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Abstract

Magnesium chelatase (MgCh) is a heterotrimeric enzyme complex, composed

of two AAA+ family subunits that can assembly into a double ring structure

and a large catalytic subunit. The small AAA+ subunit has ATPase activity and

can self-oligomerize into a ring structure, while the other AAA+ subunit lacks

independent ATPase activity. Previous structural studies of the ATPase motor

subunit of MgCh from a bacteriochlorophyll-synthesizing bacterium have iden-

tified a unique ATPase clade, but the model of oligomeric assembly is unclear.

Here we present the hexameric structure of the MgCh ATPase motor subunit

from the chlorophyll-synthesizing cyanobacterium Synechocystis sp. PCC 6803.

This structure reveals details of how the hexameric ring is assembled, and thus

provides a basis for further studying the heterotrimeric complex.
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1 | INTRODUCTION

Magnesium chelatase (MgCh) catalyzes the insertion of
Mg into protoporphyrin IX, the first bacteriochlorophyll/
chlorophyll specific step of tetrapyrrole biosynthesis in photo-
synthetic organisms.1–3 MgCh consists of three subunits,
which are BchI, BchD, and BchH in bacteriochlorophyll-
synthesizing organisms, and ChlI, ChlD, and ChlH in
chlorophyll-synthesizing organisms.4–7 The BchI/ChlI, BchD/
ChlD, and BchH/ChlH subunits have respective molecular
weights of approximate 40, 70, and 140 kDa. The BchI/ChlI
and BchD/ChlD subunits belong to the AAA+ (ATPases asso-
ciated with diverse cellular activities) protein family, and can
assembly into a double ring structure that has been viewed by
electronmicroscopy (EM).8–10

The double ring BchI–BchD/ChlI–ChlD complex
hydrolyzes ATP, which powers the chelation reaction car-
ried out by the largest BchH/ChlH subunit. Mg chelation
is a thermodynamically unfavorable reaction, and one Mg
chelation reaction requires approximate 15 molecules of

ATP.11 The smallest subunit BchI/ChlI has ATPase activ-
ity and can self-associate into a ring structure.12–15 The
crystal structure of BchI from the photosynthetic purple
bacterium Rhodobacter capsulatus has been determined
in a monomeric state, and has a unique domain arrange-
ment that defines an AAA+ clade.12,16,17 Unlike the typi-
cal AAA+ proteins, where the C-terminal α-helical
domain (also called the lid domain) lies at the top of the
AAA+ core domain, in BchI, a long helical region (α5)
shifts the position of the lid domain from the top to below
the core domain. EM maps of R. capsulatus BchI have rev-
ealed a hexameric ring structure.8,10,15 However, due to
limited resolution, it remains largely unknown how the
hexamer is assembled. The BchD/ChlD subunit is com-
posed of a C-terminal integrin I domain preceded by a
proline-rich region and an N-terminal domain similar to
BchI/ChlI, but possesses no ATPase activity.18–28

Recently, it has been demonstrated that ChlD links the
ATPase activity with the ChlH active site primarily
through the integrin I domain.29 Assembly of the BchD/
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ChlD hexamer is generally assumed to be mediated by the
N-terminal BchI/ChlI-homologous domain, while contri-
bution from the integrin I domain is unclear. Thus, struc-
tural study of the BchI/ChlI hexamer may also help
understand the assembly of the BchD/ChlD ring.

The ChlI subunit from the cyanobacterium Syn-
echocystis sp. PCC 6803 has been extensively
characterized.11,14,18,20,22,26–29 The ChlI protomers can self-
assemble into a ring structure without ATP. To uncover
the interactions stabilizing the assembly, we crystallized
and determined its hexameric structure.

2 | RESULTS AND DISCUSSION

2.1 | Overall structure

We expressed and purified the recombinant Synechocystis
ChlI protein, which by itself assembled into oligomeric
forms. The predominant form of purified ChlI had a size
corresponding to that of a hexamer or heptamer as suggested
by size-exclusion chromatography (Figure S1). The predomi-
nant form was crystallized by the vapor diffusion method.
The resulting crystals had a hexagonal shape and diffracted
to 2.9 Å resolution. The structure was solved by molecular
replacement using the R. capsulatus BchI structure (PDB
entry: 1G8P) as template,12 and the statistics of data collec-
tion and structure refinement are listed in Table 1.

The ChlI structure displays a crystallographic pseudo-
hexagonal symmetry (Figure 1a). Its shape is different from
the C3-symmetric BchI model (Figure 1b) reconstructed
from the low-resolution cryo-EM image.9 It also differs from
crystal packing of BchI in the hexagonal P65 space group
(Figure 1c), which has a screw axis along the c-axis. The
diameters of the ChlI ring and its center pore are ~120 and
~37 Å, respectively, which is compatible with the size of the
BchI hexamer imaged by EM.9,12,15 Several fragments in the
AAA+ core domain of ChlI are not observed in the electron
density map. These correspond to the α2 helix and the three
β-hairpin inserts, α1–β2–β-hairpin, H2-insert, and PS-I
insert.16,17 The amino-acid sequence of Synechocystis ChlI
has 51% identity with that of BchI. Such a high identity is
consistent with the r.m.s.d. value of 1.06 Å for the 213 aligned
Cα atoms between ChlI (chain A) and BchI, indicating that
the protomer structures are highly similar (Figure S2).

For each ChlI protomer, the AAA+ core domain
(except the inserts) and the lid domain are well struc-
tured. Five α-helices (α0–α4) and a five-stranded parallel
β-sheet (β1–β5) constitute the N-terminal core domain.
The C-terminal lid domain is composed of α6–α9, and
the L-shaped α5 (residues 223–267) acts as a bridge con-
necting the two domains (Figure 1d). An insertion
sequence called the PS-II insert lies within α5 and bends

this helix. This insert defines AAA+ clade 7 that has an
unusual arrangement in which the lid domain is
repositioned from the top to below the core domain.17

2.2 | The ATP-binding pocket and
interprotomer interface

Whereas the domain arrangement of AAA+ clade 7 is
unusual, the ATP-binding pocket at the interprotomer

TABLE 1 Data collection and structure refinement statistics

Synechocystis ChlI

Diffraction data

Diffraction source BL17U1, SSRF

Detector EigerX16M

Wavelength (Å) 0.979

Unit-cell parameters

a, b, c (Å) 211.0, 121.1, 119.4

α, β, γ (�) 90.0, 99.0, 90.0

Space group C121

Resolution (Å) 50.00–2.90(3.00–2.90)a

Total no. of reflections 304,832 (30254)

No. of unique reflections 64,295 (6437)

Average redundancy 4.7 (4.7)

Mean I/σI 17.8 (1.8)

Completeness (%) 98.5 (99.7)

Rmerge 0.076 (0.731)

Rmeas 0.085 (0.815)

CC1/2 0.999 (0.853)

Refinement

Resolution range (Å) 49.33–2.90 (3.00–2.90)

Rwork/Rfree 0.233/0.252

No. of protein atoms 11,974

No. of waters 112

Average B factor (Å2) 47.49

Protein 47.60

Water 36.47

Model quality

RMSZ bond lengths 0.005

RMSZ bond angles 0.878

Ramachandran favored (%) 94.88

Ramachandran allowed (%) 4.92

Ramachandran outliers (%) 0.02

PDB code 6L8D

aValues in parentheses are for highest resolution shell.
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interface resembles the typical configuration found in
AAA+ proteins (Figure 2a). The positions of the five key
nucleotide interaction motifs (W-A, W-B, Arg-finger, S-I,
and S-II) are well-defined in the ChlI hexamer, and clus-
ter in a cleft on the top side of the ring structure. The
interprotomer interactions mainly arise from the short
arm (residues 223–238) of the L-shaped α5 and the α6–α7
region of the lid domain. Specifically, the guanidino
group of Arg226 within the short arm of α5 forms hydro-
gen bonds with the carbonyl group of Gly289 and the car-
boxylic group of Asp293 (Figure 2b). As the six interfaces
are not identical, small structural variations exist among
protomers. Local interaction networks can be found at the
chain B–C/C–D/A–F interface, where the W-A Arg49
interacts with the aspartate at position 209/286/288
(Figure S3). These interprotomer interactions couple oligo-
merization to ATP binding and hence possibly motor
function.

Previous work has shown that four point mutations,
Asn269 ! Ile of tobacco ChlI, and Leu91 ! Phe,
Asp187 ! Asn, and Arg269 ! Lys of barley ChlI, lead to
functionally impaired MgCh.30 These conserved residues
correspond to Leu113, Asn197 (S-I), Asp209 and Arg291
(S-II) in Synechocystis ChlI, and none of them is involved
in direct interprotomer interaction (Figure 2b). Leu113 at
the apex end of β2 lies on the top of the ATP-binding cleft,
and its phenylalanine mutation could affect the dynamics
of nearby residues, which may mediate ATP binding and
transduction of conformational change upon ATP hydroly-
sis. The S-I asparagine is necessary for ATP hydrolysis,17

and thus mutation of Asn197 to isoleucine could damage
the hydrolysis activity. Asp209, preceding the Arg-finger,
mainly participates in the intraprotomer contact with the
lid domain and can also interact with neighboring Arg49.
The S-II Arg291 at the base of α7 points away from the W-
A motif of the neighboring protomer, contributing to the

FIGURE 1 Structure of the MgCh ATPase motor subunit in ribbon representation. (a) ChlI hexamer in top (upper panel) and side

(lower panel) views. Six protomers (chains A–F) are colored in purple, orange, beige, yellow, green, and blue, respectively. (b) BchI hexamer

with pseudo-3-fold symmetry (PDB: 2X31) reconstructed from the cryo-EM maps. (c) BchI (PDB: 1G8P) in space group P65. The seventh

chain along the c-axis is shown in the same color as the first chain to present the rotational symmetry. (d) ChlI protomer (chain A). The

α-helices (red) and β-strands (cyan) are labeled following previous conventions for AAA+ proteins.9,16,17 The three β-hairpins, α1–β2–β-
hairpin, H2-insert (within α2), and PS-I insert (presensor I insert, between α3 and β4) are denoted by arrows; the PS-II insert (presensor II

insert, within α5) is in yellow; the loops are in gray
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intraprotomer contact with the AAA+ core domain. It is
possible that during ATP binding, mutations of Asp209
and Arg291 interfere with the trans-activation (inter-
protomer communication) of the ChlI hexamer.13,31,32

2.3 | Implication for the assembly of the
ChlI–ChlD double hexamer

A model of the BchI hexamer was built by superimposing
individual BchI structures onto the ChlI structure
(Figure 3a). The model resembles a 6-tooth rotor motor, in
which each tooth is composed of three β-hairpins and pro-
trudes from the AAA+ motor (Figure S2). The lid domains
and the long arms of the L-shaped α5 form the base and
the outer ring for the motor, respectively. Between adjacent
teeth are equally spaced troughs, which allows a zipper
dimerization interface with another hexamer in the oppo-
site direction.

The apo ChlI structure also provides clues for the
assembly of the ATP-independent ChlD subunit, whose
N-terminal domain is homologous to ChlI. The three key
residues (Arg226, Gly289, and Asp293) involved in inter-
protomer interactions are highly conserved within the
BchI/ChlI/ChlD subunits (Figure S4). It is likely that the
ChlD subunits assemble in a similar way as the BchI/ChlI

subunits. A notable exception is the BchD subunit, which
lacks the PS-II insert and the three residues. Thus, the
domain arrangement of BchD seems to be dissimilar from
BchI/ChlI/ChlD. This essential difference might explain
the discrepancies between BchD and ChlD with respect to
the assembly of the BchI–BchD/ChlI–ChlD complex.24,28

Recently, it has been shown that the ChlD subunit
bridges the ATPase activity with the active site at ChlH
primarily through its C-terminal integrin I domain.29 This
is structurally reasonable based on our proposed ChlI–
ChlD model (Figure 3b), in which the ChlI and ChlD
hexamers are able to dimerize through the zipper dimer-
ization interface. The ChlD C-terminal integrin I domain
lies at the top of the double hexamer, and is reminiscent of
a propeller blade. As the middle proline-rich region of
ChlD is possibly less structured, the position of integrin I
domain could exhibit large adjustments on the periphery
of the ChlD hexamer. Upon ATP hydrolysis, the 6-tooth
rotor shaft transmits rotational torque generated by the
AAA+ motor to the ChlD subunits, and powers the
6-blade propeller constituted by the integrin I domains
with which the ChlH subunit associates. The overall topol-
ogy of the ChlI–ChlD double hexamer appears to be simi-
lar to that formed by the minichromosome maintenance
(MCM) proteins,33 which belong to the AAA+ clade 7 and
share mechanistic similarities with BchI.31,32 While our

FIGURE 2 The bipartite ATP-binding pocket in side (upper panel) and top (lower panel) views. (a) The ATP-binding motifs in surface

(left panel) and ribbon (right panel) representations. The AAA+ core domain is in light blue; the lid domain is in green; α5 is in yellow; the

Walker A (W-A, Gly47–Ser54) and Walker B motifs (W-B, Asp153–Glu154), the Arg-finger (Arg210), and the sensor I (S-I, Asn197) and

sensor II motifs (S-II, Arg291) are in rose. The visible side chains of W-A, Leu113, W-B, Asn197, Asp209, Arg210, Arg226, Asp286, Asp288,

Arg291, and Asp293, the amide group of Gly50, and the carbonyl group of Gly289 are shown as sticks. (b) Close-up view the chain A–B
interface. The interprotomer hydrogen bonds are shown as dashed lines. Residues of chain B are marked with asterisks
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apo structure lacks information about the nucleotide-
bound state that is required for studying the working
mechanism of MgCh, it provides a molecular framework
explaining the assembly of the double ring complex.

3 | MATERIALS AND METHODS

3.1 | Protein expression, purification,
and crystallization

The ChlI-encoding gene slr1030 from Synechocystis
sp. PCC 6803 was commercially synthesized (Sangon Bio-
tech, Shanghai, China). The synthetic sequence was
amplified by PCR with the primers: 50-GGAATTCCAT
ATGATGACTGCCACCCTTG-30 (bold: the NdeI restriction
site) and 50-CCGCTCGAGAGCTTCATCGACAACG-30

(bold: the XhoI restriction site). The PCR product was
ligated between the NdeI and XhoI restriction sites of
the pET-22b vector (Novagen, Shanghai, China). The
resulting vector encodes the full-length ChlI followed by a
C-terminal His6 tag. The vector was transformed into
Escherichia coli BL21(DE3) competent cells for expression.
The cells were grown at 37�C till the culture reached an

optical density of 0.6 at 600 nm. Then isopropyl β-D-
thiogalactoside was added to a final concentration of
0.5 mM for induction. The induced cells were grown at
16�C for 20 hr before harvest by centrifugation. The cell pel-
lets were suspended in buffer A (500 mM NaCl and 20 mM
Tris-HCl, pH 7.5) plus 20 mM imidazole, and sonicated in
an ice bath. The cell lysate was cleared by centrifugation
and incubated with Ni-NTA agarose (QIAGEN, Shanghai,
China) resin at 4�C for 1 hr. Then the resin was packed into
an open column (Sangon Biotech, Shanghai, China) and
washed with buffer A plus 20 mM imidazole to remove the
unbound proteins. The recombinant ChlI was eluted with
200 mM imidazole in buffer A, and concentrated by ultrafil-
tration through a Millipore 10-kDa cut-off filter. The con-
centrate (2 mL) was loaded onto a 120-ml HiLoad 16/60
Superdex 200 column (GE Healthcare, Shanghai, China)
equilibrated and eluted with buffer A. Fractions containing
recombinant ChlI were collected and analyzed by SDS–
PAGE. The highly purified fractions were pooled and con-
centrated to 8 mg ml−1 for crystallization. Crystal trays were
set up at 16�C using the vapor diffusion method in a 2-μl
sitting drop containing 1:1 mixture of protein sample and
reservoir solution. Crystals appeared in 2 days in the reser-
voir solution of 0.24 M sodium malonate, pH 7.2, and 18%
(w/v) PEG 3350.

3.2 | Data collection and structure
determination

The crystals were transferred into the reservoir solution
plus 20% (v/v) glycerol for cryo-protection before being
flash-cooled in liquid nitrogen. The diffraction data were
collected at a wavelength of 0.9793 Å at 100 K on the
BL17U1 beamline of the Shanghai Synchrotron Facility,
and processed using the HKL-3000 program package.34

The initial ChlI model was built by molecular replace-
ment using PHASER in the CCP4 suite,35,36 and the BchI
structure (PDB: 1G8P) was used as the template.12 Fur-
ther manual corrections and refinements were performed
using Coot and the phenix.refine program.37,38 The final
model was evaluated by the MolProbity server.39 All
structure figures were prepared with the program PyMOL
(Schrödinger LLC, New York, NY).
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FIGURE 3 Model of the ChlI–ChlD complex.

(a) Superimposition of each BchI protomer (shown in a similar

color scheme as in Figure 2) onto the ChlI hexamer (gray) in

ribbon (upper panel) and surface (lower panel) representations. The

surface of ChlI is not shown. (b) Schematic model of the ChlI–ChlD
double hexamer. ChlI is colored as in a. The ChlD N-terminal

domain and C-terminal integrin I domain, constructed by the

SWISS-MODEL server then aligned onto the planar ChlI, are

colored in gray and blue, respectively. The double hexamer model

was generated by manually placing the ChlD N-terminal hexamer

atop the ChlI hexamer with maximum interface. The possibly

unstructured middle proline-rich region is represented as dashed

magenta lines. The blue lines indicate position movements of the

integrin I domains on the periphery of the double ring structure
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