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ABSTRACT
Effective forces derived from experimental or in silico molecular dynamics time traces are critical in developing reduced and computationally
efficient descriptions of otherwise complex dynamical problems. This helps motivate why it is important to develop methods to efficiently
learn effective forces from time series data. A number of methods already exist to do this when data are plentiful but otherwise fail for sparse
datasets or datasets where some regions of phase space are undersampled. In addition, any method developed to learn effective forces from
time series data should be minimally a priori committal as to the shape of the effective force profile, exploit every data point without reducing
data quality through any form of binning or pre-processing, and provide full credible intervals (error bars) about the prediction for the entirety
of the effective force curve. Here, we propose a generalization of the Gaussian process, a key tool in Bayesian nonparametric inference and
machine learning, which meets all of the above criteria in learning effective forces for the first time.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5144523., s

I. INTRODUCTION

Compressing complex and noisy observations into simpler
effective models is the goal of much of biological and condensed
matter physics.1–4 Although there are many models of reduced
dynamics, in this proof-of-principle work, we focus on the Langevin
equation5–8 to describe the time evolution of a spatial degree of free-
dom such as a particle’s position in physical space or the distance
between two marked locations (such as labeled protein sites). The
Langevin equation is governed by deterministic as well as random
(thermal) forces dampened by frictional forces.9

Concretely, the ability to infer effective forces (Fig. 1) from
sequences of data, here on in “time traces,” is especially useful in
(1) quantitative single molecule analysis10–15 that has revealed many
interesting phenomena well modeled within a Langevin framework,
for example, confinement,16–18 and (2) molecular dynamics (MD)
simulations where effort has already been invested in approximat-
ing exact force fields with coarse-grained potentials.19–25 The key
behind these coarse-grained force fields is to capture the complicated
effects of the extra- or intra-molecular environment on the dynam-
ics of a degree of freedom of interest without invoking atomistic
details.

Naïvely, to obtain an effective force from such a time trace, we
would create a histogram for the positions in the time trace ignor-
ing time, take the logarithm of the histogram to find the potential
invoking Boltzmann statistics, and then calculate the gradient of
the potential.5 In practice, this naïve method requires arbitrary his-
togram bin size selection and large amounts of data to converge and
incorrectly estimates the effective force in oversampled and under-
sampled regions.26 Additionally, such a method does not provide
any means to assess the quality of the derived force (e.g., error
bars).

Ideally, a method to learn effective forces from time series data
would be (1) minimally a priori committal to the effective force’s
profile, (2) provide full credible intervals (error bars) about the pre-
diction, and (3) exploit every data point without down-sampling
such as binning or pre-processing. Bayesian methods that satisfy
the first two criteria above26,27 exist; however, these methods do not
cover the last criteria.

Existing methods are not free of pre-processing such as spatial
segmentation and losing information through averaging the force in
each spatial segment.26,27 Neither of these, or similar pre-processing
steps, are major limitations when vast amounts of data are avail-
able. Yet, data are quite often limited in both MD trajectories and
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FIG. 1. Illustration of the goal of the anal-
ysis presented. A scalar degree of free-
dom, x, such as a particle’s position or
an intra-molecular distance, is measured
at discrete time levels, tn. The measure-
ments obtained, xn, in turn, are used
to find an effective force f (x). Despite
the discrete measurements, the effective
force found is a continuous function over
x and also extends over positions that
may not necessarily coincide with the
measured ones xn.

experiments on account of limited computational resources
(in silico) or otherwise damaging (in vitro) or invasive (in vivo)
experimental protocols.28 These limitations highlight once more the
importance of exploiting the information encoded in each data point
as efficiently as possible.

To develop a method satisfying all three criteria, we use tools
within Bayesian nonparametrics, in particular Gaussian processes
(GPs).29 Nonparametrics are required because force is a continuous
function, and so learning it cannot be achieved through conven-
tional Bayesian statistics,30,31 which are restricted to learning collec-
tions of scalar parameters. We use GPs as priors to learn the effective
forces from a time trace. We show that when data are limited, our
method outperforms the existing methods requiring discretization
because our method allows inference over the entire space includ-
ing undersampled (and altogether unsampled) regions. In addition,
as we will demonstrate, our method converges to a more accurate
force with fewer data points as compared to the existing methods
and naturally provides error bars.

II. METHODS
Here, we set up both the dynamical (Langevin) model and dis-

cuss the inference strategy to learn the effective force from data.
As with all methods within the Bayesian paradigm,3,28,30–32 we pro-
vide not only a point estimate for the maximum a posteriori (MAP)
effective force estimate but also achieve full posterior inference with
credible intervals.

A. Dynamics model
For concreteness, we start with one dimensional overdamped

Langevin dynamics given by9

ζẋ = f (x) + r(t), (1)

where x(t) is the position coordinate at time t, ẋ is the velocity, f (x)
is the effective force at position x, and ζ is the friction coefficient.
The thermal force, r(t), is stochastic and has moments

⟨r(t)⟩ = 0, (2)

⟨r(t)r(t′)⟩ = 2ζkTδ(t − t′), (3)

where ⟨⋅⟩ denotes the ensemble averages over realizations, T is the
temperature, and k is Boltzmann’s constant.

The positional data from the time trace are x1:N . These posi-
tions, xn = x(tn), are indexed with n being the time level label, where

n = 1, . . ., N. In this study, we assume that the time levels tn are
known. Furthermore, we assume that the step size, τ = tn+1 − tn,
is constant throughout the entire trace x1:N , although we can easily
relax this requirement.

Our assumed model in Eq. (1) is overdamped. Additionally, our
model is noiseless, meaning that there is no observation error, as
would be relevant to MD or experiments with a high signal to noise
ratio. The noiseless assumption is valid when observation error,
which we do not incorporate in the present formulation, is much
smaller than the kicks induced by the thermal force r(t).

B. Inference model
Given the dynamical model and the time trace, x1:N , our goal

is to learn the force at each point in space, f (⋅) (normally, we would
write f (x), but this might be misleading as it is unclear if it means
the function f or the value of the function evaluated at x), and the
friction coefficient, ζ. As illustrated in Fig. 1, we only know x1, . . ., xN
and our goal is to infer f (⋅). To achieve this, we use the Bayesian
paradigm and try to compute P( f (⋅), ζ∣x1:N). Using Bayes’ theorem,
which gives the probability of the model given the data, we obtain

P( f (⋅), ζ∣x2:N) =
P(x1:N ∣ f (⋅), ζ, x1)P( f (⋅), ζ)

P(x1:N)
, (4)

where P(⋅) represents the “probability of the argument” and ⋅|⋅
stands for “the left argument given right argument.” For the prior,
P(f (⋅), ζ), we propose a zero-mean Gaussian process (GP) prior on
f (⋅) and an independent Gamma prior on ζ. That is, in the language
of statistics, we write

f (⋅) ∼ GP(0,K(⋅, ⋅)), (5)

ζ ∼ Gamma(α,β), (6)

where ⋅∼ ⋅ means the “left argument variable sampled from right
argument distribution.”

As the data likelihood (discussed below) assume a Gaussian
form on f (⋅) for the thermal kicks, the posterior on f (⋅)|ζ, x1:N is also
a GP by conjugacy. That is, from our GP posterior, we may sample
continuous curves f (⋅). To carry out our computations, we evaluate
this curve on test points, x∗1:M , that may be chosen arbitrarily. Specifi-
cally, we evaluate either f ∗1:M or f ∗1:M ∣ζ, x1:N , where f ∗m = f (x∗m) (see the
supplementary material). Because the GP allows us to choose the test
points x∗1:M arbitrarily, including their number M and the specific
position x∗m or each one, our f ∗1:M and f ∗1:M ∣ζ, x∗1:M are equivalent to
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the entire functions f (⋅) and f (⋅)|ζ, x1:N , respectively. In other words,
using the test points x∗1:M , we do not introduce any discretization or
any approximation error whatsoever.

1. Constructing the likelihood
The shape of the likelihood in Eq. (4) is itself dictated by the

physics of the thermal kicks, i.e., in this case, uncorrelated Gaussian
kicks [Eq. (1)]. To find the likelihood for a time trace of positions,
x1:N , we consider the following discretized overdamped Langevin
equation under the forward Euler scheme:6,33

ζ
τ
(xn+1 − xn) = f (xn) + rn, (7)

where rn ∼ Normal(0, 2ζkT/τ). The forward Euler scheme [Eq. (7)]
is a first order, discretized approximation of the dynamics meaning
that it is valid when the data acquisition rate is sufficiently high (i.e.,
when τ is sufficiently small). Since rn is a normal random variable,
the change in position xn+1 − xn|xn is also a Normal random variable.
In fact, rearranging Eq. (7), we obtain

xn+1∣ f (⋅), ζ, xn ∼ Normal( τ
ζ
f (xn) + xn,

2τkT
ζ
). (8)

Assuming a known initial position, x1, the likelihood of the rest of
the time trace is then the product of each of these normals

P(x2:N ∣ f (⋅), ζ, x1) =
N

∏
n=2

Normal(xn;
τ
ζ
f (xn−1) + xn−1,

2τkT
ζ
), (9)

which may be combined into a single multivariate one

P(x2:N ∣ f (⋅), ζ, x1) = NormalN−1(τv1:N−1;
τ
ζ
f 1:N−1,

2τkT
ζ

I), (10)

where vn = (xn+1 − xn)/τ, fn = f (xn), I is the (N − 1) × (N − 1)
identity matrix, and f i :j regroups all values of f n from n = i to n = j,
similarly for vi :j.

2. GP prior and posterior for force
For our force, we choose a zero mean Gaussian process prior

f (⋅) ∼ GP(0,K(⋅, ⋅)) with a kernel, K(⋅, ⋅), assuming the familiar
squared exponential form29

K(x, x′) = σ2 exp
⎛
⎝
−1

2
(x − x

′

ℓ
)

2⎞
⎠

, (11)

where σ and ℓ are positive constants that determine the fineness
of detail we allow in our reconstruction (see the supplementary
material). We choose this GP prior because it is both conjugate to the
likelihood, and it allows us to impose the physical assumption that
the force measured at any two points should be correlated according
to how far away the points are from each other. That is to say that
the effective force measured at two nearby points should be similar
and the effective force measured at two far away points need not be
similar. The discretized GP then assumes the form

P( f 1:N−1, f ∗1:M)

= NormalN+M−1([f 1:N−1
f ∗1:M

]; 0, [K K∗
KT
∗K∗∗

]), (12)

where the covariance matrices K , K∗, K∗∗ are given in the
supplementary material. For this choice of prior [Eq. (12)] and likeli-
hood [Eq. (10)], the posterior distribution of the effective force given
friction coefficient and data is

P( f 1:N−1, f ∗1:M ∣x1:N , ζ)
∝ P(x2:N ∣ f 1:N−1, f ∗1:M , ζ, x1)P( f 1:N−1, f ∗1:M ∣ζ, x1),

which simplifies to

P( f 1:N−1, f ∗1:M , ∣x1:N , ζ)∝ P(x2:N ∣ f 1:N−1, ζ, x1)P( f 1:N−1, f ∗1:M).
(13)

Here, we use proportionalities to denote that we drop multiplica-
tive constants that are not required for the calculations that follow.
Rewriting Eq. (10) as

P(x2:N ∣ f (⋅), ζ, x1)∝NormalN+M−1([f 1:N−1
f ∗1:M

]; [ζv1:N−1
0 ], [

2ζkT
τ I 0
0 ϵI]),

(14)

we combine34 the Gaussians in Eq. (13) and then take the limit as ϵ
goes to zero. After this, we get

P( f 1:N−1, f ∗1:M ∣x1:N , ζ)

∝ NormalN+M−1([f 1:N−1
f ∗1:M

]; [ζv1:N−1
0 ], [K + 2ζkT

τ I K∗
KT
∗ K∗∗

]). (15)

The marginal distribution (the distribution integrated over all other
random variables so that we may just focus on one) for f ∗1:M in this
setup is35

P( f ∗1:M ∣x1:N , ζ)∝ NormalM( f ∗1:M ; μ̃, K̃), (16)

where

μ̃ = ζKT
∗ (K +

2ζkT
τ

I)
−1

v1:N−1, (17)

K̃ = K∗∗ −KT
∗(K +

2ζkT
τ

I)
−1

K∗. (18)

Further details of this derivation can be found by Rasmussen29 and
Do and Lee.36 The maximum a posteriori (MAP) estimate, or the
estimate that yields the highest probability, for f (⋅)|ζ, x1:N evalu-
ated at the test points is provided by μ̃, while one standard devia-
tion around each such effective force estimate (error bars) is pro-
vided by the square root of the corresponding diagonal entry of the
covariance matrix, for example, one standard deviation around μ̃17

is
√
K̃17,17. To find the effective potential from here, we numer-

ically integrated the effective force over the test points (see the
supplementary material).

C. Gibbs sampling for friction coefficient
We now relax the assumption that ζ is known. In order

to infer ζ, we must choose a prior for it; however, there is no
prior for ζ, which is conjugate to the likelihood [Eq. (10)], and

J. Chem. Phys. 152, 124106 (2020); doi: 10.1063/1.5144523 152, 124106-3

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5144523#suppl
https://doi.org/10.1063/1.5144523#suppl
https://doi.org/10.1063/1.5144523#suppl
https://doi.org/10.1063/1.5144523#suppl


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

therefore, we must choose a nonconjugate prior for ζ. In principle,
the prior on ζ could be many things, but for concreteness, we choose
to use a gamma distribution prior over ζ because it demands that
the friction coefficient is greater than zero but is flexible as to the
actual values it can take. The gamma prior over ζ gives the marginal
posterior,

P(ζ∣x1:N , f 1:N−1)

∝ NormalN−1(τv1:N−1;
τ
ζ
f 1:N−1,

2τkT
ζ

I) ×Gamma(ζ∣α,β),

(19)

where, after the proportionality, we keep track of all terms depen-
dent on ζ. Note that we can sample ζ from this distribution using
the proportionality in Eq. (19) without any need to keep track of the
terms that do not depend on ζ.35 That is, we can proceed with our
inference without any need to normalize Eq. (19).

As we now have explicit forms for P(ζ∣x1:N , f 1:N−1) and
P( f 1:N−1∣ζ, x1:N), we learn both f and ζ using a Gibbs sampling
scheme,37 which starts with an initial value for both f 1:N−1 and ζ.
We outline this algorithm here,

● Step 1: Choose initial ζ(0), f (0)1:N−1
● Step 2: For many iterations, i,

∙ Sample a new force given the previous friction coeffi-
cient,
f (i)1:N−1 ∼ P( f 1:N−1∣ζ

(i−1), x1:N).
∙ Sample a new friction coefficient given the new force,

ζ(i) ∼ P(ζ∣x1:N , f (i)1:N−1).

To sample the force, we use Eq. (16) with x∗1:M = x1:N−1. To sam-
ple the friction coefficient, we must use a Metropolis–Hastings
update.31,37,38

This algorithm samples force and friction coefficient pairs
( f (i)1:N−1, ζ(i)) from the posterior P( f 1:N−1, ζ∣x1:N). After many iter-
ations, the sampled pairs converge to the true value.31 Once we have
a large number of pairs, we distinguish the pair that maximizes
the posterior. This pair constitutes the MAP friction coefficient and
force estimates (f̂ 1:N−1 and ζ̂).

III. RESULTS
To demonstrate our method, we show that we can accurately

learn the force from a simple potential while assuming that the
friction coefficient, ζ, is known. We show that the accuracy of our
method scales with the number of data points. We then demon-
strate that our method can learn a more complicated force while still
assuming the known friction coefficient. We show that the effective-
ness of our method depends on a stiffness parameter, ζ/τ. Finally, we
allow the friction coefficient to be unknown and use Gibbs sampling
to learn both f (⋅) and ζ simultaneously.

A. Demonstration
To demonstrate our method, we applied it to a synthetically

generated time trace, consisting of N = 104 data points, of a parti-
cle trapped in a harmonic potential well corresponding to the force
f (x) = −Ax (Fig. 2). The values used in the simulation were

ζ = 100 pg/μs, T = 300 K, and A = 10 pN/nm probed at τ = 1 μs.
We looked for the effective force at 500 evenly spaced test points,
x∗1:M , around the spatial range of the time trace. The hyperparam-
eters used that appear in Eq. (11) were σ = ατ(vmax − vmin) and
ℓ = (xmax − xmin)/2 with α = 1 pN/nm, where the subscripts max
and min denote the maximum and minimum values from the trace.
Briefly, here, our motivation for using these values is to set a length,
ℓ, that correlates points over the spatial range covered in the time
trace and yet still allows distant regions to be independent, and to
set a prefactor, σ, which gives uncertainty proportional to the range
of measured forces. The sensitivity of our method to the partic-
ular choice of hyperparameters is analyzed in the supplementary
material.

For simple forces lacking finer detail, the choice of hyperpa-
rameters is less critical especially as the number of data points,
N, increases (see the supplementary material). Similarly, agree-
ment of the predicted effective force with the ground truth is best
when the effective force is close to zero (i.e., in regions of the
effective potential where data points are more commonly sam-
pled). As we look further out from the center where there are
fewer data points, the uncertainty increases; however, the MAP
estimate is still close to the ground truth. This is because the GP
prior imposes a smoothness assumption set by the hyperparame-
ters in Eq. (11), which favors maintaining the trend from the MAP
estimate from better sampled regions, that is, regions with more
data. In regions with no data, the uncertainty eventually grows to
the prior value (determined by the first hyperparameter, σ) and
the MAP estimate for f (⋅) eventually converges to the prior mean
[f (⋅) = 0].

1. Varying the number of data points
Previously, in Fig. 2, we looked at 104 number of data points.

Here, we characterize the quality of our force estimates as a func-
tion of the number of data points considered in the force estimate.
Figure 3 shows the dependency of the prediction of the force as a
function of an increase in the number of data points, N. Even for
datasets as small as 100 points [Fig. 3(a)], the GP gives a reason-
able shape for the inferred effective force. However, the uncertainty
(as captured by the green confidence interval) remains high. As
we increase the number of points to 1000 [Fig. 3(b)] and 10 000
[Fig. 3(c)] points, we see that the predicted effective force con-
verges to the ground truth force in well-sampled regions with high
uncertainty relegated to the undersampled regions.

2. Varying the stiffness
Next, to test the robustness of our method with respect to the

stiffness, we applied our method to data simulated with different
values of ζ/τ.

Re-writing our equation with a new parameter, h = ζ/τ called
the stiffness,

h(xn+1 − xn) = f (xn) + rn, (20)

rn ∼ Normal(0, 2hkT), (21)

we see that varying the stiffness can be interpreted as changing the
friction coefficient or the capture rate of the time trace, as ζ and
τ always appear together in our model. The results are shown in
Fig. 4.
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FIG. 2. Testing our method on a har-
monic potential. This plot shows the
inference of an effective force (and
resulting effective potential) from a sim-
ple one-dimensional harmonic well test
case: (a) the ground truth potential and
our estimate obtained by integrating the
MAP effective force estimate, (b) the
time trace on which inference was per-
formed, and (c) the ground truth force
and the GP inferred effective force with
uncertainty. For (a) and (c), the blue
line represents the MAP estimate, the
dark green shading represents a one
standard deviation confidence interval,
and the black line represents the ground
truth. Parameters used for the simulation
are ζ = 100 pg/μs, T = 300 K, τ = 1 μs,
and f (x) = −Ax with A = pN/nm.

For large values, the MAP estimate captures some of the trend,
but the uncertainty remains large as thermal kicks at each time step
dominate the dynamics. Frishman and Ronceray39 described this in
analogy to a signal to noise ratio. For small values of h, the prediction
is, predictably, dramatically improved.

3. Double-well potential
To further demonstrate our method on potentials of increas-

ing complexity, we applied our method to a double well potential.
As shown in Fig. 5, the shape of the learned effective force exactly
matches the ground truth although there is a slight increase in the
uncertainty of the middle region reflecting the undersampling in
that region. The integrated learned force, as shown in Fig. 5(a),
matches with the right potential well very closely, but for the left
potential, the learned effective potential is slightly higher than the
ground truth.

4. Multi-well potential
Next, we applied our method to a more complicated potential.

We chose a rapidly spatially varying, multi-well potential to test how
well our method can pick up on finer, often undersampled, poten-
tial details such as barriers. Here, we show how our method can be
adapted to deal high frequency spatial variations in the potential. For
example, we found that our method was able to pick up on the finer
potential details when we decreased the length scale, ℓ, appearing as a
hyperparameter to ℓ = (xmax − xmin)/10 so that correlations between
distant points die out faster (see the supplementary material). The
results are shown in Fig. 6. For a trace with N = 104 time points,
our method was able to find each of the wells reasonably well despite
the potential’s greater complexity. The slight increase in uncertainty
on the barriers suggests, as expected, that those regions are sampled
less frequently. The integrated learned force matches well with the
ground truth, as seen by comparing the learned effective potential
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FIG. 3. Testing our method as a func-
tion of the number of data points avail-
able. Here, we show the effective force
inferred from trajectories simulated for
a particle trapped in a one dimensional
harmonic well with a different number of
data points: (a) 100 data points, (b) 1000
data points, and (c) 10 000 data points.
For each panel, the blue line repre-
sents the MAP estimate, the dark green
shading represents a one standard
deviation confidence interval, and the
black line represents the ground truth.
Parameters used for the simulation are
ζ = 100 pg/μs, T = 300 K, τ = 1 μs, and
f (x) = −Ax with A = pN/nm.

to the ground truth [Fig. 6(a)] with only a slight overestimation of a
barrier on the left side.

5. Gibbs sampling for friction coefficient
We used the Gibbs sampling scheme37 to simultaneously sam-

ple a multi-well force and its corresponding friction coefficient from
the time trace of position vs time. For our prior on ζ, we used a shape
parameter α = 1 and a scale parameter β = 1000 pg/μs so that we
could allow ζ to be sampled over a large range. By histogramming the
sampled ζ(i), we simulated the posterior on the friction coefficient
[Fig. 7(a)]. Here, we see that the sampled values converged close to
the true value. While not as good as the prediction with known fric-
tion coefficient (as also determining the friction coefficient demands

more from the finite data available), we saw earlier, the prediction is
still satisfactory. This demonstrates that the effective force can still
be learned with an unknown friction coefficient.

B. Comparison with other methods
We compare our method described above to two previous

methods to which we can compare most directly: that of Mas-
son et al.,27 which learns the effective force, and the residence
time (RT) method,5 which learns the potential. Because the main
proof of principle for our method is in learning the force, we com-
pare all methods given a known friction coefficient selected to be
ζ = 100 pg/μs. In order to compare our method to other methods,
we use the following metric: how much data it take to converge to a
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FIG. 4. Testing our method for a different stiffness. Here, we show the effective force inferred from 1000 point trajectories simulated for particles trapped in a one dimensional
harmonic well using different choices of stiffness: (a) stiffness is h = 100 pg/μs, (b) stiffness is h = 1000 pg/μs, and (c) stiffness is h = 10 000 pg/μs. For each panel, the blue
line represents the MAP estimate, the dark green shading represents a one standard deviation confidence interval, and the black line represents the ground truth. Parameters
used for the simulation are T = 300 K and f (x) = −Ax with A = pN/nm.

force that is reasonably close to the ground truth. This will be shown
in Figs. 8–10.

1. Masson et al.
We first compare to method of Masson et al.,27 which fol-

lows a Bayesian strategy similar in spirit to ours. This method

uses the same likelihood as in Eq. (9) but spatially bins the data
into S equally sized bins and uses flat priors on the force in
each bin instead of the GP prior of Eq. (12). This approach then
finds a force and friction coefficient, which maximizes the pos-
terior.27 This method is optimized for simultaneously learning
force and friction coefficient, but for simplified comparison, we

J. Chem. Phys. 152, 124106 (2020); doi: 10.1063/1.5144523 152, 124106-7

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 5. Testing our method on a double-well potential. Here, we show the effective force (and effective potential) inferred from the time trace of a particle diffusing within a
double-well potential: (a) the ground truth and inferred effective potential, (b) the time trace on which the inference was performed, and (c) the ground truth force and the
MAP estimate for the inferred effective force with uncertainty. For (a) and (c), the blue line represents the MAP estimate, the dark green shading represents a one standard
deviation confidence interval, and the black line represents the ground truth. Parameters used for the simulation are ζ = 100 pg/μs, T = 300 K, τ = 1 μs, and f (x) = Ax4

− Bx2

with A = 0.8 pN/nm4 and B = 7.5 pN/nm2.

hold ζ fixed. For known friction coefficient and one dimensional
motion, this method reduces to averaging the measured force in
each bin. This method predicts the effective force strength in bin
s to be

f (x) = 1
Cs
∑
n:xn∈s

ζ
τ
(xn+1 − xn), (22)

where Cs is the number of times the position was measured
in bin s. Bin size should be chosen so that each bin contains
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FIG. 6. Testing our method on a multi-well potentials. Here, we show the effective force (and effective potential) inferred from the time trace of a particle diffusing within
a multi-well potential: (a) the ground truth and inferred effective potential, (b) the time trace on which the inference was performed, and (c) the ground truth force and
the MAP estimate for the inferred effective force with uncertainty. For (a) and (c), the blue line represents the MAP estimate, the dark green shading represents a one
standard deviation confidence interval, and the black line represents the ground truth. Parameters used for the simulation are ζ = 100 pg/μs, T = 300 K, τ = 1 μs, and
f (x) = Ax4

− Bx2
− C cos(Dx) with A = 0.2 pN/nm4, B = 2 pN/nm2, C = 2 pN, and D = 0.2 nm−1.

a sufficient number of data points to allow meaningful infer-
ence.26 We found that 10 bins was optimal, but for complete-
ness, when analyzing accuracy, we try many different bin numbers
(Fig. 8).

Looking at Fig. 8(a), we see that our method converges to
within a pre-specified error with fewer data points. The error was
determined by numerically integrating the absolute value of the pre-
dicted effective force subtracted from the ground truth force over
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FIG. 7. Results of simultaneous force and friction coefficient determination using
Gibbs sampling. This figure shows the inference of the force and friction coefficient
using a Gibbs sampler. (a) A histogram of the sampled friction coefficients simu-
lates the posterior on ζ. The highest probability sampled ζ was 101.03 pg/μs. The
dark green represents the probability density. (b) The MAP force matches nicely
with the ground truth force. Here, the blue line represents the MAP estimate, and
the black line represents the ground truth. The dark green represents the one
standard deviation confidence interval. Parameters used for the simulation are
ζ = 100 pg/μs, T = 300 K, τ = 1 μs, and f (x) = Ax4

− Bx2
− C cos(Dx) with

A = 0.2 pN/nm4, B = 2 pN/nm2, C = 2 pN, and D = 0.2 nm−1.

a range between −1 nm and +1 nm. We chose this range because
it is the region with the most data and thus, the region in which
the Masson et al. method best performs. For the Masson et al.
method, a smaller bin size led to a smaller error. However, this
effect emerged only after a large number of data points because
for smaller bins, there are fewer data points per bin. Similarly,
the method of Masson et al. also suffers in regions with few data
points as this method averages the force from points within each
bin. Outlier data points heavily influence effective forces inferred
in these regions. On the right-hand side of the harmonic force
[Fig. 9(a)], we see that a few outlier measurements dominate the
inference in this region. For this reason, the method produces an
incorrect predicted effective force. On the other hand, within our
method, the smoothness assumption imposed by the GP prior pre-
vents the prediction from being influenced by these points too
heavily.

FIG. 8. Error vs data points. Here, we compare the error of each method.
Error was calculated by integrating the absolute value of the predicted effec-
tive force (a) or potential (b) subtracted from the ground truth force or poten-
tial over the range [−1 nm, 1 nm]. Different bin numbers of Masson et al.
and residence time were compared. In (a), we compare the amount of data
points it takes for our method and the Masson et al. method to converge to
an accurate effective force field for the harmonic well. In (b), we compare the
amount of data points it takes for our method and the RT method to converge
to an accurate effective potential for the harmonic well. Parameters used for
the simulation are ζ = 100 pg/μs, T = 300 K, τ = 1 μs, and f (x) = −Ax with
A = pN/nm.

For the double-well potential [Fig. 9(b)], the Masson et al.
method under-estimates the effective force in the steep parts of
the effective potential. This is because the method averages all the
points in the bin equally, regardless of location. Because the force
in each bin is not spatially constant, the sides of each bin will have
different forces. There inevitably are more points at the low force
side of each bin than at the high force side, and so each bin is
dominated by data points displaying a lower effective force. The
GP prior avoids binning altogether and thus avoids this problem
altogether.
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FIG. 9. Comparison of our method with the Masson et al. method. In this figure, we compare our method to the Masson et al. method on three different effective force fields.
The top compares inferences on the simplest, harmonic, potential (a). The middle compares inference on a double-well potential (b). The bottom compares inference on a
multi-well potential (c). For each panel, the blue line represents the MAP estimate from our method, the dark green region represents the one standard deviation confidence
interval for our estimate, the orange line represents the MAP estimate of the Masson et al. method, the yellow region represents the one standard deviation confidence
interval of the Masson et al. method, and the black line represents the ground truth. Parameters for the simulation are the same as used in Secs. III A, III A 3, and III A 4.

2. Residence time
We also compared our method to the residence time (RT) anal-

ysis for finding the effective potential.40 This method also bins space
but totally ignores times. For each bin, s, this method assumes that
under Boltzmann statistics, the expected number of times a particle
is found in bin s after N measurements is given by

Ns = Ne−Us/kT . (23)

Solving for Us, this method predicts the effective potential in bin
s to be

Us = −kT ln(Ns/N). (24)

For a harmonic potential, the RT method gives a good pre-
diction [Fig. 10(a)]. For the more complex, multi-well, potential
[Fig. 10(c)], the prediction by RT is not satisfactory. Here, the RT
method underestimates the potential and does not capture all of the
fine details. For the double-well potential force, while our method
predicts an accurate force, it does slightly overestimate the poten-
tial in the left well. That is because our method is tailored for
accurate effective force predictions and potential predictions are
a post-processing step, which introduces additional (albeit small
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FIG. 10. Comparison of our method with residence time. In this figure, we compare our method to the residence time method on three different effective force fields. The top
compares inferences on the simplest, harmonic, potential (a). The middle compares inference on a double-well potential (b). The bottom compares inference on a multi-well
potential (c). For each panel, the blue line represents our MAP estimate, the orange line represents the residence time MAP estimate, and the black line represents the
ground truth. Parameters used for the simulations are the same, as shown in Secs. III A, III A 3, and III A 4.

and bounded) errors due to integration (see the supplementary
material).

IV. CONCLUSION
Learning effective forces is an important task as knowledge

of appropriate forces allows us to develop reduced models of
the dynamics of complex biological macromolecules.19–24 Here, we
developed a framework in which we inferred effective force pro-
files from time traces of position vs time for which positions may be
undersampled. In order to learn both friction coefficient and forces
simultaneously from the same dataset—and avoid binning or other

pre-processing procedures that otherwise introduce artifacts—we
developed a Gibbs sampling scheme and exploited Gaussian process
priors over forces.

As such, our method simultaneously exploits every data point
without binning or pre-processing and provides full Bayesian pos-
terior over the prediction of the friction coefficient and force while
placing minimal prior assumptions on the force profile.

A limitation of our method is its poor scalability. This is an
inherent limitation of GP themselves, as these statistical tools nat-
urally require the inversion of large matrices. The computations
required to perform these inversions scale roughly as (N + M)3,
where N, M are the number of data points and test points, respec-
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tively, and, as such, to do this for any datasets larger than roughly
50 000 data points requires around 100 gigabytes of memory. How-
ever, in the high data limit, as our method becomes more difficult
to run or in the absence of high barriers in the potential, existing
methods, such as the Masson et al. method and the residence time
method, perform well, as errors due to binning become smaller with
more data. Thus, our method supplements the existing methods to
be used in the low data limits or when we anticipate poorly sam-
pled regions of phase space. Moving forward, it is also worth noting
that approximate inference for GP methods is under active devel-
opment that may allow our method to be used in the high data
limit.41,42

Beyond computational improvements that are necessary for
large scale applications, there are many ways to generalize the frame-
work we proposed. In particular, at some computational cost, the
form for the likelihood could be adapted to treat different models
including measurement noise. Reminiscent of the hidden Markov
model,43,44 this may be achieved by adapting the Gibbs sampling
scheme to learn the positions themselves hidden by the noise from
the data.4 Furthermore, just as we placed a prior on the fric-
tion coefficient, we may also place a prior on the initial condi-
tion or even potentially treat more general (non-constant) friction
coefficients.14,15,45

Yet, another way to build off of our formulation is to gen-
eralize our analysis to multidimensional trajectories. Multidimen-
sional datasets are common when combining single molecule mea-
surements from force spectroscopy46 and Förster resonance energy
transfer.3,4,47 To treat these datasets within our GP framework is
straightforward as we would simply need to choose a kernel allowing
two- or higher-dimensional inputs.29

In conclusion, we have demonstrated a new method for finding
the effective force field of an environment with minimal prior com-
mitment to the form of the force field, exploiting every data point
without binning or pre-processing, which can predict the force on
the full posterior with credible intervals.

SUPPLEMENTARY MATERIAL

See the supplementary material for definitions of the probabil-
ity distributions (Sec. A), post-processing to determine the potential
from the force (Sec. B), an in-depth description of Bayes’ theorem
and the Gaussian process prior (Sec. C), and explanation of the
hyperparameter role in the inference (Sec. D).
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