome misalignment, 
fail to support early embryogenesis, and are completely lost by 
4 months of age, suggesting additional functions of SKP1. Furthermore, 
centromere defects were observed in Skp1-deficient diplotene 
spermatocytes (fig. S7, A to C). Similar centromere defects may un-
derlie the chromosome misalignment phenotype in MI oocytes (Fig. 5F).

Genetic studies of SKP1 and SKP1-related homologs have been 
reported in yeast, C. elegans, and Arabidopsis. Like mammals, yeast 
has only one Skp1 gene. The temperature-sensitive Skp1 fission 
yeast mutant exhibits abnormal spindle bending in meiosis I. It was 
proposed that yeast SKP1 functions in resolution of meiotic recom-
bination intermediates, persistence of which results in chromosome 
entanglement and spindle bending (19). Here, we find that mouse 
SKP1 is involved in meiotic recombination, evidenced by the ab-
normal persistence of meiotic recombination proteins such as H2AX, 
RPA, and MLH1 in Skp1cKO diplotene spermatocytes (Fig. 4). A sys-
tematic study of the 21 Skr genes in C. elegans by RNA interference 
(RNAi) reveals critical functions of Skr genes in cell proliferation, 
morphogenesis, and meiosis (6). Notably, zygotic RNAi of Skr1-1/2 
(two closely related homologs) results in an arrest at the pachytene 
stage (6). Among the 21 Arabidopsis Skp1-like (Ask) genes, Ask1 is 
essential for male meiosis (7, 34–37). ASK1 is required for chromo-
some synapsis (37), nuclear reorganization and release from nuclear 
membrane (35, 36), and homologous chromosome separation (34). 
Therefore, together with the mouse study described here, the re-
quirement of SKP1 in meiosis is evolutionarily conserved in yeast, 
C. elegans, Arabidopsis, mouse, and likely other sexually reproduc-
ing organisms.

HORMAD proteins localize to unsynapsed and desynapsed 
chromosome axes (10–12). In Skp1-deficient spermatocytes, 
HORMAD proteins accumulate on both synapsed and unsynapsed 
regions of SC at the pachytene stage and persist on SC until the 
diplotene stage (Fig. 3). These results indicate that SKP1 is required 
for removal of HORMAD proteins from SC. Trip13Gt/Gt is also 
known to display the similar phenotype in terms of accumulation of 
HORMAD proteins on SC (10). It has been hypothesized that 
TRIP13 removes HORMAD proteins from SCs (10). Our results 
suggest that SKP1 may exclude HORMAD proteins from SCs by 
stabilizing the TRIP13 protein. In addition, both Skp1-deficient 
(Fig. 2K) and Trip13Gt/Gt spermatocytes exhibit desynapsis at peri-
centromeric regions at the pachytene stage (38), implying that SKP1 
and TRIP13 may function in the same molecular pathway. SKP1 
binds to different F-box proteins to form distinct E3 ligase complexes. 

F-box proteins provide target specificity for proteasome-mediated 
degradation (5). Therefore, it would be important to biochemically 
identify the F-box proteins for the SCF/SKP1 ubiquitin E3 ligase in 
meiotic germ cells in future studies.

MATERIALS AND METHODS
Targeted inactivation of the Skp1 gene
In the Skp1-targeting construct, a 3.1-kb genomic DNA segment 
harboring exons 3 to 5 was flanked by loxP sites (fig. S3A). The two 
homologous arms (2.6 and 2.4 kb) were amplified from a Skp1-
containing bacterial artificial chromosome (BAC) clone (RP23-
223A11) by polymerase chain reaction (PCR) with high-fidelity 
DNA polymerase. The HyTK selection cassette was cloned before 
the right arm. V6.5 embryonic stem (ES) cells were electroporated 
with linearized targeting construct, cultured in the presence of hy-
gromycin B (120 g/ml; Invitrogen), and screened by long-distance 
PCR for homologously targeted Skp13lox clones. Two Skp13lox ES 
cell lines were electroporated with the pOG231 plasmid that ex-
presses Cre recombinase. ES cells were subjected to selection with 
ganciclovir (2 M; Sigma) for removal of the HyTK cassette. ES cell 
colonies were screened by PCR. Recombination between the imme-
diate HyTK-flanking loxP sites resulted in the Skp1f allele (fig. S3A). 
Two Skp1f/+ ES cell lines were injected into B6C3F1 (Taconic) blas-
tocysts that were subsequently transferred to the uteri of pseudo-
pregnant ICR females. The Skp1f allele was transmitted through the 
germ line from chimeric males. To generate germ cell–specific Skp1 
knockout mice, we used two strategies. First, to study the function 
of Skp1 in germ cells, we generated Skp1f/− Ddx4-Cre mice, in which 
the constitutively active Cre is expressed specifically in germ cells, 
around E15 in both males and females (20). Second, to study the 
function of Skp1 at any specific stage during germ cell development, 
we generated Skp1f/− Ddx4-CreERT2 mice. Ddx4-CreERT2 is tamoxifen-
inducible Cre (39). Tamoxifen injection induces Cre-mediated de-
letion of the floxed exons. Briefly, tamoxifen (Sigma, catalog number 
T5648) was resuspended with corn oil (Sigma, catalog number 
C8267) to a final concentration of 20 mg/ml and injected intra-
peritoneally into the 8-week-old Skp1f/− Ddx4-CreERT2 males at a 
dose of 2 mg/30 g body weight for five consecutive days. Untreated 
littermates with the same genotype were used as controls, because 
the same tamoxifen treatment of Skp1f/− or Skp1f/+ adult males or 
corn oil treatment of Skp1f/− Ddx4-CreERT2 adult males did not ad-
versely affect meiosis when evaluated by testis histology and meiotic 
nuclear spread analysis. Tamoxifen treatment in combination with 
Ddx4-CreERT2 in WT males does not cause defects in meiosis as pre-
viously reported (40). Testes were collected 2, 4, 6, 8, 10, 12, 14, 16, 
and 32 days post-treatment after the last tamoxifen injection.

Genotyping for Skp1, Ddx4-Cre, and Ddx4-CreERT2 alleles was 
performed separately by PCR on genomic DNA isolated from tails. 
Skp1 floxed and WT alleles [537 and 349 base pairs (bp)] were as-
sayed with primers CCTGAGGAGATTCGTAAAAC and GCA-
CATTATGCCTTTGTATCA. The Skp1− (knockout) allele (320 bp) 
was assayed by PCR with primers TTGGCTCATTTGTGGGTTGG 
and GCACATTATGCCTTTGTATCA. The Ddx4-Cre allele 
(240 bp) was genotyped with primers CACGTGCAGCCGTTTA-
AGCCGCGT and TTCCCATTCTAAACAACACCCTGAA. 
The Ddx4-CreERT2 allele (205  bp) was assayed with primers 
ATACCGGAGATCATGCAAGC and GGCCAGGCTGTTCTTCT-
TAG. Mice were maintained and used for experimentation according 
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to the guidelines of the Institutional Care and Use Committee of the 
University of Pennsylvania.

Targeted inactivation of the Rec8 gene
The Rec8 deletion was generated by the CRISPR-Cas9–mediated 
genome editing method as described before (41). Briefly, two single-
guide RNAs (sgRNAs) that target the first and last intron of the 
mouse Rec8 gene were designed to generate about 6.5-kb DNA de-
letion (fig. S2). The two sgRNA sequences are as follows: CGC-
GTTGTGCAGACCTTTTT and ACAGCACACTCTAGATACTG. 
For each sgRNA, the two oligos were phosphorylated, annealed, 
and cloned to PX330 plasmid (Addgene). After in vitro transcrip-
tion with the MEGAshortscript T7 Kit (AM1354, Invitrogen) and 
purification with the MEGAclear Transcription Clean-Up Kit 
(AM1908, Invitrogen), a mixture of 1 l of Cas9 mRNA (500 ng/l; 
Trilink, catalog number L-7206) + 0.5 l of each sgRNA (500 ng/l) 
was injected into zygotes. The injected zygotes were cultured in 
KSOM (potassium simplex optimization medium) medium at 37°C 
in a 5% CO2 incubator until the two-cell stage. The two-cell embryos 
were transferred into oviducts of 0.5-day post-coitum pseudopregnant 
ICR foster mothers. Founder mice were bred to WT mice to produce 
Rec8+/− mice. The Rec8− allele was sequenced to confirm the deletion. 
The WT allele (426 bp) was assayed by primers AGCAGAGTC-
GAAGAAGGCCTCTTG and CAGATGGTGGCGAAGCAGCCT-
GT. The knockout (Rec8−) allele (212 bp) was assayed by primers 
AGCAGAGTCGAAGAAGGCCTCTTG and TTGCTCAGGG-
GAATTTGGGTC.

PLK1 antibody production
Mouse PLK1 (amino acids 414 to 565) was expressed as a 6×His-PLK1 
fusion protein in Escherichia coli using the pQE-30 vector and affinity-
purified with Ni–nitrilotriacetic acid (NTA) agarose. Two rabbits 
were immunized with the recombinant protein, yielding antisera 
UP2456 and UP2457 (Cocalico Biologicals Inc.). Antiserum UP2456 
was used for immunofluorescence analysis in this study.

Histological, immunofluorescence, and surface nuclear 
spread analyses
For histological analysis, testes or ovaries were fixed in Bouin’s 
solution at room temperature overnight, embedded with paraffin, 
and sectioned. Sections were stained with hematoxylin and eosin. 
In terms of immunofluorescence analysis, testes were fixed in 4% 
paraformaldehyde [in 1× phosphate-buffered saline (PBS)] for 
6 hours at 4°C, dehydrated in 30% sucrose (in 1× PBS) overnight, 
and sectioned. For surface nuclear spread analysis (42), spermato-
cytes from 6-dpt testes were used unless noted otherwise, and oocytes 
from E18.5 ovaries were used. Testicular tubules or oocytes were 
extracted in hypotonic treatment buffer [30 mM tris, 50 mM su-
crose, 17 mM trisodium citrate dihydrate, 5 mM EDTA, 0.5 mM 
dithiothreitol (DTT), and 1 mM phenylmethylsulfonyl fluoride 
(PMSF)]. Cells were suspended in 100 mM sucrose and were then 
spread on a thin layer of paraformaldehyde solution containing 
Triton X-100. The following primary antibodies were used for 
immunofluorescence analyses: rabbit anti-SYCP1 (1:100, catalog 
number ab15090, Abcam), mouse anti-SYCP1 (1:200; a gift from 
C. Hoog), guinea pig anti-SYCP2 (43), mouse anti-SYCP3 (1:200; 
catalog number ab97672, Abcam), rabbit anti-SYCP3 (1:200; 
23024-1-AP), rabbit anti-SKP1 (1:50; catalog number ab10546, 
Abcam), rabbit anti-HORMAD1 (12), rabbit anti-HORMAD1 

(1:200; 13917-1-AP, Proteintech Group), rabbit anti-HORMAD2 
(10), mouse anti-H2AX (1:500; catalog number 16-202A, clone 
JBW301, Millipore), guinea pig anti-H1T (1:500; a gift from 
M. A. Handel) (4), rabbit anti-RPA2 (1:200; UP2436) (15), mouse anti-
MLH1 (1:50; catalog number 550838, clone G168-15, BD Biosciences), 
human anti-CREST (1:100; 15-234, Antibodies Incorporated), 
mouse anti-CCNB1 (1:200; ab72, Abcam), rabbit anti-pHH3 (1:300; 
9701S, Cell Signaling Technology), rabbit anti-PLK1 (1:50; UP2456; 
this study), mouse anti-BUB1 (1:50; a gift from Y. Watanabe) 
(44, 45), and rabbit anti–CENP-C (1:500; a gift from Y. Watanabe) (46).

Imaging analysis
Histological images were captured on a Leica DM5500B microscope 
with a DFC450 digital camera (Leica Microsystems). Most immuno
labeled chromosome spread images were taken on a Leica DM5500B 
microscope with an ORCA Flash4.0 digital monochrome camera 
(Hamamatsu Photonics). Super-resolution immunolabeled chro-
mosome spread images were taken on an Olympus BX51 micro-
scope with an XM10 monochrome camera at the Penn Vet Imaging 
Core. Images were processed using Photoshop (Adobe) and ImageJ 
v1.44 software packages. Super-resolution imaging microscopy 
analysis was performed using DeltaVision OMX SR imaging system 
and softWoRx processing software.

Western blot analysis
Adult testes were homogenized in four volumes of protein ex-
traction buffer [62.5 mM tris-HCl (pH 6.8), 3% SDS, 10% glycerol, 
and 5% 2-mercaptoethanol]. Samples were boiled at 95°C for 10 to 
15 min to obtain soluble testicular protein extracts. Protein was 
quantified with spectrophotometer (Eppendorf), and 20 g of pro-
tein samples was resolved by SDS–polyacrylamide gel electrophoresis 
(SDS-PAGE) and transferred onto nitrocellulose membranes using 
iBlot (Invitrogen) and immunoblotted with indicated antibodies. 
The following primary antibodies were used for Western blotting 
analysis: rabbit anti-SKP1 (1:1000; ab80586, Abcam), rabbit anti-
HORMAD1 (1:1000; a gift from A. Rajkovic) (12), rabbit anti-
HORMAD2 (1:2000; a gift from A. Toth) (10), mouse anti-SYCP3 
(1:3000; ab97672, Abcam), rabbit anti-CCNB1 (1:500; 12231S, Cell 
Signaling Technology), mouse anti-H2AX (1:500; clone JBW301, 
Millipore), rabbit anti-TRIP13 (1:500; 19602-1-AP, Proteintech 
Group), rabbit anti-CUL1 (1:1000; ab75817, Abcam), rabbit anti-
pHH3 (1:500; 9701S, Cell Signaling Technology), rabbit anti-EMI2 
(1:500; 55176-1-AP, Proteintech Group), mouse anti-CCNB1 
(1:500; ab72, Abcam), rabbit anti–pY15-CDK1 (1:500; 4539S, Cell 
Signaling Technology), rabbit anti–pT161-CDK1 (1:500; ab194874, 
Abcam), mouse anti-PLK1 (1:500; SC-17783, Santa Cruz Biotechnology), 
mouse anti-ACTB (1:10,000; A5441, Sigma), and mouse anti-TUBB 
(T4026, Sigma).

Culture of spermatocytes and OA treatment
Short-term culture of testicular cells was carried out as reported 
previously with modifications (47). Freshly dissected testes of 2- to 
3-month-old male mice were decapsulated and placed into Krebs 
buffer (120 mM NaCl, 4.8 mM KCl, 25.2 mM NaHCO3, 1.2 mM 
KH2PO4, 1.2 mM MgSO4, 1.3 mM CaCl2, and 11.1 mM dextrose) 
containing collagenase (1.6 mg/ml). Testicular tubules were digested 
at 32°C for 10 min and were transferred into Krebs buffer containing 
collagenase (1.6 mg/ml) and 0.01% trypsin. Cells were incubated at 
32°C for another 10 min with repeated pipetting to become single-cell 
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suspension. Then, the cells were passed through a 100-m nylon mesh. 
About 2 × 106 testicular cells were washed twice with Krebs buffer and 
cultured overnight in 1 ml of MEM (minimal essential media with 
alpha modifications) containing 5% streptomycin, 7.5% penicillin, 
0.29% dl-lactic acid sodium salt, 0.59% Hepes, and 5% fetal bovine 
serum in each well of a six-well plate at 32°C. In the following morning, 
a small number of cells (2%) were used to measure cell viability with 
trypan blue, and the rest of the cells were treated with OA (5934S, Cell 
Signaling Technology) at a final concentration of 4 M. Cells were 
harvested 5 hours after the addition of OA and used for nuclear 
spread analysis.

H1 kinase assay
H1 kinase assay was carried out by following the procedures described 
before (32). In brief, adult testes (200 mg) were homogenized in 1 ml 
of radioimmunoprecipitation assay (RIPA) buffer [10 mM tris 
(pH 8.0), 140 mM NaCl, 1% Trion X-100, 0.1% sodium deoxycholate, 
0.1% SDS, and 1 mM EDTA] with 1 mM PMSF. MPF complexes 
were immunoprecipitated from 50 g of cellular protein lysate using 
CDK1 antibody (ab194874, Abcam). The beads were washed three 
times with RIPA buffer and equilibrated with EB kinase buffer [50 mM 
Hepes (pH 7.5), 10 mM MgCl2, 80 mM -glycerophosphate, 20 mM 
EGTA, 1 mM DTT]. Immunoprecipitates were incubated in 20 l 
of kinase buffer supplemented with 10 M adenosine triphosphate 
(ATP), 5 M adenosine 3′,5′-monophosphate (cAMP)–dependent 
protein kinase inhibitor, calf thymus histone H1 (50 g/ml; 14-155, 
Sigma-Aldrich), and 4 Ci of [-32P]ATP for 20 min at 30°C. The 
reaction was terminated by adding 20 l of 2 × SDS sample buffer and 
boiling for 10 min. The eluted samples were separated by 12% SDS-
PAGE gels, and gels were dried and exposed to autoradiography 
overnight. Quantification of the bands was analyzed by ImageJ software.

Oocyte collection and culture
WT and Skp1cKO (Skp1f/− Ddx4-Cre) female mice (3 to 4 weeks old) 
were hormonally primed with 5 U of PMSG (pregnant mare’s serum 
gonadotropin) (catalog number 367222, Calbiochem) 48 hours before 
oocyte collection. GV-intact oocytes were collected in bicarbonate-
free minimal essential medium with polyvinylpyrrolidone and Hepes 
(MEM-PVP) (48), denuded from cumulus cells, and cultured in 
Chatot-Ziomek-Bavister (CZB) medium (49) covered with mineral 
oil (catalog number M5310, Sigma) in a humidified atmosphere of 
5% CO2 at 37°C. Meiotic resumption was inhibited by addition of 
2.5 M milrinone. Milrinone was subsequently washed out to allow 
meiotic resumption 1.5 hours after collection. Oocytes were checked 
for nuclear envelope breakdown (GVBD) 1.5 hours after washout, 
and those that did not enter GVBD were removed from the culture. 
Confocal images were collected with a microscope (DMI4000 B, Leica) 
equipped with a 63× 1.3 numerical aperture (NA) glycerol immersion 
objective lens, an xy piezo Z stage (Applied Scientific Instrumentation), 
a spinning disc confocal scanner (Yokogawa Electric Corporation), 
an electron multiplier charge-coupled device camera (ImageEM 
C9100-13; Hamamatsu Photonics), and an LMM5 laser merge module 
with 488- and 593-nm diode lasers (Spectral Applied Research) 
controlled by MetaMorph software (Molecular Devices).

Oocyte immunocytochemistry, spindle morphology, 
and chromosome alignment analysis
MI oocytes were fixed 7 to 7.5 hours after GVBD, in freshly prepared 
2% paraformaldehyde in PBS with 0.1% Triton X-100 (pH 7.4), for 

25 min at room temperature, placed in blocking solution [PBS, 0.3% 
bovine serum albumin (BSA), and 0.01% Tween-20] overnight at 
4°C, then permeabilized in PBS with 0.3% BSA and 0.1% Triton 
X-100 for 20 min, and washed in blocking solution for 20 min 
before primary antibody staining. Rabbit anti–-tubulin (9F3) 
monoclonal antibody conjugated to Alexa Fluor 488 (1:75 dilution; 
Cell Signaling Technology) was used to visualize MI spindles. Cells 
were washed three times for 15 min in blocking buffer and mounted 
in Vectashield with bisbenzimide (Hoechst 33342, Sigma-Aldrich) 
to visualize chromosomes.

Oocyte images were collected as a series of 0.4-m z-stacks cov-
ering the whole spindle. To analyze chromosome alignment along 
the spindle axis, maximum contrast total z-projection images of MI 
spindles parallel to the coverslip were selected into four distinct 
categories: (i) chromosome aligned (bipolar spindles with all chromo
somes aligned at the metaphase plate), (ii) mild misalignment 
(bipolar spindles with less than three chromosomes misaligned), 
(iii) severe misalignment (bipolar spindles with more than three chromo
somes misaligned; frequently >10 chromosomes were misaligned), 
and (iv) monopolar spindles.

To quantify chromosome alignment, DNA signal intensity along 
the spindle axis was measured by line scan (line thickness = 100) on 
maximal intensity z-projection images (n = 25 WT and Skp1cKO 
oocytes). After background subtraction, each DNA line scan was 
normalized to its highest value and aligned to each other based on the 
middle value, and all line scans were then averaged. Oocyte data an-
alyzed in this part are combined from three independent experiments.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/13/eaaz2129/DC1
Fig. S1. Localization of SKP1 to the SC in oocytes.
Fig. S2. Inactivation of the Rec8 gene by CRISPR-Cas9–mediated genome editing.
Fig. S3. Targeted inactivation of the Skp1 gene.
Fig. S4. H1t expression and CREST localization in WT and Skp1cKO spermatocytes.
Fig. S5. Localization of SKP1 in WT and Trip13Gt/Gt pachytene spermatocytes.
Fig. S6. Precocious chromosome desynapsis and persistence of RPA2 foci in E18.5 Skp1cKO oocytes.
Fig. S7. Expression and localization of PLK1, BUB1, CENP-C, and CCNB1 in spermatocytes.

View/request a protocol for this paper from Bio-protocol.
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