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Incorporation of clinical and biological factors improves
prognostication and reflects contemporary clinical practice
Rashmi K. Murthy1✉, Juhee Song2, Akshara S. Raghavendra1, Yisheng Li 2, Limin Hsu1, Kenneth R. Hess 2, Carlos H. Barcenas1,
Vicente Valero1, Robert W. Carlson3,4, Debu Tripathy 1 and Gabriel N. Hortobagyi 1

We developed prognostic models for breast cancer-specific survival (BCSS) that consider anatomic stage and other important
determinants of prognosis and survival in breast cancer, such as age, grade, and receptor-based subtypes with the intention to
demonstrate that these factors, conditional on stage, improve prediction of BCSS. A total of 20,928 patients with stage I–III invasive
primary breast cancer treated at The University of Texas MD Anderson Cancer Center between 1990 and 2016, who received
surgery as an initial treatment were identified to generate prognostic models by Fine-Gray competing risk regression model. Model
predictive accuracy was assessed using Harrell’s C-index. The Aalen–Johansen estimator and a selected Fine–Gray model were used
to estimate the 5-year and 10-year BCSS probabilities. The performance of the selected model was evaluated by assessing
discrimination and prediction calibration in an external validation dataset of 29,727 patients from the National Comprehensive
Cancer Network (NCCN). The inclusion of age, grade, and receptor-based subtype in addition to stage significantly improved the
model predictive accuracy (C-index: 0.774 (95% CI 0.755–0.794) vs. 0.692 for stage alone, p < 0.0001). Young age (<40), higher grade,
and TNBC subtype were significantly associated with worse BCSS. The selected model showed good discriminative ability but poor
calibration when applied to the validation data. After recalibration, the predictions showed good calibration in the training and
validation data. More refined BCSS prediction is possible through a model that has been externally validated and includes clinical
and biological factors.
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INTRODUCTION
Progress in breast cancer biology, research, and treatment has
made the incorporation of clinical and pathological characteristics
into the staging system necessary. The American Joint Committee
on Cancer (AJCC) TNM staging classification is globally accepted to
describe extent of cancer at diagnosis and has been available
since 1959. The AJCC has incorporated biological factors (e.g.
Gleason’s score, mitotic index, and grade) into the staging
classification of cancers such as prostate, melanoma, and
sarcoma1–3. In contrast, until recently, the breast cancer TNM
classification has had only anatomical-based staging criteria
without the addition of biological, prognostic, and predictive
factors used to guide treatment in the clinical practice4–8. It is
evident that a staging system based solely on anatomy, does not
always reflect the variable clinical course and long-term outcomes
seen in clinical experience9. Age, tumor grade, hormone receptor
(HR) status, and human epidermal growth factor receptor-2 (HER2)
status are well-recognized prognostic factors and the latter two
also serve as predictors of response to endocrine and anti-HER2
therapy, respectively10–29. Prior work with robust statistical
approaches has indicated the need to include such factors in a
refined staging system30–33.
The recently published AJCC 8th edition recognizes new

prognostic categories that significantly improve prognostic
categorization compared to the anatomic stage groupings
alone34. To date, there are no robust breast cancer outcome
prediction tools available to practicing clinicians to provide
patients with early stage breast cancer survival estimates based
on the presenting features of their tumor and other clinical factors.

Prior tools have been developed but have used different statistical
approaches, i.e. mathematical modeling, Cox proportion hazards
regression, or actuarial analysis; lacking in follow-up time; more
focused on guiding adjuvant therapy discussions; or do not
represent a contemporary patient population35–38. To accompany
the recent update to the AJCC staging system, we sought in this
analysis, to develop a validated model and demonstrate that age,
tumor grade, and biomarker subtypes, conditional on stage, were
important determinants of BCSS and that their incorporation
could further refine the survival estimates based upon stage
utilizing a Fine–Gray Model. Further, we have developed an online
tool to estimate individual prognosis based on this model
combining clinical and biologic variables for use in daily clinical
practice.

RESULTS
Prediction model on the training data
In the MDACC database, 20,928 patients with stage I–III breast
cancer, who received treatment with surgery as the first
intervention were identified (see Supplementary Table 1 for the
characteristics of the overall cohort). From the overall cohort (n=
20,928), a complete data cohort (N= 14,781) was formed for
model comparison purposes, after excluding 29% of the patients
(n= 6147) missing one or more of the key variables (age, HR,
HER2, grade). All models with stage and additional factors showed
higher C-index than the model with stage alone (Table 1). The
model with age, grade, combined HR and HER2 status, and stage,
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which reflects the information conventionally available in current
clinical practice, showed the best predictive accuracy.
Table 2 shows the characteristics of the patients included in the

multivariate analysis from the training dataset (N= 14,781) and
validation dataset (N= 29,727). The median follow-up was 6.6
years (95% CI, 6.5–6.7) (range: 0–24.9 years) and the median age
was 55 (range 20–99) years. The 5-year BCSS estimate was 89% for
the whole multivariate cohort. Outcomes for the multivariate
cohort were as follows: 15% BC-related mortality, 20% mortality
from any cause, 10% loco-regional recurrence, and 20% distant
recurrence (first loco-regional recurrence and distant recurrence
were 8% and 16%, respectively).
In multivariate analysis, age, stage, biologic subtype, and grade

were associated with BCSS (Table 3). There was some indication of
violations of the PH assumption, especially for HR/Her2 subtype.
However, we did not explore the Fine–Gray model with time-
varying covariates because the analysis would be computationally
complex and the resulting model could still yield serious
biases39,40. Despite the violation of the PH assumption, our
estimated hazard ratios are still interpretable as weighted average
hazard ratios over the follow-up41. Figure 1 shows examples for
the largest stage groupings (I, IIA, IIB) demonstrating that the
curves can be further refined with the combination of factors
including age group, receptor-subtype, and nuclear grade within
each anatomic stage group. In each stage grouping, patients aged
40–69 with a grade 1 HR+/HER2− cancers have the best survival;
whereas patients with age < 40, grade 3, TNBC cancers have the
worst survival. The impact of age is also clear; younger patients
(<40) with a grade 3 TNBC consistently have worse survival
compared to an older age group 40–69 keeping other factors
constant (TNBC and grade 3).
Table 4 shows refined 5-year and 10-year BCSS estimates by age

group (<40: A, 40–69: B, and ≥70: C), HR status, HER2 status, and
pathologic stage for each grade. For TNBC, Grade 3, age < 40, the
5-year BCSS is noted to decrease by stage: 88% (1); 76% (IIA), 65%
(IIB), 60% (IIIAB), and 45% (IIIC). In contrast, for TNBC, grade 3, age
40–69, the 5-year BCSS is as follows: 92% (I), 84% (IIA), 76% (IIB),
72% (IIIAB), and 60% (IIIC). Within the age group < 40 and HR+/
HER2− subtype, the 5-year BCSS within each stage group is
different for grade 1 vs. grade 3 tumors: 98% vs. 94% (I), 96% vs.
86% (IIA), 93% vs. 80% (IIB), 92% vs. 76% (IIIAB), 88% vs. 66% (IIIC).
Similarly, within the age group 40–69 similar contrasts are noted
for HR+/HER2− by grade (1 vs. 3): 99% vs. 96% (I), 97% vs. 91%
(IIA), 96% vs. 87% (IIB), 95% vs. 84% (IIIAB), and 92% vs. 76% (IIIC).

Table 1. Comparisons of multivariable Fine–Gray models, using
complete data cohort (N= 14,781)a.

Model Covariate C-indexb (95% CI) p-valuec

Model 0 Stage 0.692 0.681 0.703 –

Model 1 Stage, Age 0.701 0.689 0.712 <0.0001

Model 2 Stage, HR/Her2d 0.745 0.739 0.761 <0.0001

Model 3 Stage, Grade 0.757 0.747 0.767 <0.0001

Model 4 Stage, HR/Her2d, Age 0.752 0.741 0.763 <0.0001

Model 5 Stage, HR/Her2d, Grade 0.740 0.729 0.751 <0.0001

Model 6 Stage, Age, Grade 0.758 0.748 0.768 <0.0001

Model 7 Stage, Age, HR/Her2d, Grade 0.774 0.764 0.783 <0.0001

aPatients with complete data (age, stage, HR, HER2, Grade) included.
bHarrell’s C- Index: The kmi package in R was used to impute censoring
times for competing risk data and the rcorr.cens function in the Hmisc
package in R was used to estimate the C-index and its confidence interval.
cp-value comparing C-index values between models was computed using
the compareC package in R.
dER estrogen receptor, PR progesterone receptor, HER2 HER2-neu receptor,
HR hormone receptor; HR+: ER+ or PR+; HR−: ER− and PR−.

Table 2. Patient characteristics for the multivariate Fine–Gray model:
complete data cohort in training and validation datasets.

Variable Training data
(N= 14,781)

Validation data
(N= 29,727)

N % N %

Racea

White 10,853 73 16,812 57

Black 1391 9 1303 4

Hispanic 1767 12 784 3

Other 770 5 785 3

Unknown 0 0 10,043 34

Age

<40 1582 11 1913 6

40–69 11,351 77 22,151 75

≥70 1848 12 5663 19

Menopausal statusb

Premenopausal 5182 35 17,332 58

Postmenopausal 9599 65 12,395 42

Anatomic stage

I 7688 52 16,607 56

IIA 3694 25 8327 28

IIB 1870 13 3331 11

IIIA–IIIB 1076 7 737 3

IIIC 453 3 725 2

Nuclear gradec

1 1885 13 6723 23

2 6627 45 13,884 47

3 6269 42 9120 31

ER statusd

Positive 11,623 79 24,646 83

Negative 3154 21 5077 17

Unknown 4 0 4 0

PR statusd

Positive 9790 66 21,827 74

Negative 4944 33 7856 27

Unknown 47 0 44 0

Hormone receptor (HR) statuse

HR+c 11,888 80 24,989 84

HR−d 2893 20 4738 16

HER2 statusd,f

Positive 1175 8 1086 4

Negative 13,606 92 28,641 96

Biomarker subgroups

TNBC 2431 16 4401 15

HR+/HER2– 11,175 76 24,240 82

HR+/HER2+e 713 5 749 3

HR−/HER2+ 462 3 337 1

Chemotherapyf

TNBC 1914 79 3459 79

HR+/HER2− 5035 45 8866 37

HR+/HER2+ 657 92 748 100

HR−/HER2+ 426 92 335 99

aFor NCCN data, race background and ethnicity variables were used to
obtain this variable.
bClinically defined based on history; if not recorded, age is considered
(≥60: postmenopausal; <60: premenopausal).
cHistologic grade or nuclear grade (if histologic grade is not available);
Training Data, HG (n= 4724); NG (n= 10,057); Validation Data, HG (n=
29,466); NG (n= 12,434).
dBiomarker definitions in database are reflective of evolution of national
guidelines28,38,54–56.
eHR+:ER+ or PR+; HR−: ER− and PR−.
fAll HER2+ patients included in the multivariate analysis received adjuvant
trastuzumab.
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Table 3. Multivariate Fine–Gray model (Model 7) (N= 14,781)a parameter estimates based on Fine–Gray model.

Covariate Level Parameter estimate SE SHR 95% CI p

Age at diagnosis <40 0.45410 0.057 1.58 1.41–1.76 <0.0001

40–69 REF

≥70 −0.18590 0.084 0.83 0.70–0.98 0.0268

Anatomic stage I REF

IIA 0.79969 0.058 2.23 1.99–2.49 <0.0001

IIB 1.23600 0.064 3.44 3.04–3.90 <0.0001

IIIAB 1.42681 0.077 4.17 3.58–4.84 <0.0001

IIIC 1.85219 0.096 6.37 5.28–7.70 <0.0001

Biologic subtype TNBC 0.62773 0.056 1.87 1.68–2.09 <0.0001

HR+/HER2+(T)(T) −0.38992 0.125 0.68 0.53–0.87 0.002

HR−/HER2+(T) 0.06342 0.124 1.07 0.84–1.36 0.61

HR+/HER2− REF

Gradeb 1 REF

2 0.56614 0.119 1.76 1.40–2.22 <0.0001

3 1.19932 0.121 3.32 2.62–4.21 <0.0001

SHR refers to the subdistribution hazard ratio of mortality with breast cancer.
SHR subdistribution hazard ratio, CI confidence interval, Ref reference group (1.00).
aPatients with complete data including age, stage, hormone receptor (HR) status (HR+: ER+ or PR+ and HR−: ER− and PR−), HER2 status, and grade were
included.
bHistologic grade or nuclear grade (if histologic grade is not available); HG (n= 4724); NG (n= 10,057).
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Fig. 1 BCSS estimation. Estimated BCSS by combining age group, receptor subtype, grade within each stage group (1, 2A, 2B) based on
Fine–Gray model 7 using average baseline survival (N= 14,781).
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The results of Shoenfeld residuals, nonlinear covariate effects and
two-way covariate–covariate interaction yielded no remarkable
findings. Table 4 shows the 5-year and 10-year BCSS for each
combination of factors (age, anatomic stage, HR, HER2, and tumor
grade).

Model validation
Table 2 shows the patient characteristics for the 29,727 patients in
the validation data set. The median follow-up was 2.4 years and
the median age was 58 years. The 5-year BCSS estimate and 5-year
OS was 95% and 91%, respectively, for the validation cohort.
Outcomes were as follows: 3% BC-related mortality, 6% mortality

from any cause, 1% locoregional recurrence, and 4% distant
recurrence. BCSS at 5 years was 89% in the training set and 95%
in the validation set while at 10 years BCSS was 78% in the training
set and 89% in the validation set. Figure 2a, b show BCSS
predictions in the training and validation sets stratified by risk set
(based on the same centiles used for the training set). The c-index
from the validation set is 0.82. Taken together, these indicate that
the selected model discriminated well when applied to the
validation set. However, Fig. 3a and b shows that our model is
poorly calibrated when applied to the validation set. The
predicted probabilities were much lower than the observed
probabilities. Figure 4 shows that after recalibration, the predic-
tions showed good calibration in the validation data.

Table 4. Five-year and ten-year BCSS estimates by age, HR status, HER2 status, and stage for each grade based on Fine–Gray model 7 with average
baseline survival (n= 14,781).

Grade Age HR HER2 5-year BCSS 10-year BCSS

Stage Stage

I IIA IIB IIIAB IIIC I IIA IIB IIIAB IIIC

1 <40 Neg Neg 96.3 92.0 87.9 85.5 78.7 91.7 82.4 74.1 69.6 57.4

Neg Pos 97.9 95.4 92.9 91.5 87.3 95.2 89.6 84.3 81.4 73.0

Pos Neg 98.0 95.6 93.3 92.0 88.0 95.5 90.2 85.2 82.4 74.4

Pos Pos 98.7 97.0 95.4 94.5 91.7 96.9 93.2 89.7 87.7 81.8

40–69 Neg Neg 97.6 94.8 92.1 90.6 85.9 94.6 88.4 82.7 79.4 70.3

Neg Pos 98.7 97.0 95.4 94.5 91.7 96.9 93.3 89.8 87.7 81.9

Pos Neg 98.7 97.2 95.7 94.8 92.2 97.1 93.7 90.4 88.4 82.9

Pos Pos 99.1 98.1 97.1 96.5 94.7 98.0 95.7 93.4 92.0 88.1

≥70 Neg Neg 98.0 95.7 93.4 92.1 88.2 95.5 90.3 85.4 82.6 74.7

Neg Pos 98.9 97.5 96.2 95.4 93.1 97.4 94.4 91.4 89.7 84.7

Pos Neg 98.9 97.7 96.4 95.7 93.5 97.6 94.7 91.9 90.3 85.6

Pos Pos 99.3 98.4 97.6 97.1 95.5 98.4 96.4 94.5 93.3 90.0

2 <40 Neg Neg 93.6 86.3 79.7 75.9 65.6 85.8 71.1 59.0 52.8 37.7

Neg Pos 96.3 92.0 87.9 85.5 78.7 91.7 82.4 74.1 69.6 57.4

Pos Neg 96.5 92.5 88.6 86.3 79.9 92.1 83.4 75.5 71.1 59.4

Pos Pos 97.6 94.8 92.1 90.5 85.9 94.6 88.4 82.6 79.4 70.3

40–69 Neg Neg 95.9 91.1 86.5 84.0 76.5 90.7 80.5 71.5 66.7 53.8

Neg Pos 97.6 94.8 92.1 90.5 85.9 94.6 88.4 82.7 79.4 70.3

Pos Neg 97.8 95.1 92.6 91.1 86.7 94.9 89.1 83.6 80.5 71.8

Pos Pos 98.5 96.7 94.9 93.9 90.8 96.5 92.5 88.6 86.4 79.9

≥70 Neg Neg 96.6 92.5 88.7 86.5 80.1 92.2 83.6 75.7 71.4 59.8

Neg Pos 98.0 95.7 93.4 92.1 88.1 95.5 90.3 85.4 82.6 74.6

Pos Neg 98.2 95.9 93.8 92.5 88.8 95.8 90.9 86.2 83.6 76.0

Pos Pos 98.7 97.2 95.8 94.9 92.3 97.1 93.7 90.4 88.5 83.0

3 <40 Neg Neg 88.3 75.8 65.1 59.5 45.2 74.9 52.6 37.0 30.1 15.9

Neg Pos 93.2 85.4 78.4 74.5 63.7 84.9 69.4 56.8 50.5 35.1

Pos Neg 93.6 86.3 79.6 75.8 65.5 85.7 71.0 58.9 52.6 37.5

Pos Pos 95.6 90.5 85.7 82.9 75.1 90.1 79.3 69.8 64.8 51.4

40–69 Neg Neg 92.4 83.9 76.2 71.9 60.4 83.3 66.5 53.2 46.6 31.1

Neg Pos 95.6 90.5 85.7 82.9 75.1 90.1 79.3 69.9 64.8 51.5

Pos Neg 95.9 91.0 86.5 83.9 76.4 90.7 80.4 71.4 66.5 53.6

Pos Pos 97.2 93.8 90.6 88.8 83.3 93.6 86.3 79.6 75.9 65.6

≥70 Neg Neg 93.6 86.4 79.8 76.1 65.8 85.9 71.3 59.2 53.1 37.9

Neg Pos 96.3 92.0 87.9 85.6 78.8 91.7 82.5 74.2 69.7 57.6

Pos Neg 96.6 92.5 88.6 86.4 80.0 92.2 83.5 75.6 71.3 59.6

Pos Pos 97.7 94.9 92.2 90.6 86.0 94.6 88.5 82.8 79.5 70.4
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DISCUSSION
In this analysis, we demonstrate statistical significance and
improved predictive accuracy of incorporating age, grade, and
receptor-based subtypes conditional on anatomic stage to
improve prediction of breast cancer-specific survival (BCSS) using
a Fine–Gray Model. In doing so, we have shown through a
different statistical methodology and with a longer follow-up that
more individualized prediction of BCSS is possible by considering
clinical and biologic factors in addition to anatomic stage in a
dataset with long followup that has been validated in an external
dataset with demonstration of good calibration in both datasets.
Calibration of the BCSS prediction model is evaluated by visual
inspection of the 5-year and 10-year calibration plots, plotting the
average predicted BCSS against the observed BCSS for each of 5
risk groups at 5 years and 10 years. The 5-year and 10-year BCSS of
patients with particular values for the clinical and biological
variables can be found using an online tool at the following link:
http://mdanderson.org/BCSS.
We chose the Fine–Gray model to develop a BCSS prediction

model over other potential and different statistical methods used
in the existing online breast cancer survival prediction tools35–38.
PREDICT, an online breast cancer prognostic and treatment
benefit model, used a Cox proportional hazards model, which is
frequently used in risk prediction models for breast cancer, to
predict BCSS. When an individual in the risk set is exposed to more
than one cause of failure (e.g., non-breast cancer death, which
cannot be neglected for early stage breast cancers), resulting in
competing risks, the Kaplan–Meier method of estimating CIF and
the Cox regression model of estimating survival lead to biases42.
The Fine–Gray model is a widely used method to build prediction

models when competing risks exist (as is the case for early stage
breast cancer). The Fine–Gray model allows estimation of the
effect of the covariates on the CIF, but it has a limitation in its
difficulty in interpreting the model coefficients, as compared to
the Cox proportional hazards model42–44. That is, the model
covariates can be interpreted as having an effect on the CIF, but
they do not directly link to an underlying event rate in the real
world45,46. This limitation, however, does not pose an issue in our
analysis as the CIF is of equal clinical relevance in our study.
The results of our study should be interpreted with several

considerations. First, the analysis was performed using data
collected at a high volume single cancer center with specific
referral and practice patterns leading to a potential selection bias.
Our institution tends to treat larger and higher grade tumors with
neoadjuvant systemic therapy, and the patient cohort analyzed in
this study excluded those patients, possibly biasing the remaining
group. One example of our referral bias is that the median age of
patients in this database is lower than the national median age.
However, since the incorporation of the other biomarkers had a
similar effect in all age groups in this analysis, we consider that
what we demonstrated in our database is likely generalizable to all
age groups. Second, all patients did not have their surgery at our
institution so there is the possibility of interobserver variability
among pathologists. However, the majority of patients seen at
MDACC have their pathology material reviewed by dedicated
breast cancer pathologists, so this variability was likely largely
reduced. Further, while inter-pathologist variability in determining
grade has been amply documented in the literature, grade has
always been a strong prognostic marker in all published analyses.
Additionally, the majority of patients in the training dataset had
only NG available. In a preliminary analysis not shown,
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concordance was evaluated among the 6150 patients in the
training dataset with both NG and HG and 17,536 patients with
both NG and HG in the validation dataset with a substantial or
moderate agreement noted (Kappa 0.7 (training) and 0.56
(validation), respectively)47. Therefore, a decision was made to
use NG interchangeably when HG was unavailable. Third, our
results reflect heterogeneity of treatments selected by individual
treating physicians, although the overwhelming majority would
have received an anthracycline-based regimen, and most also
received a taxane. Detailed adjuvant therapy was available in the
training dataset but not available in the validation dataset. In the
training dataset, we made a decision to exclude HER2+ patients
who did not receive adjuvant therapy with trastuzumab-based
regimens [HER2+(no T)] patients to provide survival probability
estimates that better reflect outcomes of a contemporary
population; however it has introduced a bias within this subset
with respect to adjuvant treatment as well as time. Adjuvant
treatment was not accounted for in the other biomarker subtypes
and trastuzumab was not incorporated into standard adjuvant
practice for HER2+ BC until 2005. Fourth, the data spanned over a
large time period during which significant diagnostic and
therapeutic advances have been made, resulting in a temporal
cohort effect. Fifth, with respect to violations of proportional
hazard, the hazard ratio changes over time making it challenging
to represent this situation accurately with a single value (i.e., which
is valid when the hazard ratio is constant over time). Thus, the
estimate can be viewed as a weighted average of the hazard ratios
which are changing over time. Future research will consider more
complicated models, using time-varying covariate effects, in
pursuit of more accurate prediction. Another consideration is that

there is the potential for more complex interaction effects
between these additional clinical and biological factors with other
variables, such as adjuvant treatment and pathological stage, not
accounted for in the analyses presented here. The median follow-
up time in the training dataset is much longer than that of the
validation dataset (8 years vs. 2.4 years) and this resulted in the
need to recalibrate the predictions due to poor calibration of the
final model when applied to validation data set. It is unclear why
the final model did not fit the validation data well. However, a
possible answer is the dissimilarity in the distributions of
covariates and risk profiles between training and validation data
sets. Finally, all deaths after breast cancer recurrence were
considered as breast cancer-related deaths as the detailed death
attributions are not available in our database.
Previously published work from MDACC has shown that a

staging system that incorporates grade and HR status improves
the disease-specific survival estimates as compared to anatomic
stage alone30. In two recent presentations from MDACC, a novel
risk score that includes grade, and ER, and HER2 status was
evaluated in a contemporary patient population who received
surgical intervention at MDACC and was then validated in a larger
cancer registry confirming the importance of biologic factors in
determining prognosis for breast cancer patients48. The MDACC
database has also been supplemented with laboratory, patient
lifestyle, and quality of life survey data showing further refinement
in prognostic ability49. The recently updated AJCC 8th edition has
recognized prognostic categories which are largely based on the
NCDB analysis which contains over 300,000 women with invasive
breast cancer diagnosed in 2010–2011 with a complete set of
variables but short median follow-up (37.6 months). The inclusion
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Fig. 3 Calibration plots. a Training data, 5 years, b training data, 10 years, c validation data, 5 years and d validation data, 10 years.
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of grade, and HER2, and HR status using the NCDB model resulted
in stage reassignment for 41% of the patients to a stage group
that was higher or lower than would otherwise have been
assigned using the AJCC 7th edition anatomic stage categories34.
Since the analyses confirming that prognosis varied within TNM
groupings based on tumor biology and the identification of the
new prognostic categories in the updated AJCC 8th edition, there
have been several publications and validation papers further
recognizing the importance of incorporating biological factors and
confirming the effectiveness of the revised prognostic cate-
gories50–53.
While the breast cancer community has known for several

decades the prognostic impact of grade, age, HR and HER2, no
publication had shown that singly or in combination, these factors
affected the outcomes of patients included in specific TNM stages.
This analysis has clearly demonstrated the added prognostic value
of patient and tumor characteristics when combined with
anatomical stage. External validation confirmed discriminative
ability of selected model and with recalibration the predictions
were well calibrated to the validation data. In summary, we
present the first user-friendly clinical tool developed to estimate
BCSS based on an extensive analysis using Fine–Gray Model in a
robust single institution database and validated in a nationally
recognized-external database. The goal of developing this tool is
to provide a resource for clinicians to help guide discussions with
patients and provide an estimation of prognosis based on clinical
and biological factors.

METHODS
Training data patient population
A prospectively maintained electronic database of patients with
breast cancer treated at The University of Texas MD Anderson
Cancer Center (MDACC) was used to identify over 20,000 patients
with stage I–III invasive unilateral breast cancer who received
surgery as initial treatment from 1990 to 2016. Clinico-pathologic
data was collected from the database, including age; stage; grade,
estrogen receptor (ER), progesterone receptor (PR), and
HER2 status; adjuvant treatment history; and disease status at
the time of death. Pathological stage, tumor grade, HR status, and
HER2 status were extracted from the surgical pathology report
and determined according to AJCC guidelines8,27,54–59. For tumor
grade, composite histologic grade was used primarily when
available and if not available, then nuclear grade was used
(Supplementary Text A). Disease status at the time of death and
cause of death were ascertained for each patient. Patients were
defined to have a breast cancer (BC)-related death if they died
following a recurrence of breast cancer irrespective of the time
elapsed between recurrence and death and the cause of death.
Study data were collected and analyzed with approval from the
Institutional Review Board (IRB) at the University of Texas MDACC.
A waiver of consent was obtained due to the retrospective nature
of the study. The data were transferred for analysis on April 5,
2016. Among the patients who were alive, 66% had a date of
last follow-up within 2 years of April 2016. 58% of alive patients
had follow-up longer than 5 years and 28% of alive patients had
follow-up longer than 10 years.
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Validation data patient population
In the NCCN breast cancer outcomes database, a cohort of over
44,000 patients with pathological stage I–III unilateral primary
invasive breast cancer who received surgery as an initial treatment
from 1997 to 2012 were identified. Patients received all or some of
their treatment at one of 16 NCCN participating centers between
July 1st 1997 and December 31, 2012 (Supplementary Text B).
Patients registered at the University of Texas MDACC (n= 7432)
were excluded from the NCCN database to create an external
dataset of 37,559 patients (non-MDACC NCCN cohort). Patients
without complete data on age, anatomic stage, HR/HER2 status,
and grade were excluded resulting in a validation cohort
comprised of 29,727 patients who had complete data. All of the
clinically relevant variables were obtained directly from the NCCN
database. The last follow-up in validation data was 2/15/2013.
Among patients who were alive, 79% had a date of last follow-up
within 2 years of February 2013, 20% of patients alive had follow-
up longer than 5 years, and 4% of patients alive had follow-up
longer than 10 years.

Statistical analysis
The primary endpoint was BCSS that was assessed while treating
non-BC death as a competing risk. BCSS curves were estimated
using the Aalen–Johansen method. Univariate and multivariate
Fine–Gray proportional hazards models were fit to assess the
statistical significance of the effects of the clinically relevant
variables on BCSS. We coded HR/HER2 as a four-level categorical
variable in all models. Harrell’s C-index was calculated to evaluate
the discrimination capacity of each model56. The kmi package was
used to impute censoring times for competing risk data and rcorr.
cens in Hmisc package was used to estimate the C-index and its
confidence interval. We checked the proportional hazards (PH)
assumption by visually inspecting the smoothed, scaled Schoen-
feld residuals and hazard ratios by time intervals, assessed
nonlinear covariates effects using spline functions and checked
for two-way covariate–covariate interactions by introducing
product terms in the models. A p-value of <0.05 indicated
statistical significance. Using a selected Fine–Gray model to
estimate the BCSS probabilities (as 1−cumulative incidence
function (CIF)) including patients with complete data, an online
tool to estimate individual prognosis was developed. Prognostic
index was defined as the weighted sum of the variables in the
Fine–Gray model, where the weights were the regression
coefficients. Model calibration was evaluated by comparing
observed and predicted BCSS probabilities for five risk groups
(defined by partitioning the prognostic index based on its 16th,
39th, 62nd, and 84th percentiles).
To assess the performance of our selected model on the

validation data, we compute predictions for each patient in the
validation set using the model fit to the training data and compare
these predictions to the observed validation outcomes. Statistical
analyses were performed using SAS 9.4 (SAS Institute Inc, Cary,
NC). A more complete description of the statistical methods is
given in the supplementary materials (Supplementary Text C).
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