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Nanosecond pulsed electric field (nsPEF) has emerged as a promising tool for hepatocellular carcinoma ablation recently. However,
little is known about how nsPEF affects liver regeneration while being applied to eliminate liver lesions. Besides, the impact of
nsPEF ablation on liver function should also be taken into consideration in the process. In this paper, we study the impact of
nsPEF ablation on liver function by the measurement of serum levels of AST and ALT as well as liver regeneration and relevant
molecular mechanisms in vivo. We found that mouse liver function exhibited a temporary injury without weight loss after
ablation. In addition, local hepatic nsPEF ablation promoted significant proliferation of hepatocytes of the whole liver with an
increase in HGF level. Moreover, the proliferation of hepatocytes was dramatically inhibited by the inhibitor of c-Met. Of
interest, the periablational area is characterized by high level of PDGF and a large amount of activated hepatic stellate cells.
Furthermore, neutralizing PDGF was able to significantly inhibit liver regeneration, the increased HGF level, and the
accumulation of activated HSCs. Our findings demonstrated that nsPEF not only was a safe ablation approach but also could
stimulate the regeneration of the whole liver through the activation of the HGF/c-Met pathway by upregulation of PDGF within
the periablational zone.

1. Introduction

Radical or partial hepatectomy is the first line of the thera-
peutic option for liver diseases, especially for benign and
malignant liver tumors [1]. Unfortunately, most of malignant
liver tumors are secondary to cirrhosis or hepatitis, and
patients have increasing risk to suffer liver function failure
and even death due to the impaired hepatic compensation
posthepatectomy. Thus, developing an alternative approach
for the treatment of a liver tumor with few side effects on liver
function and more contribution to liver regeneration is

crucial to improve the outcome of patients with hepatocellu-
lar carcinoma (HCC).

A nanosecond pulsed electric field (nsPEF) is an emerg-
ing bioelectrical technique that has potential in the treatment
of various malignancies, including melanoma [2], squamous
cell carcinoma [3], HCC [4], and pancreatic cancer [5].
nsPEF induces apoptosis [6] or necrosis [7] of tumor cells
through ultrashort electric pulses (nanosecond) with high
voltage (10 kV/cm range) and rapid rise times (nanosecond).
It is able to electropermeate the cellular membrane and influ-
ence intracellular organelles and leads to cell destruction [8].
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F1GURE 1: The device delivering a nanosecond pulse to the mouse liver. (a) Schematic diagram of the homemade device, including a repetitive
resonant charging power source, a nanosecond pulse generator, and an electrode. (b) A representative photo of nsPEF ablation on the mouse
liver after two electrodes were inserted into the liver of mice. (c) A typical photo of the ablated area on the left lobe of the mouse liver at 3 days

after nsPEF ablation.

It could lower the risk of local complications, including the
damage of bile ducts and vascular vessels caused by thermal
effect or chemical toxicity [9], which commonly occurs in
the treatment with radiofrequency ablation (RFA) and per-
cutaneous ethanol injection (PEI), respectively.

Recently, some evidences have demonstrated that RFA is
capable of inducing liver regeneration [10]. Rozenblum et al.
[11] demonstrated that the treatment with RFA on even a
small part of a normal liver can activate the hepatocyte
growth factor (HGF)/c-Met kinase pathway and promote
vascular endothelial growth factor- (VEGF-) mediated
angiogenesis and liver regeneration. This depends on the
recruitment of activated myofibroblasts or hepatic stellate
cells (HSCs), which are responsible for the major production
of HGF, to the periablational red zone [10]. However, liver
ablation by different devices or models has various impacts
on liver regeneration [12, 13]. Additionally, increasing data
have determined that a platelet-derived growth factor
(PDGF) is an important chemoattractant and activator for
activated HSCs in the context of liver injury [14] and might
be associated with liver regeneration.

To determine the change of liver function after nsPEF
ablation and the influence of nsPEF ablation on liver regener-
ation as well as its molecular mechanisms, we investigated
the change of serum AST and ALT and weight of ablated
mice, followed by the assessment of liver regeneration after
nsPEF ablation and the relationship between the liver regen-
eration and the HGF/c-Met pathway as well as PDGF.

2. Materials and Methods

2.1. Animals. C57BL6 male mice (10 weeks old) were pur-
chased from the Shanghai Experimental Animal Center, Chi-

nese Academy of Science. Animal studies were approved by
the Animal Ethical Committee of Zhejiang University and
conducted according to the National Institutes of Health
Guide for the Care and Use of Laboratory Animals (NIH
revised in 1996). All mice were kept on a 12-hour light-
dark cycle in a pathogen-free animal facility with free access
to food and water.

2.2. Pulse Generator and nsPEF Parameters. A homemade
repetitive nsPEF field generator is designed (Figure 1(a)).
The pulse was applied at 25kV/cm, with a rate of 1 Hz. The
pulse duration was 100 ns, and the pulse number was 300.

2.3. Electrode Design for Liver Ablation Experiments. The
electrode was made of a 304 stainless steel needle with a
diameter of 0.5 mm. Mice were generally anesthetized, and
pain was relieved as previously described before operation
[10]. nsPEF ablation was performed after inserting two elec-
trodes into the left liver lobe of mice (Figure 1(b)). An oval
ablated area was generated surrounding the two electrodes,
which covered around 20% of total area of the left lobe
(Figure 1(c)). Mice were euthanized on days 1, 3, 7, and 14
or measured for their weights at days 0, 1, 3, 5, 7, 9, 11, 13,
and 15 within 14 days after nsPEF treatment.

2.4. Drug Administration. For inhibition of c-Met (an HGF
receptor) signaling, 30 mg/kg of PHA665752 (PHA, HY-
11107, MedChemExpress, USA) was injected intraperitone-
ally daily starting on the day of nsPEF ablation for 3 successive
days (n = 5). For neutralizing PDGF, 2 mg/kg PDGF neutraliz-
ing antibody (ab34074, Abcam, UK) was injected into the por-
tal vein in one day pre- and post-nsPEF ablation (1 > 3). For
selective suppression of cox-2, 50 mg/kg celecoxib (SC58635,
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Tocris Bioscience, UK) was given daily (IP) for 3 successive
days after nsPEF ablation (n>3). Animals were sacrificed
at 3 days after nsPEF ablation.

2.5. Alanine Aminotransferase (ALT) and Aspartate
Aminotransferase (AST) Measurement. Blood was collected
from mice, and then, serum was separated via centrifugation
(3000 rpm, 10 min) at room temperature. ALT and AST were
examined with an ACE Alera blood chemistry analyzer (Alfa
Wassermann, 402900-1, Italy).

2.6. Quantification of HGF and VEGF. The amount of HGF
from serum and liver tissues and the level of serum VEGF
were determined using enzyme-linked immunosorbent assay
(ELISA) kits (ELM-HGF-CL-1, ELM-HGF-1, and ELM-
VEGF, RayBiotech, USA) according to the manufacturer’s
instructions. An independent experiment was performed in
duplicate 3 times.

2.7. Histologic Examination. To observe the histologic
change and immune cell infiltration in the liver after abla-
tion, liver tissues were harvested from the ablated and unab-
lated lobes from nsPEF-treated mice on days 1, 3, 7, and 14
postablation, followed by fixation in 4% formalin for 48
hours, paraffin embedding, and preparation of 5mm thick
slices. Hematoxylin-eosin (HE) staining was performed to
assess histopathological and morphologic changes of the
mouse liver mediated by nsPEF ablation. Collagen deposi-
tion was evaluated by staining the liver sections with Sirius
red (Sigma-Aldrich, Rehovot, Israel) diluted in picric acid.
Immunohistochemistry staining (IHC) was performed to
identify cell types using the following antibodies: anti-F4/80
antibody (70076, Cell Signaling Technology, USA) for mono-
cytes, anti-neutrophil antibody (NIMP-R14) (ab2557, Abcam,
UK), and anti-a-SMA antibody (ab124964, Abcam, UK) for
activated myofibroblasts. In addition, an anti-Ki67 antibody
(ab15580, Abcam, UK) was used to define proliferated cells
and assess liver regeneration status; an anti-cox2 antibody
(ab15191, Abcam, UK) was used to identify the expression of
cox-2 at the periablated area; an anti-MCP-1 antibody
(ab8101, Abcam, UK) and anti-PDGF-B antibody (ab178409,
Abcam, UK) were used to show the distribution of MCP-1
and PDGEF-B at the periablated area, respectively. Quantifica-
tion was performed by counting the number of positive cells
within 5 random fields of high-power (x100) microscopy.

2.8. Quantitative Real-Time PCR Analysis. Total RNA was
extracted using TRIzol reagent (Sangon, B610409, China)
and reversely transcribed into ¢cDNA using HiScript II Q
Select RT SuperMix for qPCR (Vazyme, R232-01, China)
according to the manufacturer’s instructions. Quantitative
real-time PCR was carried out for detecting mRNA level of
HGF with ChamQ Universal SYBR qPCR Master Mix
(Vazyme, Q711-02, China). Beta-actin was used as the inter-
nal control. The primers of HGF were as follows: HGF for-
ward primer 5’ -ATGTGGGGGACCAAACTTCTG-3' and
reverse primer 5' -GGATGGCGACATGAAGCAG-3'.

2.9. Statistical Analysis. GraphPad Prism 5 software (La Jolla,
CA) was used for statistical analysis. All data were pre-

sented as mean * standard deviation. The statistical differ-
ence between two groups was determined by two-tailed
Student’s t-test. P <0.05 was considered to have statisti-
cally significant difference.

3. Results

3.1. nsPEF Is Safe for Liver Ablation. To investigate the safety
of liver ablation by nsPEF, serum levels of ALT and AST were
monitored regularly in 2 weeks after ablation. Serum levels of
ALT and AST rapidly increased to a peak concentration in
24 hours, respectively, for nsPEF-treated mice (Figures 2(a)
and 2(b)). However, both ALT and AST amounts could
be declined to the baseline level at 7 days after ablation
(Figures 2(a) and 2(b)). In addition, no significant difference
in body weight was observed between mice treated with nsPEF
ablation and untreated mice within 14 days (Figure 2(c)).

3.2. nsPEF Ablation Stimulates Robust Regeneration of the
Whole Liver. Given that RFA potentially promotes liver
growth [10], IHC staining for Ki67, a typical marker for
cell proliferation, was employed to determine the effect
of nsPEF ablation on liver regeneration. Liver tissues after
ablation by nsPEF were characterized by a clear boundary
surrounding ablation zone, which divided the ablated lobe
into three parts: ablated area, unablated area, and periabla-
tional area (Figure 3(a)) with accumulation of neutrophils
(Figure 3(b)) and macrophages (Figure 3(c)) after ablation.
As expected, Ki67 exhibited significantly high expression
within hepatic cells in the unablated area of ablated lobes
(the lobes with nsPEF ablation) as well as unablated lobes
(the lobes without nsPEF ablation) from 3 to 7 days after
ablation, and its peak amount appeared in 3 days after abla-
tion (Figures 3(d) and 3(e)). However, no significant differ-
ence of the number of Ki67-positive cells within liver
tissues was noticed between ablated mice and untreated mice
at day 14 (Figures 3(d) and 3(e)).

3.3. nsPEF-Mediated Liver Regeneration Relies on the
Activation of the HGF/c-Met Pathway. Taking into consider-
ation the significant role of HGF/c-Met signaling in liver
regeneration, we assessed the level of several cytokines
related to the HGF/c-Met pathway in the serum or liver
tissues of ablated mice by qRT-PCR and ELISA to clarify
the underlying mechanism of liver regeneration after nsPEF
ablation. The results demonstrated that mRNA level of
HGF was significantly increased within liver tissues of
nsPEF-treated mice, and its highest levels within ablated
and unablated lobes were 5.9 and 5.3 times more than those
of counterparts from untreated mice, respectively, at 3 days
after ablation (Figure 4(a)). In agreement, the protein level
of HGF was dramatically elevated within liver tissue and
climbed to the peak in 3 days after ablation (Figure 4(b)).
Similarly, the serum level of HGF protein also showed signif-
icant increases after ablation with a peak level at 3 days
(Figure 4(c)). In addition, the amount of VEGF in serum, a
key downstream cytokine of c-Met, also increased strikingly,
with 2 times higher than that in untreated mice in 3 days after
nsPEF ablation (Figure 4(d)).
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FiGURE 2: nsPEF ablation is a safe approach. (a) Serum ALT levels were measured for mice treated with nsPEF. (b) Serum AST levels were
measured for mice treated with nsPEF. (c) Mouse weight was measured between 1 and 14 days after ablation. Data were presented as

mean + SD (*P < 0.05, **P < 0.01, and ***P < 0.001).

In order to further confirm the key regulation of HGF/c-
Met signaling on liver regeneration, the c-Met inhibitor
PHA665752 (PHA) was administered after liver nsPEF abla-
tion on mice. With expectancy, the number of the Ki67-
positive staining cells was significantly decreased at 3 days
after nsPEF ablation (Figures 4(e) and 4(f)). Moreover, the
serum level of VEGF was also decreased markedly in the
PHA group in comparison to the control group at the same
time point (Figure 4(g)).

3.4. PDGF Upregulation Is Responsible for nsPEF-Induced
High Expression of HGF and Liver Regeneration. Previous
studies have shown that HGF is mainly produced by acti-
vated myofibroblasts or HSCs once liver injury occurs
[15], and monocyte chemotactic protein 1 (MCP-1) and
PDGF are the two most potent chemoattractants for
recruitment of activated HSCs rather than quiescent HSCs

[14]. Meanwhile, the accumulation of activated HSCs is
featured as the collagen deposition [14], which was con-
firmed by the positive IHC staining for a-SMA and Sirius
red staining within the periablational zone at 3 days after
nsPEF ablation (Figures 5(a) and 5(b)). Thus, the expres-
sion levels of MCP-1 and PDGF were examined. Accord-
ing to IHC results, PDGF but not MCP-1 was highly
expressed within the periablational zone (Figures 5(c)
and 5(d)). Furthermore, the treatment with a PDGF-
specific neutralizing antibody was able to inhibit accumu-
lation of activated HSCs, characterized by the decreased
number of a-SMA-positive staining cells within the peria-
blational area (Figures 5(e) and 5(f)).

Of interest, liver regeneration was also hampered mark-
edly by NA, indicated as the declined number of Ki67-
positive staining cells (Figures 5(e) and 5(g)). In addition,
HGEF levels both within liver tissues and serum in the NA
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F1GURE 3: nsPEF promotes robust liver regeneration. (a) Representative images of HE staining (magnification, x200) at different time points
after liver ablation by nsPEF. (b) IHC staining for F4/80 shows macrophages accumulating at the border zone at 3 days after nsPEF ablation
(original magnification, x40 and x200, respectively). (c) IHC staining for NIMP-R14 shows neutrophils accumulating at the border zone at 24
hours after nsPEF ablation (original magnification, x40 and x200, respectively). (d) Hepatic cell proliferation was detected by IHC staining for
Ki67-positive staining cells within the ablated and unablated lobes of the mouse liver at indicated time points after nsPEF ablation
(magnification, x200). (e) Quantification of Ki67-positive cells in the unablated area of ablated lobes and unablated lobes within 14 days
in indicated time points after nsPEF ablation. The number of positive cells was counted by the average number of positive cells in 5
random fields of a x100 microscope. Data were presented as mean + SD (*P < 0.05, **P < 0.01, and ***P < 0.001).

group were much lower than those in the control group at 3
days after ablation (Figures 5(h) and 5(i)).

3.5. nsPEF-Mediated Liver Regeneration Is More Obvious
within the Periablational Area Dependent on HGEF/c-Met
Activation. As shown in Figure 6(a), more Ki67-positive
staining cells were noticed within the periablational area than
within other areas, mirroring that cells within this area had
the higher proliferation. Because increased cox-2 expression

in the periablational area after hepatic RFA has been reported
to induce higher proliferation of hepatocytes [16], we tested
cox-2 expression in the periablational area in ablated lobes
at 24 hours after nsPEF ablation. However, the result showed
that low level of cox-2 expression was noticed (Figure 6(b))
and the higher cell proliferation here at 3 days after abla-
tion could not be suppressed by celecoxib, a cox-2 inhibi-
tor (Figures 6(c) and 6(d)). Intriguingly, higher level of
HGF within the periablational area was observed in
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FIGURE 4: The liver regeneration induced by nsPEF is related to the activated HGF/c-Met pathway. (a, b) Level of HGF mRNA (a) and protein
(b) within liver tissues at the ablated lobe and unablated lobe at indicated time points after nsPEF ablation detected by qRT-PCR and ELISA,
respectively. (c, d) Serum level of HGF (c) and VEGF (d) examined by ELISA at indicated time points after nsPEF ablation. (e-g) Mice were
administered intraperitoneally with the c-Met inhibitor PHA (30 mg/kg) (PHA) or vehicle (control) daily for 3 successive days after nsPEF
ablation. Then, the liver and serum were harvested for the detection of Ki67-positive hepatocytes by IHC staining and serum VEGF level
by ELISA. Representative IHC staining results with magnification of x200 (e), the quantification of the average number of Ki67-positive
cells within 5 random fields of x100 microscopy (f), and serum VEGF level (g) by ELISA on day 3 after ablation. Data were presented as

mean = SD (*P < 0.05, “*P < 0.01, and ***P < 0.001).

comparison to other unablated areas (Figure 6(e)), and the 4. Discussion

higher proliferation of cells within the periablational area

could be significantly inhibited after administration of  Recently, global liver regeneration stimulated by RFA has
PHA (Figures 6(f) and 6(g)), suggesting that higher cell  gained great attentions, and this phenomenon is likely due
proliferation within the periablational area was still depen-  to the accumulation of stromal cells, including inflammatory

dent on HGF/c-Met activation.

cells and HSCs, within the boundary area around the ablation
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deposition at the border zone at 3 days after nsPEF ablation. (c, d) Representative images of IHC staining for two key molecules for
recruitment and activation of HSCs, MCP-1 and PDGF within the periablational area in 3 days after ablation (original magnification, x40
and x200). (e-i) A PDGF neutralization IgG antibody (NA) or an isotype IgG antibody (control) were injected into the portal vein of
mice in one day pre- and postablation, respectively. Three days after nsPEF ablation, liver tissues from both ablated and unablated lobes
were harvested for examining PDGF expression by IHC staining for PDGF, activated HSCs by IHC staining for a«-SMA, and liver
regeneration by IHC staining for Ki67. Representative images of IHC staining for PDGF, a-SMA, and Ki67 (magnification, x200) (e) and
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zone [10]. Here, a similar result was observed in our model of
nsPEF-treated mice, and liver regeneration occurred within
both ablated and unablated lobes from mice receiving liver
nsPEF ablation. In particular, the proliferation of cells was
more obvious within the periablational area which was fea-
tured by the accumulation of activated HSCs.

Unfortunately, RFA has been reported to lead to great and
lasting damage to liver function [17], and this side effect is a
huge challenge and cannot be neglected when RFA is applied
to treat liver lesions. As an analogue to RFA, nsPEF ablation
on the liver also had an impact on liver function in the first
3 days after ablation. Nonetheless, the impaired liver function
was able to recover to normal level at 7 days after nsPEF abla-
tion, suggesting that the damage to liver function induced by
nsPEF was transient and reversible due to little thermal injures
it caused, similar to the findings by Nuccitelli et al. [18]. More-
over, nsPEF ablation merely affected weight of mice on the
account of no difference of weight between nsPEF-treated
and untreated mice. These observations provide a clue to the
safety of application of nsPEF ablation on the liver.

HGF is a well-known “complete mitogen” that binds to
tyrosine receptor kinase c-Met resulting in signaling transduc-
tion and ultimately DNA synthesis within hepatocytes and the
proliferation of hepatocytes [19]. HGF production mainly
relies on the activation of HSCs after the damage to the liver
[15]. Our results confirmed the accumulation of activated
HSCs and collagen deposition at the periablational area after
nsPEF ablation. In parallel, HGF levels in both serum and liver
tissues at all lobes were elevated from 3 to 14 days after nsPEFs
albeit a downward trend during this period. Interestingly, the
result of Ki67 staining showed the cell proliferation peak (at
both unablated areas in the ablated lobe and unablated lobes)
appeared at 3 days after ablation, different from that at 7 days
in the RFA model, which could be attributed to the earlier
peak of serum HGF level in the nsPEF ablation model [10].
In addition, blockade of the HGF/c-Met pathway led to a sig-
nificant suppression of cell proliferation and liver regenera-
tion. Thus, the accumulation of activated HSCs was involved
in liver regeneration after nsPEF ablation, which induced acti-
vation of the HGF/c-Met pathway [10].

The recruitment or activation of HSCs has been well
described and relies on PDGF expression [14, 20]. In our
model, nsPEF ablation caused an injured area in the liver,
which activated Kupffer cells to release high level of PDGF
at the periablational area [21, 22]. Besides, liver injury was
associated with increased autocrine PDGF for HSCs, and this
positive feed-back loop aids in enlarging local accumulation
and activation of HSCs [20]. Our data determined that PDGF
was highly expressed within the periablational area where
there was a noticed accumulation of HSCs after nsPEF abla-
tion. Furthermore, after the use of the PDGF neutralizing
antibody, the accumulation of activated HSCs within the
periablational area, the liver regeneration, and the increased
level of HGF in serum and liver tissues were strikingly sup-
pressed after nsPEF ablation. These data showed that the
liver regeneration induced by the rise of HGF after nsPEF
ablation was reliable on PDGF.

This study also demonstrated that liver regeneration was
more obvious within the periablational area than within any

other areas. These phenomena might be addressed by the
idea that higher expression of HGF would bring extra benefit
to liver regeneration here. However, different from the signif-
icant impact of increased expression of cox-2 on higher pro-
liferation of hepatocytes at the periablational area in the
hepatic RFA model, cox-2 might not function as an impor-
tant factor in similar higher cell proliferation at the periabla-
tional area in our hepatic nsPEF ablation model due to much
lower expression of cox-2 here. Additionally, several other
limitations in the current study still need to be presented.
Firstly, the model of nsPEF treatment was used on the basis
of only one set of parameters. Secondly, the impact of nsPEF
ablation on progression or recurrence of liver cancer was not
evaluated because one of the most important applications of
nsPEF ablation was to treat HCC.

In conclusion, our findings showed that nsPEF ablation
was safely applied on the liver and stimulated global liver
regeneration dependent on the PDGF/HGF/c-Met pathway.
Our work provides preclinical evidences that assess the safety
and potential effects of nsPEF application on treating liver
lesions; the PDGF/HGF/c-Met pathway would be a potential
target for regulating liver regeneration after nsPEF ablation.
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