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Infrared Spectroscopic Imaging 
Visualizes a Prognostic 
Extracellular Matrix-Related 
Signature in Breast Cancer
Saumya Tiwari1,7, Tiziana Triulzi2,7, Sarah Holton3, Viola Regondi2, Biagio Paolini4, 
Elda Tagliabue2 & Rohit Bhargava5,6*

Molecular analysis techniques such as gene expression analysis and proteomics have contributed 
greatly to our understanding of cancer heterogeneity. In prior studies, gene expression analysis was 
shown to stratify patient outcome on the basis of tumor-microenvironment associated genes. A specific 
gene expression profile, referred to as ECM3 (Extracellular Matrix Cluster 3), indicated poorer survival 
in patients with grade III tumors. In this work, we aimed to visualize the downstream effects of this 
gene expression profile onto the tissue, thus providing a spatial context to altered gene expression 
profiles. Using infrared spectroscopic imaging, we identified spectral patterns specific to the ECM3 gene 
expression profile, achieving a high spectral classification performance of 0.87 as measured by the area 
under the curve of the receiver operating characteristic curve. On a patient level, we correctly identified 
20 out of 22 ECM3 group patients and 19 out of 20 non-ECM3 group patients by using this spectroscopic 
imaging-based classifier. By comparing pixels that were identified as ECM3 or non-ECM3 with H&E 
and IHC images, we were also able to observe an association between tissue morphology and the gene 
expression clusters, showing the ability of our method to capture broad outcome associated features 
from infrared images.

Breast cancer is the most prevalent cancer in women1 and is estimated to cause over 40,000 deaths annually in 
the United States. Although cancer has been thought as a consequence of genetic mutations in an aberrant tissue 
mass, tumor progression is increasingly viewed as functionally interconnected with the surrounding microenvi-
ronment2. Indeed, crosstalk between cancer cells and the tumor microenvironment components [immune cells, 
stromal cells, and the extracellular matrix (ECM)] plays a major role in regulating several biological processes3. 
Differences in ECM-associated gene expression can describe the biological and clinical heterogeneity of breast 
cancer, especially in terms of prognosis and response to therapy2. Recent works have identified a subgroup of 
breast cancers characterized by overexpression of a robust cluster of genes mainly encoding structural ECM pro-
teins, originally referred to as the ECM3 group4,5. These features indicate an epithelial to mesenchymal transition 
(EMT) but with accelerated metastatic potential only in the undifferentiated (grade III) phenotype4,5. Notably, 
ECM3 classification provides additional information to assess tumor progression5. It also identifies tumors in 
which the interplay between myeloid-derived suppressor cells (MDSCs) and the ECM drives the induction of 
EMT in tumor cells, and suggests a strategy for inhibition of MDSC by aminobisphosphonates that could revert 
EMT and lead to less aggressive tumor phenotype6.

Even though such molecular classification is of great importance in stratifying patients, it requires multi-step 
tissue processing and still requires the validation of an algorithm for classification at the single tumor level to be 
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used instead of a clustering analysis on gene expression data of a cohort of samples. Additional information that 
could confirm this phenotype, without requiring multiple complicated steps or affecting the molecular integrity 
of the tissue, would be impactful. We thus sought a technology that could provide a molecular characterization of 
the stroma and provide this information in the context of the tumor to inform decision-making. Typical imaging 
techniques that could provide this context require labeling or other workflows that may not be compatible with 
established methods of genetic analyses of ECM3.

In this work, we evaluate an emerging technique for combined spatial and molecular analysis, infrared spec-
troscopic imaging, to map the downstream effects of this stromal gene expression onto the tissue. We then use this 
spectral information to determine outcome-associated patient groups. Fourier transform infrared (FT-IR) spec-
troscopic imaging is effective in providing spatially specific molecular analysis of samples for pathology, without 
the need for stains or dyes7–11. It can be used to probe biomolecular changes in the tumor microenvironment8–10,12 
for comprehensive spatio-molecular assessment of the tissue which can be useful for determining prognosis13. 
We hypothesized that the differences in gene expression profiles between ECM3 and non-ECM3 tumors would 
also result in broad molecular composition changes in the tissue, which can be read with FT-IR spectroscopic 
imaging. Further, by associating gene expression profile with tissue molecular profiles, we can begin observing 
where on the tissue the downstream effects are the most prominent, thus spatially mapping the effect of altered 
gene expression.

Results
Classification of ECM3 and non-ECM3 tumors by FT-IR.  Previous work showed high differences 
between ECM3 and non-ECM3 tumors at the transcriptional level, both according to ECM genes and to the 
whole transcriptional profile and based on the poor prognosis of patients with ECM3 grade III tumors5. In this 
work, we performed FT-IR spectroscopic imaging of 42 breast carcinomas, of which 22 were ECM3 and 20 were 
non-ECM3 as evaluated by gene expression profile analysis. Our goal was to find IR patterns that discriminate 
ECM3 from non-ECM3 tumors (Fig. 1), as molecular characteristics at the transcriptional level can be related to 
IR spectra14,15. Clinico-pathological characteristics of tumors analyzed are shown in Table 1. IR spectral analysis 
of tissues offers an exceptional opportunity to overcome tissue heterogeneity by generating a chemical map of the 
tissue. Instead of analyzing every pixel in the tissue without the context of tumor architecture, we first focused 
on determining the histologic identity of each pixel. This pixel-level identification is accomplished by applying 
machine learning to the acquired spectral data, as well described by numerous works for breast tissue16–27. Here, 
we first segmented the tissue image into histological components by applying a previously described histological 
classifier that labeled each pixel in the tissue section as one of the tissue classes i.e. epithelium, fibroblast, myofi-
broblast, collagen, blood, necrosis28. We found that when we used averaged IR spectra of each class to discrimi-
nate between ECM3 and non-ECM3 tumors, the highest discrimination performance was achieved with pixels 
classified in the collagen class (Supplementary Table 1). Studies have shown that the ECM in both patient29 and 
cultured samples30 is highly amenable to spectral analysis. Hence, we first examined average spectra, as shown in 
Fig. 2(a,b). Spectral differences between ECM3 and non-ECM3 in the collagen class are apparent in the region 
between 872 cm−1 and 1320 cm−1.We used these differences to develop the ECM3 classifier. We focused on this 
region also to limit the number of variables fed into the model and to prevent overfitting, especially given the 
small sample size. No significant differences in terms of signal to noise ratio (SNR) were observed among samples, 
even when collected over several months (Supplementary Fig. 1).

Development of IR imaging-based classifier to identify ECM3 tumors.  The first 20 principal com-
ponents were selected from the principal component analysis to develop the classifier. The principal components 
were calculated using only spectral band intensities from the collagen class within the range 872 cm−1–1320 cm−1. 
Utilizing these principal components, we trained a linear-discriminant classifier to categorize the average collagen 
spectrum from each tumor as either ECM3 or non-ECM3 (Fig. 3). The classifier performed well in discriminat-
ing ECM3 vs. non-ECM3 spectra, with an average area under the curve of the receiver operating characteristic 
(ROC) curve of 0.87 (95% CI: 0.76–0.98) for out-of-fold observations (Fig. 3b), using the optimal hyperparameter 
values (0.0001674 at 0.003 regularization parameter value). However, this result was only on the average spectra, 
demonstrating that the method provides accurate results, but also benefitting from the signal averaging process 
and likely susceptible to differences in sample sizes between samples. More importantly, it does not allow an 

Figure 1.  Summary of methods. In comparing IR imaging to gene expression profiling, we took a multi-
step approach. Imaging was followed by an automated analysis of spectral data for each pixel using machine 
learning. From the assignment of cellular and acellular identity of all pixels in the image, collagen dominant 
pixels were analyzed. The spectral properties of these pixels were related to a label (ECM3, non-ECM3) for 
further analysis.
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evaluation of the spatial extent of the tumor. Hence, we sought next to evaluate the results of classification at the 
single-pixel level in each of the samples.

Every collagen pixel was classified as either ECM3 or non-ECM3 according to the spectral classifier (Fig. 3a) 
to evaluate tissue IR images. In Fig. 3a, several other histological components in the breast tissue are also identi-
fied in various shades of grey, which show correspondence to the serial sections’ H&E images. From the results 
of ECM-based classification, we observed that the majority of collagen pixels were classified as non-ECM3 in 
non-ECM3 tumors, while ECM3 tumors contained both non-ECM3 and a significant portion of ECM3 collagen 
pixels. This spatial heterogeneity arises from both a limitation of the predictive capability of numerical algorithms 
and may also arise from biological and intra-patient heterogeneity. While these images are useful in visualizing 
the extent of ECM3, a final decision regarding a patient testing positive requires abstraction of information to a 
binary decision at the patient level. To transfer pixels’ spectral level classification to the patient level, we defined 
the IR score as the ratio of collagen pixels identified as ECM3 to the total number of collagen pixels within 
the sample. This score was significantly higher in tumors identified as ECM3 as compared non-ECM3 tumors 
(Fig. 4a). To create a binary diagnostic test, we examined the distribution of the IR score for the patient popula-
tion (Fig. 4b). At a separation threshold of about 0.35, the dichotomized IR score was able to accurately identify 
tumors belonging to ECM3 and non-ECM3 groups (Fig. 4b). At this cutoff, 20 out of 22 ECM3 tumors and 19 

Characteristics ECM3 (N = 22) Non-ECM3 (N = 20)

Median age

(years, range) 49 (36–78) 62 (47–82)

Tumor size (cm)

<2 cm 14 (67%) 11 (55%)

≥2 cm 7 (33%) 9 (45%)

Nodal Status

N0 4 (20%) 7 (35%)

N+ 16 (80%) 13 (65%)

ER status

Negative 2 (53%) 3 (57%)

Positive 20 (47%) 17 (43%)

PGR status

Negative 2 (9%) 8 (40%)

Positive 20 (91%) 12 (60%)

HER2 status

Negative 16 (73%) 17 (85%)

Positive 6 (27%) 3 (15%)

Grade

I-II 12 (55%) 9 (45%)

III 10 (45%) 11 (55%)

Chemotherapy treatment

No 2 (13%) 4 (20%)

Yes 13 (87%) 12 (80%)

Table 1.  Patient clinico-pathological characteristics according to ECM classification.

Figure 2.  Spectral characteristics of collagen data in ECM3 and non-ECM3 tumors. (a) Mean absorbance 
across full spectral range. The average spectrum of the non-ECM3 group has been offset by adding 0.01 to the 
data for clarity. (b) Mean absorbance across spectral range between 872 cm−1 and 1320 cm−1 that was used for 
training and 5-fold cross validation. Non-ECM3 spectrum has been offset by adding 0.01 to the data for clarity.
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out of 20 non-ECM3 tumors were classified correctly (91% sensitivity, 95% specificity). Notably, a significant 
correlation between IR Score and the mean of log2 expression value of the 58 ECM3 genes, as obtained by gene 
expression data, was observed in the 42 tumor samples (Fig. 4c).

When we tested the linear fit of the continuous IR score with gene expression values, the model was able to 
explain about 45% variance in the gene expression results (R squared = 0.44). The slope of the linear fit model 
(0.13 ± 0.02) was significantly different from zero at p-value 8.9 e-7, indicating linear relationship between gene 
expression data and the IR imaging-based analysis (Table 2). In accordance with the high performance of FT-IR 
classifier, Kaplan Meier survival curves for the ECM groups determined by IR score showed a significant different 
survival in interaction with the tumor grade, as previously described5, confirming that patients with ECM3 grade 
III tumors had the worst prognosis (Fig. 5).

Figure 3.  Results of 5-fold cross validated linear discriminant model: (a) Output of classifier as projected on 
complete surgical resection. Only collagen pixels were classified as either ECM3 or non-ECM3. Bottom row 
shows zoom-in sections from samples marked by red boxes. (b) Receiver operating characteristic curve for 
classifier output. ECM3 positive label was selected as positive class label. Posterior probability of classification 
was used for calculating false positive rate and true positive rate. Optimal operating point (Opt) was identified 
using the procedure described in methods.

Figure 4.  FT-IR based ECM3 discrimination model: (a) ECM3 positive pixel fraction (IR Score) in ECM3 and 
non-ECM3 patients as defined by gene expression analysis; *p-value less than 1.9 × 10−10. (b) IR based ECM3 
classification can be performed by assigning ECM3 status to all tumors with IR score above Opt. (c) Linear 
model fit of expression of core genes of the ECM3 cluster with the IR score.

Value Standard Error t-Value Prob >|t|

IR score Intercept −1.0658 0.24554 −4.34084 9.40E-05

IR score Slope 0.13049 0.02248 5.80454 8.90E-07

Table 2.  Linear model fit of expression of core genes of the ECM3 cluster with the IR score.
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Identification of histological differences among ECM3 and non-ECM3 collagen pixels.  While 
a correlative analysis of spectra with the ECM3 phenotype was observed, we were also interested in the origins 
of this correlation. Specifically, we investigated whether the specific chemical modification detected by IR spec-
tral analysis in these areas could represent a difference in collagen fiber organization. Interestingly, we observed 
correspondence of the ECM3 and non-ECM3 regions with the density of collagen, which was also confirmed by 
Masson’s trichrome staining. ECM3 areas, which are mainly localized at the tumor borders, are characterized by 
dense wavy collagen bundles, whereas non-ECM3 pixels appear to correspond to areas with low collagen density 
and with sharp collagen fibers (Fig. 6). A relationship between spectral properties and physical organization is not 
surprising; however, we note that these types of powerful links between the traditional measures of pathology and 
emerging measures of molecular content are not common. The validation of staining patterns by spectral analysis 
shows that the identification of ECM3 can be made in terms of histologic modifications, yet without the use of 
stains, dyes or human interpretation.

In this work, we had a greater representation of T1 tumors with sizes less than 2 cm. Since tumors are quite 
heterogeneous, both ECM3 and non-ECM3 classified tumors showed ECM3-associated collagen, albeit in differ-
ent proportions. We investigated whether the IR score reported here could be influenced by tumor size.

Although T1 tumors typically have higher median IR scores than T2 tumors (size greater than 2 cm), IR 
scores for both T1 and T2 appear to be within a similar range (Supplementary Fig. 2) indicating that our method 
identifies ECM3 tumors also in bigger, high heterogeneous tumors. This consistency is likely because our score 
considers only collagen areas and is normalized to total collagen content in the tissue, reducing variability due to 
heterogeneity. We are aware that we are not powered enough with our sample sizes to confirm this observation 
and further studies are warranted to validate it in bigger tumors and to determine from a biological point of view 
if ECM3 pixels are biologically relevant in inducing tumor aggressiveness Since ECM3 is prognostic in interaction 
with the grade, we also investigated IR scores according to tumor grade. IR scores appear to fall within similar 
ranges when compared between tumor grades (Supplementary Fig. 3(a)). Accordingly, using both grade and 
ECM categorization, we see significant differences between groups split by ECM classification, but not by tumor 
grade classification (Supplementary Fig. 3(b)). These results support the argument that IR scores based only on 
areas of collagen do not retain tumor grade effects.

Discussion
In this work, we observed that the downstream effects of a specific gene expression signature can be read in from 
the tissue section using IR spectroscopic imaging. The ECM3 classification by gene expression used in this work 
is based on 738 genes that coded for the extracellular matrix proteins. ECM3 is characterized by overexpression 
of genes encoding mainly structural ECM protein (43 out of 58 genes characterizing ECM3 tumors), including 
several collagen chains (16 genes). Accordingly, a specific IR spectral pattern in the collagen area associated with 
the ECM3 gene expression profile. To our knowledge, this is the first indication that IR can visualize the product 
of altered gene expression in tissues. Considering that ECM3 and non-ECM3 tumors are classified based on the 
expression of ECM genes, an all-optical method to detect the same could be very useful. Given that there are 
differences in collagen spectra in the protein-rich region of the IR spectrum, it seems reasonable to expect that 
protein backbone signatures in IR could provide this discrimination. Indeed, most of the ECM3 genes (43/58) 
encode structural ECM proteins involved in the maintenance of connective tissue (collagens, laminins, and 
matrix-associated proteins), other than proteolytic enzymes. IR imaging is one of the few analytical methods able 
to provide information about collagen biodistribution and assembly31, without perturbing the tissue in any way 
and without the need for staining. We should also note that the stain-free ability of IR imaging to rapidly identify 
non-cellular and collagen-rich regions is a critical enabler of this recognition.

In this work, we identified a spectral predictor of ECM3 tumors in the collagen areas and the IR model 
explained 44% of the variability observed by gene expression. The gene expression analysis was carried out with 
frozen tissue samples, notably, while the IR imaging analysis was carried out with paraffin-embedded tissue sec-
tions. In addition, the areas used for both the techniques were adjacent but different, with the tissue needing to 
be crushed for gene expression analysis. Thus, we do expect some variability to arise from both processing as 
well as differences between the tissue sections. However, the concordance between the two is very exciting. Their 
observed relationship supports the ability of this technique in capturing the physiologic consequences of altered 

Figure 5.  Association between ECM classification by IR score and grade with disease free survival. ECM3 
grade III (ECM3 GIII, solid black line), non-ECM3 grade III (non-ECM3 GIII, dotted black line), ECM3 grade 
I-II (ECM3 GI-II, solid grey line) and non-ECM3 grade I-II (non-ECM3 GI-II, dotted grey line). p-value 
calculated by Log-rank test.
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gene expression on the tissue, despite the substantial differences in the techniques that were used to probe the 
sample, as well as differences in sample preparation protocol.

We also utilized the spatio-biomolecular information obtained with IR spectroscopic imaging to visualize 
the biological effect derived from the altered gene expression in the tissue. By comparing the classified images to 
H&E and Masson’s trichrome images, we were able to see a correspondence between the changes in the collagen 
in the tumor microenvironment and the ECM classification by IR spectra. While it has recently been made possi-
ble to spatially map specific gene expression by amplifying the gene in small fragments of tissue32, in addition to 
conventional methods of measuring protein expression with IHC, there are no techniques to visualize the effects 
of a group of genes interacting together. From mapping the heterogeneity derived from the overexpression of 
the ECM-related genes, we observed that the stroma in which the ECM3 tumor is developing is different from 
non-ECM3 tumors at biochemical or structural organization levels.

Further analyses are needed to dissect the specific molecules or chemical/biological modification that explain 
the observed IR spectrum. However, it is conceivable that differences between ECM3 and non-ECM3 tumors 
are derived from the presence of different collagen types and/or in their organization in the microenvironment. 
Indeed, IR analysis has been previously described by several groups to differentiate the presence of different colla-
gen types by their secondary structure parameters31. While most of IR absorptions are very similar between colla-
gen types, a combination of signals from 4 spectral intervals (1700–1600; 1480–1350; 1300–1180; 1100–1005) was 
demonstrated to generate a robust classifier of collagen type31. These data suggest that a different ratio of collagen 
types in the area of collagen fibrils could be the basis of the ECM3 classifier. Collagen VI amount in the TME 
could likely be relevant for ECM3 classification by FT-IR. This indication is reasonable considering that type VI 
collagen presents the most evident spectral difference among collagen types31 and that ECM3 signature is charac-
terized by overexpression of genes transcribing the three chain of collagen VI (COL6A1, COL6A2 and COL6A3)5 
In addition, ECM3 tumors express higher level of collagen VI by immunohistochemistry than non-ECM3 tum-
ors5. It is also possible that ECM3 FT-IR signals identify areas with differences in collagen organization. IR spectra 

Figure 6.  Collagen characteristics of ECM3 and non-ECM3 areas. Representative images of Masson’s trichrome 
staining in tumors classified as ECM3 (top panels) and non-ECM3 (bottom panels). In the small boxes, images 
of the collagen classifier at pixel level are shown. Red pixels: ECM3; blue pixels: non-ECM3.

https://doi.org/10.1038/s41598-020-62403-2


7Scientific Reports |         (2020) 10:5442  | https://doi.org/10.1038/s41598-020-62403-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

for collagens in the region we analyzed (872–1320) are mainly due to hydroxyproline, proline and phenylalanine 
residues other than structural α helix and amide III residues33. These residues are relevant for collagen elasticity 
and stiffness34, indicating possible roles in collagen organization. This association is also likely considering the 
differences in the collagen organization we observed in ECM3 pixels compared to non-ECM3. The different col-
lagen organization is likely to derive from overexpression of different fibrillar collagen chains (like collagen I, III 
and V) together with collagen VI, a highly disulfide cross-linked microfibrillar collagen described to modify the 
organization of the fibrillar collagens intertwining with them35.

Despite the clear distinction between the ECM3 and non-ECM3 groups, the primary cause of the poor prog-
nosis of patients with ECM3 grade III tumors remains unexplained. In this work, we did not find differences in 
collagen spectra based on the tumor grade. It is possible that collagen organization is not different in ECM3 grade 
III compared to ECM3 grade I-II tumors but that undifferentiated (grade III) tumor cells sense the TME, as the 
collagen VI, reported to favor tumor growth and progression36 differently. It is also possible that collagen organ-
ization derived from the interaction between undifferentiated tumor cells (grade III) and ECM3 TME is behind 
tumor progression, as observed in general in breast cancer37, and that this peculiar organization is not readable 
with IR imaging in the collagen areas. Further studies are needed to dissect the molecular features of the ECM3 
TME that are responsible for patients’ poor prognosis.

In conclusion, we were able to identify an optical spectral ECM3 classifier as a relatively easy method to iden-
tify ECM3 tumors. As a proof of concept, the IR-spectroscopic imaging method utilized here is based on con-
ventional Fourier Transform infrared spectroscopic imaging instruments, requiring 10–24 hours of acquisition 
for every surgical resection between 1–5 cm2. However, the speed of acquisition can be improved by manifolds 
with the recent advancements in high-definition38 and high-speed29,39–41 IR spectroscopic imaging coupled with 
machine learning to perform image analysis and prediction. In addition, classification rendered by IR spectro-
scopic imaging is less processing-intensive, providing prediction in a much simpler workflow than the conven-
tional gene expression analysis protocols. Although confirmatory studies on independent case series are needed 
to evaluate the reproducibility of this classifier, the optimal cut-off and its prognostic performance in interaction 
with tumor grade, this methodology may have direct implications for future clinical assessment on breast cancer 
patients.

Methods
Patient cohort.  The 42 tumors analyzed in this study were selected among a cohort of 97 consecutive pri-
mary breast cancer patients treated at Fondazione IRCCS Istituto Nazionale dei Tumori of Milan (INT, Italy) 
and characterized through whole gene expression profile analysis on HumanHT-12-v3 expression Bead Chip 
by Illumina42. Data of ECM classification, analyzed by using the Large Average Submatricies (LAS) biclustering 
algorithm described in Triulzi et al.5 were retrieved from the study. Expression data are available in the Gene 
Expression Omnibus data repository (GEO) with accession number GSE59595.

All procedures were per the Helsinki Declaration. Biospecimens used for research consisted of leftover 
material of samples collected during standard surgical and medical approaches at INT. Samples were donated 
by patients to the Fondazione IRCCS Istituto Nazionale dei Tumori BioBank for research purposes, and ali-
quots were allocated to this study after approval by the Institutional Review Board and a specific request to the 
Independent Ethical Committee of the institutes. The use of tissue for this study was approved by the University 
of Illinois Institutional Review Board via project 06684.

Histochemistry.  Formalin-fixed paraffin-embedded (FFPE) slides sequential to that used for FT-IR analysis 
were stained with H&E and with Masson’s Trichrome Stain Kit (Agilent) for direct visualization of collagen fibers. 
Stained slides were digitized by a slide scanner (ImageScope XT, Aperio).

FT-IR image processing.  5 µm thick FFPE breast cancer samples were sectioned onto IR-transparent 
Barium Fluoride salt plates. Sections were deparaffinated by washing in xylene for 24 hours, changing the solvent 
every three hours. FT-IR spectroscopic images of the tissue sections were collected using a Perkin Elmer Spotlight 
400 system, equipped with 16 elements linear focal plane array HgCdTe detector. For each pixel, four scans were 
averaged at 4 cm−1 spectral resolution and 6.25 µm pixel size.

Image processing was performed in ENVI-IDL 4.8 with in-built and in-house written algorithms10,43. Images 
were stitched from the image tiles, baseline corrected, and normalized. The infrared images were converted to 
spectral metrics by calculating peak heights, areas and locations and taking ratios of these variables. Using these 
metrics, a previously developed breast supervised classifier was applied to the IR data to identify areas classified 
as collagen28.

FT-IR data analysis.  Post identification of collagen areas, all further data analysis was performed in Matlab 
R2016a. Baseline corrected and normalized infrared spectrum was extracted from areas identified as colla-
gen in the histology classifier. To ensure that the data collected over several months did not have significant 
deviations in terms of signal to noise ratio (SNR), SNR was calculated as the ratio of peak intensities of 1656 
cm−1 and 1826 cm−1 bands and compared by student’s t-test. While it appears that there is no significant differ-
ence between the SNR of the groups, due to low power we added a spectral smoothening step by application of 
Savitzky-Golay 9-point filter to further ensure that SNR did not affect our analysis. Spectral data points between 
872 cm−1 and 1320 cm−1 were used for training. Data were cleaned by removing out of range observations with 
absorbance values greater than 2 or less than −1. For the training set, the mean collagen spectra per patient were 
calculated. Principal components analysis was performed to reduce the data dimensionality, and the first 20 
components were chosen for further study. To perform principal components analysis, we used the raw inten-
sity values at each spectral band collected between 872 cm−1 and 1320 cm−1. Linear discriminant classification 

https://doi.org/10.1038/s41598-020-62403-2


8Scientific Reports |         (2020) 10:5442  | https://doi.org/10.1038/s41598-020-62403-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

with 5-fold cross-validation was used to develop the ECM3 classifier to classify ECM3 and non-ECM3 spec-
tra. Hyperparameters that minimized the 5-fold cross-validation loss were automatically determined by using 
Matlab’s automatic hyperparameter optimization protocols. From this, the optimal linear coefficient threshold 
Delta was determined to be 0.0001674 at 0.003 regularization parameter value. Delta threshold was used to deter-
mine the eligibility of variables for inclusion in the model, while the regularization parameter was used to prevent 
overfitting. Post ECM3 classification, the classifier was projected onto the full IR images and the total number of 
pixels classified as ECM3 and non-ECM3 were calculated. The percentage of ECM3 pixels out of the total number 
of collagen pixels was used to stratify patient groups. These values were fit in a logistic regression model to iden-
tify the optimal cutoff point for patient stratification.

Statistical analysis.  Fisher’s exact test tested association among categorical variables. Two-sided p < 0.05 
was considered significant. Survival functions were assessed using the Kaplan-Meier estimator, while the log-rank 
test was used to compare survival distributions.

Data availability
Gene expression data used in this study are available in the Gene Expression Omnibus data repository (GEO) 
with accession number GSE59595. The IR datasets generated during the current study are available from the 
corresponding author upon request.
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