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Implication of the gut microbiome
composition of type 2 diabetic
patients from northern China

Qian Li%**7, Yujun Chang**®7, Ke Zhang*®, Hao Chen®, Shiheng Tao'?* & Zhi Zhang***

Emerging evidence has suggested the association of the gut microbiome with some human diseases,
including type 2 diabetes (T2D). In this study, we analyzed the gut microbiota from a cohort of healthy
and diabetic Chinese individuals from Northern China. Pyrosequencing of the V4V5 region of 16S rRNA
genes revealed a significant decrease in the gut microbiota diversity of diabetic patients as compared
to healthy individuals. Butyrate-producing bacteria such as Bifidobacterium and Akkermansia were
significantly decreased in diabetic patients. Furthermore, the abundance of Dorea was significantly
increased in T2D individuals and negatively correlated with the abundance of butyrate-producing
bacteria. The increase of Dorea could play a role in the development of T2D and has been previously
overlooked. Importantly, functional analysis of the gut microbiome revealed for the first time that
increased levels of butyrate production via transferases and the degradation of several amino acids
due to gut microbial metabolism have strong correlations with T2D in Northern China. Moreover, the
potential of gut microbiota-based classifiers to identify individuals with a high risk for T2D has been
demonstrated in this study. Taken together, our findings have revealed a previously unappreciated
association of the gut microbiome with T2D and have also suggested that changes in gut microbiota
may be used to identify individuals at high risk for T2D.

Type 2 diabetes (T2D), which is a major risk factor for heart disease and stroke, has become the leading disease
burden worldwide'. Over the past decades, the incidence of T2D has been increasing in many industrialized
countries in Europe and North America'% Currently, T2D has also sharply increased in Asian countries, in par-
ticular in China®*. T2D is a metabolic disease, and the development of T2D results mostly from obesity-linked
insulin resistance’. A previous study has indicated that as a chronic disease T2D is also associated with other
factors such as gut microbiota, genetic predisposition, physical inactivity and mental stress®.

Recent studies have provided evidence that the human gut microbiota is critical for maintaining physical health
and is related to diabetes and other disease conditions’~. Previous research has focused on fecal microbiota, using
primarily 16S rRNA and whole-genome shotgun sequencing, and has provided evidence that both the composi-
tion and function of gut microbial communities were critical for maintaining physical health'. Additionally, it has
also been associated with metabolic diseases like diabetes and obesity’. For example, several studies on humans
have indicated that a lower proportion of Bacteroidetes and a higher proportion of Firmicutes were associated with
obesity and insulin resistance®!!~'*. However, results conflicting this were reported by Larsen et al.; they proposed
that the ratio of Bacteroidetes to Firmicutes correlated positively and significantly with plasma glucose concentra-
tions, and the class Betaproteobacteria was highly enriched in diabetic individuals’ gut microbiome®. Consistent
with these results, Ridaura ef al. demonstrated that Bacteroidetes drive the degradation of branched-chain amino
acids, which was reported in obese and insulin-resistant humans'*. Yet all of these studies have confirmed the
critical role of human gut microbiota in the occurrence of T2D and the maintenance of physical health.

Potential differences in gut microbiota composition related to diabetes may result in markers that can be used for
disease monitoring. To date, specific gene markers and gene clusters have been used to classify T2D individuals™.
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Figure 1. Difference in alpha diversity of the microbial communities between type 2 diabetes (T2D) and
healthy individuals. (a) Phylogenetic diversity analysis between microbial genera. (b) Diversity analysis based
on the Chaol index revealing the decrease of microbial diversity in T2D. Boxes represent the interquartile
ranges (IQRs) between the first and third quartiles, and the line inside the boxes represents the median; notches
show the 95% confidence interval for the medians. P-values were < 0.01 for both phylogenetic diversity and
Chaol indices.

Karlsson et al. found that metagenomic profiles could be used to identify T2D with high accuracy from a European
women cohort”. They also applied their model to a Chinese cohort, and they found that their model was able to
distinguish T2D patients and healthy adults as defined by gene clusters (MGCs) with an area under the receiver
operating characteristic curve (AUC) of 0.58 for Chinese T2D subjects’. However, the most discriminatory MGCs
differed between the European and Chinese cohorts, indicating that T2D metagenomic predictive tools and diag-
nostic biomarkers for specific populations need to be further studied. Moreover, 16S rRNA sequencing might be a
more cost-effective method for microbiota characterization than the whole-genome shotgun sequencing and studies
using the fecal microbial community structure (i.e., combinations of OTUs) to predict diabetes in adults are lacking.

In this study, we compared the fecal microbiota of T2D patients and healthy controls (n = 60). The aim of this
study was to characterize the composition of gut microbial communities in adults with T2D. Furthermore, we
examined whether gut microbial communities could be used to predict the presence of type 2 diabetes. We found
significant shifts in the gut microbiota of patients with T2D, and we further investigated the potential use of gut
microbiota profiling to accurately differentiate T2D patients from adults without diabetes.

Results

Diversity of the gut microbiota in patients with T2D. A total of 60 subjects were recruited to this
study. The mean £ SD BMI and fasting blood glucose (FBG) levels in the T2D subjects were 26.57 £ 1.99 kg/
m? (control: 21.01 & 1.51 kg/m?) and 7.27 £+ 1.39 mmol/L (control: 5.23 +1.04), respectively (Supplementary
Tables S1, S2). A total of 7,548,898 reads were obtained for 58 subjects by V4V5 16S rRNA pyrosequencing,
and two subjects were excluded due to technical problems in sequencing. After quality control and pair-end
read merging, we obtained 6,153,916 high quality reads, accounting for 81.52% of the total reads. An average of
106,102 (from 31,016 to 245,873) sequences per sample was used for downstream bioinformatics analysis, and the
average sequence length of the merged sequences was 389 bp.

To estimate the diversity of the microbial communities, phylogenetic diversity and Chaol indices were cal-
culated and used for further comparison of the differences between the healthy and T2D groups. The individual
samples were normalized, and an OTU table within each sample was rarefied to 30,000 sequence reads by QIIME
1.9.0 scripts'®. After that, the phylogenetic diversity, Chaol and coverage were calculated using the normalized
sequence reads. Good’s coverage was estimated to be 98.05% for T2D patients and 97.78% for healthy controls.
Both the phylogenetic diversity and Chaol indices were significantly different between the two groups (Fig. 1,
p-value = 0.0004 and 0.005 for phylogenetic diversity and Chaol indices, respectively, Supplementary Fig. S2).

Changes in gut microbiota. Taxon-based analysis revealed that the gut microbial communities were
changed by diabetes at the phylum and genus level. The representative sequences of OTUs were aligned against
the Greengenes database, and we summarized the taxonomic composition for all samples at the taxonomic levels
of phylum, class, order, family and genus. We observed that OTUs belonging to the genus Bacteroides were the
dominant bacteria in both groups (Fig. 2a). We then performed the two-sided White’s non-parametric -test to
identify differences in the gut microbiome between T2D and healthy groups'®. Consistent with previous stud-
ies, at the phylum level, an increase in Firmicutes abundance and a relatively lower abundance of Bacteroidetes
were found in diabetic subjects (g-value < 0.05)%°. Obesity-related research also has revealed that obesity is
associated with an increase in the phylum Firmicutes and a decrease in the phylum Bacteroidetes'"'”'8, The rel-
ative abundances of some microbes between these two groups at the genus level were also different (Fig. 2b).
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Figure 2. Bacterial taxonomic analysis of gut microbiota. (a) Boxplot showing the top 10 gut bacteria of
taxonomic abundance in the two groups at the genus level. Red and blue boxes represent type 2 diabetes (T2D)
and healthy controls, respectively. (b) Seven bacteria at the genus level that were differentially abundant between
T2D patients and healthy controls, as tested by a two-sided White’s non-parametric ¢-test. FDR-adjusted p
values are reported at the right of the image. Figure was produced using STAMP.

At the genus level, Faecalibacterium, primarily presented by the species Faecalibacterium prausnitzi (phylum
Firmicutes class Clostridia), was on average slightly increased in diabetic subjects (White’s non-parametric test,
p=0.015). Similarly, the proportion of the genus Dorea, which also belongs to the phylum Firmicutes, was signif-
icantly higher in diabetics than in controls (p =0.038). Another genus Fusobacterium, belonging to the phylum
Fusobacteria, also increased in diabetics to a significant level (p =0.019). However, the relative abundance of the
genus Parabacteroides, belonging to the phylum Bacteroidetes, was significantly lower in diabetics than in con-
trols (p =0.012). In addition, other genera including Streptococcus, Bifidobacterium and Akkermansia were also
increased in healthy subjects to significant levels (Fig. 2b).

The relative abundance table of OTUs was then used for principal coordinate analysis (PCoA). PCoA anal-
ysis revealed that the gut microbiota of T2D subjects showed deviation from the control group (Supplementary
Fig. $3). To compare the overall gut microbiota composition between the T2D patients and controls, we performed
PERMANOVA analyses (permutational multivariate analysis of variance) with 999 permutations and confirmed
significant differences between the gut microbiota composition of the two groups (p =0.009). The PERMANOVA
results clearly showed that diabetes was a significant factor for explaining the variation in gut microbiota.

Bacterial interaction network. To investigate the interactions of different gut bacteria, we performed a
coabundance network analysis. This coabundance network analysis showed that OTUs annotated to Butyricimonas
at the genus level, which have been reported to counteract T2D, were positively associated with OTUs belonging to
Rikenellaceae and Christensenellaceae at the family level (Fig. 3). Another interesting finding was the presence of a
few negative connections, such as between Butyricimonas and Clostridiales at the order level. In this result, Dorea
showed a negative correlation with Sutterella, and Dialister was negatively correlated with Phascolarctobacterium at
the genus level. These data identified various relationships between T2D-associated bacteria and suggested it may be
important to further identify the roles of gut bacteria and how they interact with each other and their host in T2D.

Functional changes in gut microbiome. We next performed PICRUSt2 analysis, which is a compu-
tational approach that predicts the metagenome functional content based on microbial community profiles
obtained from 16S rRNA gene sequences, to reveal the functional differences between the two groups®. Statistical
differences in Kyoto Encyclopedia of Genes and Genome orthology (KO) frequencies were determined using the
Mann-Whitney U test. The KO assignments for the five microbial proteins with the lowest false discovery rate
(FDR) adjusted p values (p < 0.001) were putrescine oxidase [EC:1.4.3.10] (puo), streptogrisin C [EC:3.4.21.-]
(sprC), 3-hydroxyanthranilate 3,4-dioxygenase [EC:1.13.11.6] (HAAO), glycine betaine catabolism A (gbcA), phe-
nol 2-monooxygenase [EC:1.14.13.7], and S-adenosylmethionine-diacylgycerolhomoserine-N-methlytransferase

SCIENTIFIC REPORTS |

(2020) 10:5450 | https://doi.org/10.1038/s41598-020-62224-3


https://doi.org/10.1038/s41598-020-62224-3

www.nature.com/scientificreports/

g__f_IMogibacteriaceasr™
/ g;ffigyminocb«“c\aceae o Turicibacter
\

g__f__Coriobacteriaceae ).~

g_f_Clostridiacede| \

) fiPeptos‘treptococcaceae

o\ Bufyricimonas
! o__Clostridiales

Y 4
ristensenellaceae g_fiRap_tgstreptococcaceae

/| ) f__Peptococcaceae g__f__ Erysipelotrichaceae

RF39 g__Blautia

f~"_Clostridiales
b 2

\o =

scillospira .

9= & B*Odonbacter . }
g__Lachnobactefium - g__Sutterella ) g—Collinsella

g__Dialister
g__Roseburia o__Lactobacillales "
g__Streptococcus >~
g__Phascolarctobacterium i S P

g__Fusobacterium

Veillonelta ;
g__Parabacteroides 9 g__Haemophilus

Figure 3. Interconnection of the type 2 diabetes (T2D) associated gut bacteria. A co-occurrence network
deduced from 68 bacteria enriched in T2D subjects and controls. Nodes depict OTUs with their taxonomic
assignment. The prefixed “k__” “p__ “c_ ”“o__”“f_ ) and “g_” indicate OTUs only annotated to the level of
kingdom, phylum, class, order, family or genus. Sizes of the nodes represent the relative abundance of the OTUs.
Connecting lines represent Spearman’s rank correlation coefficient p > 0.6 (blue line) or <—0.6 (red line). The

width of the connecting lines is proportional to the absolute value of the correlation coefficient.

(btaB). sPLS-DA analysis was then performed to identify key genes that were important for separating diabetic
and healthy individuals (Supplementary Fig. S1). These key genes were closely related to the four proteins deter-
mined by the previous Mann-Whitney U test, puo, sprC, HAAO and btaB. We then inferred gut metabolic
modules (GMMs) associated with diabetes based on the KO frequencies using the online tool GOmixer®’. A
comparison of healthy controls and T2D patients showed that 11 GMMs had significant differences according to
their adjusted p values (p < 0.05). All identified GMMs are shown in Supplementary Table S3, including tyrosine
degradation, pentose phosphate, lactose and galactose degradation and butyrate production via transferase. These
results suggested that the levels of tyrosine and butyrate production may be altered in individuals with T2D from
northern China.

A metagenomic classifier forT2D. To exploit the suitability of the gut microbiome for T2D classification,
we evaluated the predictive power of the gut microbiota taxonomic community composition using random forest
(RF) analysis. First, we removed OTUs that were rare and found in less than 20% of the samples because these
OTUs were less likely to help in model construction. Subsequently, the microbiome data were transformed via
an inverse hyperbolic sine and then to mean center by sample?'. The RF classification model was used based on
the standardized data after these transformations (for the selection of the most discriminatory OTUs between
the two groups). According to the importance score obtained from this RF analysis, the 50 most discrimina-
tory OTUs were selected as depicted in Fig. 4. Several OTUs from Bifidobacterium, Parabacteroides, Oscillospira,
and Bacteroides and one OTU from family Lachnospiraceae were associated with healthy samples. Other OTUs
belonging to members of Faecalibacterium, Dorea, Clostridiales, and Clostridiaceae and another OTU from family
Lachnospiraceae were associated with T2D samples.

After discriminatory OTUs were selected, a second RF classifier was trained based on the 50 most discrim-
inatory OTUs. The performance of this RF classification model based on the most discriminatory OTUs was
quantified by an area under the receiver operating characteristic (ROC) curve (AUC) of 0.90 for the validation
set, corresponding to a specificity of 0.89 and a sensitivity of 0.74 (Fig. 5). Overall, in this assessment analysis, we
demonstrated the discriminatory power of our classifiers based on cross-validation.

Discussion
Evidence that the gut microbiota is associated with the development of T2D is rapidly accumulating. Thus, the
characterization of the gut microbiota in diabetes and the identification of gut metagenomic markers that can
differentiate T2D cases and controls is important. In this study, we reported significant differences in the gut
microbial composition of individuals with T2D as compared to a healthy cohort. Moreover, we combined univar-
iate analysis methods and supervised classification methods to finally identify several bacterial genera that were
differentially abundant between the microbiota of diabetes and non-diabetic controls. Most previous studies have
only considered unsupervised classification methods. Additionally, to our knowledge, only few related studies
based on the gut microbiota of China gut individuals have been published thus far®®. These findings have all sup-
plemented worldwide gut microbiota research related to T2D.

We identified that gut microbe diversity was significantly decreased in T2D patients consistent with previous
studies in different populations of the world, including other populations in China®**?. The complex interactions
of intestinal microbiota with the gut mucosa could play a key role in the pathogenesis of T2D, which is similar to
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Figure 4. Heatmap showing the relative abundances of the 50 most predictive OTUs according to T2D
classification. The color of the spot corresponds to the log-transformed relative abundance of the OTU. The
genus names of the OTUs are labeled on the right.
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Figure 5. The area under the ROC curve (AUC) of gut-microbiota-based T2D classification. Random forest
classifiers were used to separate T2D patients and healthy controls based on the OTU-level gut microbiome
composition. The grey area between the two outside curves represents the 95% confidence interval (CI) shape.

other diseases such as obesity and inflammatory bowel disease?*~2°. The decrease in the gut microbe diversity of
T2D patients could induce a certain degree of gut bacterial dysbiosis and interfere with the interaction between
gut microbiota and hosts. For example, our results showed that at the genus-level, alterations in the gut micro-
biome in T2D samples had certain patterns. Butyrate-producing bacteria, such as those of the Faecalibacterium,
Bifidobacterium, and Akkermansia genera'*?”?%, decreased in diabetic persons. Conversely, some bacteria that can
cause chronic inflammation increased*.

After having analyzed the diversity and composition of the gut microbiota and the microbial features asso-
ciated with T2D, we addressed the functional features of gut microbiota. Taking the PICRUSt2 predictions and
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GMMs annotations together, we identified that the metabolism of several amino acids, such as tyrosine and ala-
nine, was associated with the development of T2D. Specifically, we demonstrated that in comparison to healthy
controls, the overexpression of microbial proteins such as sprC, HAAO, and gbcA has a significant correlation
with the insulin resistance of T2D individuals. The gut mucosal barrier is critical for increasing insulin sensi-
tivity and preventing the development of diabetes?. However, sprC is involved in cell motility, and may play an
important role in the process of bacteria penetrating the mucus lining of the colon**°. HAAO may participate in
tryptophan metabolism and the synthesis of quinolinic acid leading to inflammatory disorders and insulin resist-
ance®™, gbcA in bacteria is related to glycine betaine which is an intermediate in the catabolism of choline and
carnitine®®. As a result, it might interact with glycine metabolism in humans, leading to insulin resistance and an
increased risk of T2D*%. However, the relationship between the metabolism of gut microbiota and hosts with T2D
is complex, and further animal experimental and metabolomics studies will be required to clarify the mechanisms
of regulation of metabolites by the gut microbiota. In summary, these findings highlight the possibility that the
alteration of the gut microbial composition in T2D patients could destroy the gut microbiota balance, leading to
functional dysbiosis and an increase in the susceptibility of a host to diabetes. Furthermore, modulation of tyros-
ine metabolism and butyrate production may be a potential method for improved prevention of type 2 diabetes.

We also validated the discriminatory power of our selected gut microbial markers using supervised learning
techniques. When applying a random forest model, we found that our predictive model with a combination of 50
OTUs was able to distinguish T2D patients with a sensitivity of 0.74 and specificity of 0.90. Our results support
the current viewpoint that gut microbiota-based classifier, especially using 16S rRNA sequencing technology,
could be used to discriminate T2D individuals from healthy individuals. Furthermore, a random forest model
could also be utilized to identify the bacterial taxa associated with disease activity. Overall, it is worthwhile to
identify potential individuals that are at high risk for T2D, but more validation of the performance of gut micro-
biota based classifiers in T2D patients in other populations across the world is required.

To interpret our findings on T2D gut microbiota further based on individuals from northern China, we com-
pared them with 50 samples from America. We have downloaded raw data of 50 samples from the official HMP
project database containing 20 diabetic and 30 healthy samples as representatives of an American cohort. PCoA
and PERMANOVA analyses showed significant differences between the cohort in our study and the American
cohort, both in terms of the diabetes group and the healthy group (p < 0.05) (Supplementary Fig. S4). According
to the results of this comparative analysis, we therefore conclude that the cohort in this study was at least specific
to China, consistent with the previous findings of Karlsson et al.”.

In conclusion, our findings add extra insight to the association between the gut microbiota and diabetes.
Moreover, our analysis suggests an association of microbial tyrosine metabolism in the gut is related to diabetes.
We have also validated the discriminatory power of a gut microbiota-based T2D classier in populations from
northern China. However, longitudinal studies using detailed information about the interaction between the
proteins or metabolites of gut microbiota and host-associated diabetes progression are still needed.

Methods

Study population and sample collection. Forty healthy subjects and twenty newly diagnosed T2D
subjects were recruited for this study and signed informed consent. All healthy subjects were recruited to this
study after physical examination and health assessment. All T2D subjects were newly diagnosed and did not
previously receive any treatment or medication. T2D subjects were required to meet the following inclusion
criteria: (i) fasting blood glucose test (FBG) 7mmol/L or greater and/or 2-h fasting oral glucose tolerance test
(OGTT) 11.1 mmol/L or greater™; (ii) no previously received pharmacologic treatment; and (iii) body mass index
(BMI) > 18.0kg/m?. To eliminate the effects of other factors on the gut microbiota, we conducted additional ques-
tionnaire survey of all subjects and excluded individuals according to certain criteria: (i) age less than 20 or greater
than 60; (ii) antibiotic usage within two months; (iii) habitual probiotic or yogurt consumption; (iv) tobacco or
alcohol abuse. In addition, we also excluded individuals in T2D group based on the following criteria to eliminate
the effects of other diseases on gut microbiota: (i) gastrointestinal related diseases or infection within the previous
two months; (ii) clinically significant major systemic diseases, including cancer and autoimmune diseases; and
(iii) cardiovascular- or cerebrovascular-related diseases. BMIs were calculated using the formula: weight (kg)/
height (m?). Fecal samples were frozen immediately in a —80°C freezer after collection. After recruitment to the
study, one T2D subject and one non-diabetic subject were excluded due to technical problems with sequencing.

Fecal processing and pyrosequencing. Genomic DNA was extracted using a QIAamp DNA stool mini
kit (Qiagen, Hilden, Germany), and the amount of extracted DNA was checked using a Qubit 2.0 Fluorometer
(Life Technologies, USA). The extracted genomic DNA was used to construct an amplicon library by amplifying
the V4V5 region of the 16S rRNA gene. The PCR reaction was performed on a thermocycler and the PCR ampli-
cons were sequenced using an Illumina Miseq according to the manufacturer’s protocol. A negative control sam-
ple (PCR-grade Water) was included in DNA extraction and handled identically to the faecal samples to control
for DNA contamination.

16S rRNA gene sequence analysis. The raw sequencing reads from the Illumina Miseq Platform were first
treated using Trimmomatic v0.36 to reduce error rates®. Sequence adapters and low-quality bases from paired
reads were trimmed or filtered. Paired-end reads were then merged by fastq-join if there were at least 10 bases of
overlap?. Merged sequences were clustered using the uclust algorithm into operational taxonomic units (OTUs)
with a threshold similarity of 97% against the Greengenes reference and taxonomy version 13_8 was used***.
Rarefaction analysis was performed based on the representative sequences for shared OTUs. In addition,
community richness diversity was compared between the two groups based on the phylogenetic diversity index
and Chaol values were calculated by QIIME 1.9'°. An OTU-to-OTU co-occurrence network was built using
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Cytoscape v3.6.0 based on Spearman’s rank correlation coefficient***!. In the co-occurrence network analysis,
only OTUs present in at least 20% samples were used, and only connections with a rho larger than 0.6 or smaller
than —0.6 were used for network building (p-value < 0.01). In order to compare the community structure of the
two sample groups, the significance values were computed based on permutational multivariate analysis of var-
iance (PERMANOVA) with Bray-Curtis dissimilarity**. Each representative sequence was assigned to bacterial
taxa by a Ribosomal Database Project (RDP) classifier, and the relative abundances of the bacterial taxa at the
phylum, genus, and species level were calculated*’. For functional metagenome analysis, we reconstructed the
metagenome using PICRUSt2 based on the OTU table*. All predicted functional genes were categorized into
Kyoto Encyclopedia of Genes and Genome Orthology (KO). Supervised sparse partial least squares discriminant
analysis (sSPLS-DA) was also used to identify genes that may discriminate the two groups through the mixOmics
R package*. KOs were assigned to gut metabolic modules (GMMs) and evaluated using GOmixer®.

Statistical analysis. We performed a differential abundance analysis at the genus and OTU level and the
White’s non-parametric t-test was performed to determine whether the difference was statistically significant?.
In order to control the false discovery rate, the adjusted p-values were computed by applying the popular FDR
algorithm*”*%. The random forest model has been shown to be a suitable model for exploiting microbiome data®.
In the current study, only OTUs present in at least 80% of samples were used for further analyses. Random forest
models were trained using the filtered profiles of OTUs and genus to identify diabetes patients in test sets of dia-
betic and non-diabetic subjects using the random forest package in R*. The performance of this predictive model
was then evaluated with a fivefold cross-validation approach and measured by the receiver operating characteris-
tic (ROC) curve and the area under the ROC curve (AUC). Prior to the random forest analysis, the microbiome
data were transformed via an inverse hyperbolic sine transformation and then mean centered per subjects®'. The
variable importance by mean decrease in accuracy was calculated to find the most discriminatory OTUs between
the diabetic and non-diabetic individuals. The smaller random forest model was trained containing only the 50
most discriminatory OTUs to classify diabetic patients from subjects in R with default parameters and 500 trees.

Ethics statement. All individuals included in the present study gave written informed consent before par-
ticipation in the study. The study was approved by the Ethical Committees of the Tsinghua University and per-
formed according to the declaration of Helsinki.

Data availability
The datasets generated during the current study have been deposited in the EBI Sequence Read Archive under
accession number ERP107659.
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