Table 2.
Classifier stage | Signature | AUC | 95%CI | ACC | SEN | SPE |
---|---|---|---|---|---|---|
Classifier #1 | GTR | 0.708 | 0.603, 0.812 | 0.624 | 0.784 | 0.531 |
PTR | 0.710 | 0.609, 0.811 | 0.653 | 0.757 | 0.594 | |
GPTR(1) | 0.726 | 0.625, 0.827 | 0.663 | 0.838 | 0.562 | |
GPTR(2) | 0.680 | 0.574, 0.786 | 0.634 | 0.811 | 0.531 | |
Classifier #2 | GTR | 0.806 | 0.667, 0.944 | 0.730 | 0.333 | 0.800 |
PTR | 0.752 | 0.583, 0.921 | 0.757 | 0.333 | 0.929 | |
GPTR(1) | 0.770 | 0.616, 0.923 | 0.730 | 0.667 | 0.750 | |
GPTR(2) | 0.742 | 0.578, 0.906 | 0.649 | 0.778 | 0.607 |
AUC, area under the curve; CI, confidece interval; ACC, accuracy; SEN, sensitivity; SPE, specificity; GTR, gross tumor region; PTR, peritumoral region; GPTR, Gross and peri tumoral volume.
GPTR(1), the GPTR signature developed by logistic regression using GTR and PTR signatures.
GPTR(2), The GPTR radiomic signature developed by radiomic features extracted from GTR and PTR combination region.