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Although the CNS lacks lymphatics, displays low levels of major 
histocompatibility complex (MHC) molecules and is uniquely 
shielded from free diffusion of molecular and cellular components 
by the blood-brain barrier (BBB) and the blood–cerebrospinal fluid 
(CSF) barrier, the immune response in the brain can be impressive 
if not spectacular, as is the case in meningitis. By contrast, loss of 
immunity is often highlighted by cerebral infections. To protect this 
vital system, the healthy brain and spinal cord are under continual 
immune surveillance to detect and eliminate potential mediators of 
infection and damage. Both resident microglia and immune cells from 
the general circulation function as primary guardians of the CNS, and 
their sentinel duties contribute to the maintenance of homeostasis and 
thus optimal functioning of the brain and spinal cord.

Through their highly dynamic processes, nonactivated microglia 
relay environmental information to neurons and macroglia, which in 
turn advise microglial cells of their health status. In addition to micro-
glia, peripheral immune cells can enter the uninflamed CNS through 
mechanisms similar to those in peripheral organs, albeit at a lower 
rate. For instance, the number of T cells that travel into the CNS is 
small, as these cells partake in intermittent, transient interactions with 
CNS endothelium through cell adhesion molecules that are themselves 
expressed at one-tenth of the level of that in other organs1. Basal inter-
action of leukocytes (rolling) in brain is also one-tenth of that seen in 
other organs1. Other immune cells of peripheral origin, such as perivas-
cular macrophages and meningeal dendritic cells, are strategically 
located at the interface between the blood and brain, where they can 
sample the environment for foreign antigens and promote antigen  

presentation should a florid inflammatory response be necessary2. Here, 
we summarize knowledge of how microglia and peripheral immune 
cells participate in promoting physiological balance and protection of 
the normal CNS and how interruption of immune patrol of the brain 
and spinal cord can lead to and/or augment disease and injury.

Microglia mediate surveillance and homeostasis in the CNS
Even though they share surface markers with hematogenously derived 
macrophages3, it has recently been shown that one subset of microglia 
is separately derived from the yolk sac, with progenitors invading the 
CNS at approximately the tenth day of development in mice4–6. After 
birth, another subset of microglia appears to be bone marrow derived, 
with distinct function(s)7. A large body of work demonstrates that 
microglial cells are vital in maintaining homeostasis in the CNS. They 
are critical in synapse maintenance and turnover in the adult CNS8 
and may provide trophic support to neurons and macroglia through 
their secretion of neurotrophins such as nerve growth factor (NGF), 
brain-derived neurotrophic factor (BDNF), ciliary neurotrophic  
factor, neurotrophin-3 (NT3) and glial cell line–derived neurotrophic 
factor (GDNF). These factors have been shown to protect and regulate 
the survival and regeneration of neuronal cells9. Microglia can take 
up neurotransmitters such as glutamate through cytokine-mediated 
mechnisms10 and are the primary cell type involved in phagocytosis 
and clearance of myelin inhibitors, debris and dead cells in the CNS. 
Even a function in the enhancement of remyelination, oligodendro-
genesis and angiogenesis has been documented11,12. Together, these 
critical functions of microglia facilitate and promote equilibrium and 
optimal functioning of the CNS.

Another major role of microglia is to serve as first line defenders 
against infectious agents and injury-related products in the CNS paren-
chyma. These cells lie very close to one another, but every cell occupies 
its own niche, with minimal overlap of processes between neighbor-
ing cells13. The branches of resting microglia are rapidly and con-
stantly moving, such that the entire extracellular space of the normal  
CNS is occupied and sampled by at least one microglial process over 
a few hours14. Nonactivated microglia, particularly in the white 
matter, constitutively express low levels of HLA-DR in the healthy 
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The CNS, which consists of the brain and spinal cord, is continuously monitored by resident microglia and blood-borne immune 
cells such as macrophages, dendritic cells and T cells to detect for damaging agents that would disrupt homeostasis and optimal 
functioning of these vital organs. Further, the CNS must balance between vigilantly detecting for potentially harmful factors and 
resolving any immunological responses that in themselves can create damage if left unabated. We discuss the physiological roles 
of the immune sentinels that patrol the CNS, the molecular markers that underlie their surveillance duties, and the consequences 
of interrupting their functions following injury and infection by viruses such as JC virus, human immunodeficiency virus, herpes 
simplex virus and West Nile virus.
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human brain15 and MHC II in the rodent brain16, observations that 
imply a capability for antigen presentation and thus a function in 
immune surveillance of the brain. Indeed, the molecular markers of 
antigen presentation and activation, such as MHC II, CD80, CD86, 
CD40, CD11a, CD54 and CD58 (refs. 17,18), are rapidly augmented 
on microglia in response to even minor pathological changes in the 
CNS, and these cells are capable of presenting antigens to, and activat-
ing, T cells19. Specifically, in infectious models such as coronavirus- 
induced mouse hepatitis, upregulation of MHC I by microglia is pos-
tulated to reflect a vigilant state of these cells enabling them to present 
antigen to and engage CD8+ T cells early after infection20. Also, com-
petent presentation of antigen to CD4+ T cells through MHC I and II 
on microglia21 during Theiler’s murine encephalitis virus infection 
likely reflects an effort to clear the virus.

In addition to antigen presentation, microglia have all the  
machinery necessary to detect most microbes and noxious stimuli 
that access the CNS parenchyma and can rapidly mount a potent 
inflammatory response. Indeed, intraventricular administration of 
lipopolysaccharide rapidly induces a macrophage-like response with 
the release of cytokines (tumor necrosis factor (TNF), interleukin 
(IL)-1, interferons (IFNs) and others) and the production of many 
chemokines and chemoattractants that alert and recruit more immune 
cells to the brain. Bacterial meningitis, much like lipopolysaccharide 
administration, directly activates microglia, which release cytokines 
and chemokines that attract peripheral immune cells. The exuberant 
response that ensues likely contributes to the morbidity and mortality  
of this cerebral infection. However, some pathogens find refuge 
in the brain and do not appear to cause an immune response. As 
one example, Cryptococcus neoformans infiltrates the brains of HIV  
patients who have low T cell counts22. Although one could argue that 
this might be because the microglia are also immunocompromised, 
C. gattii, which has in the last 10 years emerged in North America, 
infiltrates the brains of immunocompetent humans with minimal 
signs of inflammation early in disease23.

Although a robust immune response can be mounted in the CNS, 
this vital organ is normally quiescent, with cellular components of 
the CNS mediating immunosuppression. For example, in the intact 
CNS, microglia are kept in a quiescent state by interactions between 
the neuronal CD200 receptor and the CD200 ligand on microglia. 
This was demonstrated directly in CD200-deficient mice, in which 
microglia spontaneously exhibit features of activation such as less 
ramified morphology and increase expression of CD11b and CD45 
(ref. 24). Further, it has been reported that electrical activity of  
neurons may also suppress MHC expression in surrounding microglia 
and astrocytes, as paralysis of neuronal signaling by tetrodotoxin corre
lates with augmented interferon-γ-induced expression of MHC II on 
these glia25. In addition to neuronal activity, neuronally derived neuro
trophins such as NGF, NT3 and BDNF have been demonstrated to 
dampen MHC I expression (critical for viral detection by CD8+ T cells) 
on microglia in brain slices or cultures26, and NGF inhibits expression 
of the costimulatory molecule B7-2 (CD86) and CD40 in cultured rat 
microglia27. Of note, resting microglia in old mice were recently found 
to possess less elaborate dendritic arbors concomitant with slower 
process movements and retarded migratory ability that may compro-
mise their surveying ability and injury response28. This may explain the 
age-related increase in susceptibility to cerebral infection. In addition 
to keeping vigilance at low levels, suppressive mechanisms may also 
be ramped up to allow restitution of an immune response. However, 
the dominant mechanisms of restitution identified thus far involve 
molecules such as TGF-β secreted by astrocytes that downregulate 
the secretion of the proinflammatory molecules inducible nitric oxide 

synthase and IL-2 by activated microglia29,30. Increased production of 
microglial IL-10 also has been shown to dampen immune responses 
in the brain in an autoregulatory manner29.

In summary, microglia are vital in surveying the CNS environ-
ment for foreign and resident agents that can disrupt the homeostatic  
balance of the brain and spinal cord. They possess the molecular 
machinery to strongly activate the adaptive arm of the immune  
system if required. At the same time, these glia are kept in check 
by endogenous mechanisms, thus highlighting the tight control of 
immunity in the CNS.

Leukocytes patrol the healthy brain and spinal cord
Although present in small numbers relative to peripheral organs, 
peripherally derived T cells, macrophages and dendritic cells con-
stitute another group of sentinels that inspect the healthy CNS for 
harmful agents. Whereas microglia are the primary watchmen in 
the parenchyma of the brain and spinal cord, peripheral immune 
cells patrol in specialized CNS compartments located outside the 
parenchyma31. Immune cells could gain access to the CNS via  
(1) the non-fenestrated vascularized stroma of the blood-CSF barrier 
that is surrounded by the choroid plexus epithelial cells, (2) the peri
vascular or Virchow-Robin space, where deep arteries are continuous 
with the subarachnoid space and (3) postcapillary venules that enter 
the parenchyma directly32 (Fig. 1). In all of these possible sites of 
extravasation, migration across the vascular wall and the glial limitans 
must occur for the cells to gain access to the parenchyma. The general  
conception is that surveying macrophages and dendritic cells are  
competently capable of presenting antigen to, and activating,  
patrolling T cells, and thus together these immune cells constitute a 
formidable line of defense against noxious agents in the CNS.

Approximately 80% of immune cells found in the CSF of healthy 
individuals are T cells33 that have probably entered the CNS through 
the choroid plexus and meninges because in mice these areas are 
occupied by fluorescently labeled lymphocytes within 2 hours of intra
venous injection of the labeled cells into healthy animals34. Kivisäkk 
and colleagues35,36 characterized the phenotype of CSF T cells in 
normal humans as predominantly CD4+CD45RA−CD27+CD69+ 
activated central memory T cells that expressed high levels of CCR7, 
CXCR3 and L-selectin. P-selectin has also been implicated in facilitat-
ing migration of T cells into the CSF of mice and healthy humans on 
the basis of the reduced CNS entry of leukocytes in P-selectin null 
mice34 and the high expression of P-selectin glycoprotein ligand 1 on 
CD4+ T cells in human CSF35,36. P-selectin, E-selectin and intercellular 
adhesion molecule 1 (ICAM-1) immunoreactivity has been detected 
in vessels of the choroid plexus and subarachnoid space in humans35, 
with other studies37 also implicating vascular cell adhesion molecule 
(VCAM)-1, mucosal addressin cell adhesion molecule (MadCAM)-1 
and platelet endothelial cell adhesion molecule (PECAM)-1 in facili-
tating T cell entry into the healthy human brain. However, the latter 
observation is difficult to reconcile our understanding of MadCAM-1 
as the intestinal homing receptor for T cells. Epithelial V-like antigen 
in human choroid plexus epithelial cells was recently implicated as 
a molecular target of a subset of CNS-surveying CD4+ T cells that 
are characterized by high secretion of IL-17 and IL-22 (ref. 38).  
Of interest, Loeffler and colleagues31 have showed that cellular immune 
surveillance in the healthy human brain differs among CNS regions. 
As expected, the highest numbers of immune cells are located in brain 
areas where the tight junction barrier of the BBB is reduced, such as 
the area postrema of the circumventricular organs and the ventro- 
rostral areas of the medulla oblongata. Not all studies agree with a 
population of CD4+ T cells in the healthy human brain. At least two 
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separate groups have instead identified CD3+ 
CD8+granzymeB−perforin− lymphocytes 
and, to a limited extent, CD20+ B cells as the 
main cellular components39,40.

Peripherally activated T cells gain essen-
tial surface molecules necessary to traverse 
the BBB into the CNS parenchyma. Capture 
and adherence of activated TH1 T cells to 
CNS venules were demonstrated to occur 
via interactions between VLA-4 on TH1 
cells and VCAM-1 on endothelial cells, 
whereas diapedesis of TH1 cells across the venule wall is facilitated by  
leukocyte function–associated antigen (LFA)-1 (ref. 41). Further, 
TH17 cell migration across the blood-CSF barrier in experimental 
allergic encephalomyelitis (EAE), a model of multiple sclerosis, has 
been shown to depend on the chemokine receptor CCR6 on TH17  
T cells, which binds its ligand CCL20 that is constitutively produced 
by the choroid plexus epithelium42. However, other studies have 
shown enhanced EAE clinical symptoms in CCR6-null mice during 
the chronic disease phase that is associated with a lack of programmed 
cell death 1 ligand 1–expressing myeloid dendritic cells in spleen43 and 
reduced numbers of CD4+ T regulatory cells in the CNS44. It is likely 
that many chemokine receptors function in various immune cells in 
EAE and their action may vary depending on the stage of the disease. 
Very recently, a new pathway of T cell entry into the CNS of EAE mice 
was identified. Arima and colleagues45 have reported that the earli-
est CNS entry of CD4+ T cells in EAE occurs at a very specific site: 
the fifth lumbar level of the spinal cord. They observed high CCL20 
chemokine expression in the dorsal root vessels. This was associated 
with sensory neurons that innervate the soleus and other leg muscles, 
and silencing of these neural pathways reduced chemokine expression 
and, ultimately, T cell recruitment into the spinal cord.

Under physiological conditions, the perivascular space that directly 
communicates with the CSF is inhabited by perivascular cells that 
are bone marrow derived. These cells are continuously replaced by 
monocytes, as demonstrated by bone marrow chimera studies in 
rodents46,47 and transplantation studies in humans48 that show a 
steady rate of perivascular cell turnover in the normal, uninflamed 
CNS. With their close association to the vessels in the CNS, peri
vascular cells have been speculated to continually scan and sample the 
CSF49,50 and may therefore be capable of detecting infectious agents 
early. They are capable of phagocytosing molecules from the CSF49, 
and in humans perivascular cells constitutively express MHC II,  
CD4, B7 and the chemokine receptors CCR3, CCR5 and CXCR4  
(refs. 36,51), all of which likely contribute to the ability of these cells 
to potently and efficiently present antigen to T cells46. There is contro-
versy as to whether perivascular cells re-enter the peripheral immune 
circuitry to instigate a peripheral immune reaction because direct 
implantation of antigens into the CNS has failed to elicit a peripheral 
immune response52. However, Cserr and colleagues53 demonstrated 
that CNS-derived antigens can drain to deep cervical lymph nodes 

that could potentially make CNS antigens available to the peripheral 
immune system. The recent finding that monocytes injected into the 
brain reach lymphatic organs by way of the cribroid plate54 lends 
credence to this idea. Perivascular cells may contribute to disease 
pathogenesis, such as that in multiple sclerosis and EAE, where they 
are implicated in reactivation of encephalitogenic T cells entering the 
CNS55. Indeed, specific elimination of monocytes markedly amelio-
rates clinical symptoms of EAE56.

Although dendritic cells have not been detected in the parenchyma 
of the normal CNS, these cells are abundant in the dura, arachnoid and 
pia mater and the choroid plexus of healthy rodents and humans57, 
and low numbers of myeloid (lin−CD11c+HLA-DRhiCD123lo) and 
plasmacytoid (lin−CD11c−HLA-DRmodCD123hi) dendritic cells58 
that are CCR7+ (ref. 59) have been found in the CSF of healthy indivi
duals58. Dendritic cells are potent antigen-presenting cells to, and 
activators of, CD4+ T cells55 and may therefore contribute to CNS 
immune surveillance. There is some evidence that dendritic cells 
can traffic to peripheral lymphoid organs and possibly present any 
antigens detected in the CNS to T cells in the periphery. Specifically, 
dendritic cells that were injected into CSF have been detected in  
B cell follicles of cervical lymph nodes60. The number of dendritic 
cells increases markedly in the perivascular space, as well as the paren-
chyma of the CNS in humans and animals, after CNS infection61; 
in diseases such as amyotrophic lateral sclerosis62, multiple sclero-
sis and EAE55; and after ischemic injury and kainic acid–induced 
excitotoxicity63. Although these cells help clear foreign antigen, the 
proinflammatory mediators secreted by dendritic cells, perivascular 
cells and T cells can contribute to disease progression or injury, and 
thus the function of these cells must remain under strict control. One 
mechanism that may contribute to suppressing immune reactions 
in the CNS is constitutive expression of Fas ligand on neurons that  
promote Fas-mediated death of CNS-infiltrating immune cells64.

Consequences of interrupting CNS immune surveillance
The importance of surveillance of the CNS is exemplified by the erup-
tion of serious complications that arise when migration of immune cells 
to the brain and spinal cord is interrupted by endogenously produced 
or externally applied immunosuppressants. The prevailing view is that 
potentially pathogenic viruses such as JC polyoma virus (JCV) and herpes  
simplex virus (HSV) that are widespread in the human population,  

Figure 1  Possible sites of immune cell entry into 
the CNS. T cells and monocytes may gain access 
to the brain by crossing through the fenestrated 
blood vessels of the choroid plexus, across the 
ependymal layer and into the CSF (1); through 
the perivascular or Virchow-Robin space, where 
the meningeal blood vessels branch into the 
subarachnoid space (2); and directly into the CNS 
parenchyma through postcapillary venules (3).
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or acquired infections such as West Nile virus (WNV) and HIV, are 
held in check by constant immune pressure in the CNS. However, a dis-
ruption in the migration of immune cells to the brain and spinal cord 
allows unrestrained proliferation and dissemination of viral particles or 
deficient wound healing that can result in severe neuropathologies.

CNS infections. The consequences of interrupting immune surveil-
lance in the CNS have never been more evident than in the case of 
progressive multifocal leukoencephalopathy (PML), a usually fatal 
CNS infection caused by JCV. Approximately 80% of humans harbor 
JCV that resides latently in bone marrow and renal tubular epithelial 
cells and B cells. PML is often a consequence of therapies designed 
to prevent attacks by immune cells on the CNS. Upon suppression 
of CD4+ and CD8+ T cell mobilization, as occurs with HIV infec-
tion, chemotherapy or immunosuppressive therapy, the virus enters 
the brain, either within B cells or as cell-free virus, where it infects 
and kills oligodendrocytes, leading to demyelination65,66. There are 
no treatments for PML, and most patients either die or are left with 
severe disability. Armed with the knowledge that immune cells uti-
lize cell adhesion molecules to infiltrate the CNS in inflammatory 
diseases, monoclonal antibodies against B cells (rituximab), VLA-4 
(natalizumab) and LFA-1 (efalizumab) had been developed to treat 
multiple sclerosis, non-Hodgkin lymphoma, rheumatoid arthritis, 
Crohn’s disease and systemic lupus erythematosus. These medica-
tions inhibit migration of B and T cells into the CNS67. As a result, the 
lack of surveillance normally imposed by the immune system allows 
unabated invasion of the pathogen into the brain.

Like JCV, HSV-1 is rampant in the human population but normally 
remains quiescent in neurons after initial infection of peripheral epi-
thelial cells68. Various antiviral responses are mounted by the host’s 
innate and adaptive immune systems to maintain the dormant state of 
the virus69. For example, recognition of HSV-1 pathogen-associated 
molecular patterns by toll-like receptor (TLR)-2 or TLR9 on microglial 
cells results in the secretion of type I IFNs, IL-15, TNF and the chemo
kine CCL2 (ref. 70), which recruits macrophages, and type I IFN 
production by neurons and microglia is further augmented in a TLR3-
dependent mechanism. TLR3 expression by microglia and astrocytes 
may participate in controlling CNS invasion of HSV. Notably, children 
with a dominant negative TLR3 allele can develop HSV-1 encephali-
tis71. The IFNs contribute to an antiviral response by inducing RNase L  
and IFN-induced double-stranded RNA–activated protein kinase 
expression, which respectively result in degradation of mRNA and 
cessation of translation69. The adaptive immune system also helps 
control HSV-1 and maintain its latency. The production of TNF, nitric 
oxide and IFN-γ by CNS infiltrating macrophages and γδ T cells is 
associated with control of viral replication, and CD8+ T cells inhibit 
HSV-1 reactivation through MHC class I– and granzyme B–dependent 
mechanisms68,72. It is thus clear that the immune system is vital for 
suppressing reactivation of HSV in the CNS and that interruption of 
immune surveillance in the brain may lead to resurgence of the virus, 
as is often seen in immunosuppressed HIV-infected individuals73.

One complication of HIV infection is HIV-associated neurocogni-
tive dysfunction, which comprises a range of neurological impair-
ments that occur when the virus invades the CNS. Invading CD8+ 
cytotoxic T cells may eliminate virus-infected CNS cells and thus 
help control the virus74. Another negative relationship between lack 
of CNS immunity and disease is again highlighted in HIV infection, 
where survival from primary CNS lymphomas (PCNSL) in AIDS75 has 
been associated with infiltration of reactive T cells in the perivascular 
regions of the CNS76. PCNSL is diagnosed in 1.6–9.0% of patients 
with AIDS77,78, and susceptibility to PCNSL is inversely proportional 

to CD4+ T cell count79,80. Notably, some HIV-positive patients with 
PCNSL concomitantly develop Epstein-Barr virus (EBV) infection81, 
which is preceded by a loss of functional EBV-specific cytotoxic  
T cells, once again demonstrating the necessity of surveillance in the 
CNS as a vital immune response in preventing PCNSL development 
and EBV infection76,82.

In other acquired infections, such as WNV, innate and adaptive 
immunity is thought to limit dissemination of the virus within the 
brain. WNV is a mosquito-transmitted, single-stranded RNA virus 
that can infect and damage neurons, but most infections in humans 
are asymptomatic83,84, a phenomenon that is attributed to immunity 
in the brain that suppresses WNV infection. The current thinking 
is that, through TLR7 recognition of viral RNA, microglia initially 
sense that WNV has invaded the CNS. This results in secretion of 
IL-23, which promotes infiltration into the CNS of monocytes and 
macrophages, CD4+ T cells85,86, CD8+ T cells87, natural killer T cells, 
dendritic cells and γδ T cells88. The robust immune response parti
cipates in neutralizing the virus and limiting viral infectivity, likely 
in a CCR5-mediated mechanism, as CCR5-deficient mice are more 
susceptible than their wild-type counterparts to lethal WNV encepha-
litis, which correlates with increased brain viral burden and markedly 
reduced brain leukocyte traffic89. Other studies show that CXCL12-
CXCR4 interactions appear to promote CNS migration of monocytes 
and CD8+ T cells, which is associated with neutralization of the virus 
and increased survival of the host90, and that CXCL10 secretion by 
infected cerebellar neurons recruits CXCR3-expressing CD8+ T cells 
that promote viral clearance91.

CNS trauma. Infections are not the only potentially harmful situa-
tions against which the immune system needs to protect in the CNS. 
Trauma to, and diseases of, the brain and spinal cord can elicit or 
dampen immune responses that can determine whether the outcome 
is damaging or protective. For instance, the lack of long distance 
regeneration of injured axons after spinal cord injury has in part 
been attributed to an insubstantial immune reaction. Specifically, in 
comparison to the robust immune reaction following peripheral nerve 
injury, the response of innate immune cells such as microglia and 
monocytes in the damaged CNS is weak, and this likely contributes to 
the delay in phagocytosis of myelin debris and thus prolonged presence 
of myelin-associated inhibitors of neurite outgrowth. An augmenta-
tion of macrophage and microglial activation has been associated with 
enhanced regeneration of injured CNS axons that was attributed to 
increased phagocytosis of, and thus faster clearance, of myelin and 
its axon growth inhibitors, as well as the production by these innate 
cells of cytokines and growth factors that can support neuron survival, 
oligodendrogenesis, remyelination and angiogenesis11,12. In addition, 
enhancing CNS influx of T cells has been shown to promote CNS 
regeneration by stimulating microglial phagocytosis; buffering gluta-
mate, thereby preventing excitoxicity92; and secreting neurotrophins 
to protect neurons from secondary degeneration93.

However, the early immune response to trauma and cell death 
likely involves neutrophils, microglia and macrophages. Endogenous 
intracellular molecules such as ATP, high mobility group protein B1 
and DNA, when released into the extracellular milieu from dying or 
injured cells, function as danger-associated molecular patterns and 
as alarmins for the immune system. In addition, molecules modified 
by oxidation or proteolytic cleavage, such as collagen and hyaluronan, 
or precipitates such as uric acid crystals have been shown to activate 
the innate immune system. In the case of ATP, the activation occurs 
through the purinergic receptor P2X7, which activates NOD-like 
receptors, including NLRP-3, which activates caspase and IL-1 and 
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induces inflammation. In addition to these molecules, mitochondrial 
peptides that have bacterial motifs (formylated peptides) activate the 
formylated peptide receptors found on neutrophils and other immune 
cells, inducing potent chemotaxis94. Although ATP has been shown to 
be detected by microglia when released from injured neurons, the role 
of most of the other aforementioned alarmins in immune response to 
cellular injury in the brain remains to be elucidated.

The resolution phase of cellular injury is also an area that remains 
poorly understood but also likely requires recruitment of phagocytic 
immune cells. Although controversial, a role for infiltrating monocytes in 
the clearance of β-amyloid in Alzheimer’s disease has been suggested95, 
as amyloid burden is heavier when these cells are eliminated96 and 
when the immunosuppressive cytokine TGF-β is present at high levels 
in Alzheimer’s disease–affected brains97, and a reduction in β-amyloid  
deposition is observed when monocyte invasion is stimulated98. More 
recently, Mildner and colleagues have shown that CCR2-positive 
perivascular myeloid cells, but not microglia or bone marrow–derived 
phagocytes, are associated with β-amyloid clearance99.

The type of immune response can, however, retard repair in the CNS, 
and thus homeostasis requires a constant balancing act. For example, in 
models of myocardial infarction, CD11b+Ly-6Chigh blood monocytes 
that possess enhanced phagocytic, proteolytic and inflammatory func-
tions are recruited early to sites of pathology, and they can impair wound-
healing, but at the same time they orchestrate the subsequent recruitment 
of CD11b+Ly-6Clow monocytes that promote tissue repair100.

Conclusion
Immunity is an active component of the CNS. Over the past decade, 
experiments in mice as well as naturally occurring experiments in 
humans have led us to conclude that surveillance is critical in the brain 
and that pathogens are likely breaching the barrier all the time and 
require immediate eradication. Immunosuppression, particularly with 
drugs that affect trafficking of immune cells, has highlighted the need 
for ongoing surveillance. Moreover, this immunological monitoring of 
the brain and spinal cord is dynamic, specific and tightly regulated.
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CORRI    G EN  DA

Corrigendum: Immune surveillance in the central nervous system
Shalina S Ousman & Paul Kubes
Nat. Neurosci. 15, 1096–1101 (2012); published online 26 July 2012; corrected after print 10 February 2014

In the version of this article initially published, the figure that depicted the main sites of immune cell entry into the brain parenchyma contained 
some anatomical details that we felt might lead to confusion among the nonspecialist readership. The central region of the brain parenchyma 
was unlabeled and not colored as parenchyma, and the subarachnoid space that surrounds the cerebellum was not indicated. These omissions 
have been rectified. In addition, the folded epithelial cell layer lining the choroid plexus had been depicted projecting into the unlabeled central 
region. We now show this cell layer extending into the ventricle. The figure legend has also been updated to indicate that cells reach the CSF in 
the first route by crossing through the fenestrated blood vessels of the choroid plexus. The errors have been corrected in the HTML and PDF 
versions of the article.
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