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Abstract Pollution from multiple sources causes significant disease and death worldwide. Some
sources are legacy, such as heavy metals accumulated in soils, and some are current, such as particulate
matter. Because the global burden of disease from pollution is so high, it is important to identify
legacy and current sources and to develop and implement effective techniques to reduce human exposure.
But many limitations exist in our understanding of the distribution and transport processes of
pollutants themselves, as well as the complicated overprint of human behavior and susceptibility.
New approaches are being developed to identify and eliminate pollution in multiple environments.
Community‐scale detection of geogenic arsenic and fluoride in Bangladesh is helping to map the
distribution of these harmful elements in drinking water. Biosensors such as bees and their honey are being
used to measure heavy metal contamination in cities such as Vancouver and Sydney. Drone‐based remote
sensors are being used to map metal hot spots in soils from former mining regions in Zambia and
Mozambique. The explosion of low‐cost air monitors has allowed researchers to build dense air quality
sensing networks to capture ephemeral and local releases of harmful materials, building on other
developments in personal exposure sensing. And citizen science is helping communities without adequate
resources measure their own environments and in this way gain agency in controlling local pollution
exposure sources and/or alerting authorities to environmental hazards. The future of GeoHealth will depend
on building on these developments and others to protect a growing population from multiple pollution
exposure risks.

Plain Language Summary The health burdens of legacy contaminants, and the continuing
global health burdens of current pollution, are crippling both global health and well‐being. Much of the
exposure science on these relatively well‐studied pollutants is known, as is the general toxicity of past
pollutants. But there is a great distance between understanding the toxicity and exposure sources of
environmental pollutants and applying that knowledge in practical and just ways. This contribution
summarizes several major repositories and ongoing sources of soil, dust, and air pollution and addresses the
harmful effects from exposure to these.We also highlight some examples of the future of GeoHealth research
in this area by providing case studies of current novel approaches that focus on bridging the science of
pollution sources and distribution with real applications at the community level to reduce pollution's role in
the global burden of disease.

1. Introduction

Progress in tracking pollution from source to humans to disease has generally been singular in focus—one
chemical, one pathway, and one human. As we will briefly outline here, 100 years of progress using this
approach has yielded remarkable public health breakthroughs. These include steep reductions in sulfur
emissions that previously killed thousands in various “fog” events in the 1900s, identification and mitigation
of arsenic‐laden drinking water wells in Southeast Asia, and elimination of the toxic metal lead from most
product streams (although much more about the unfinished story of lead to follow), for example.
Together with significant advances in vaccine distribution and health access, these measures have arguably
led to the healthiest human populace ever in terms of lifespan and infant survival (Myers et al., 2017). But
the main focus of this analysis is not the past century but rather the next one.
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The forward focus of this contribution is reinforced by a major Lancet
Commission Report on the terrifying toll that pollution has on global mor-
bidity and mortality (Landrigan et al., 2017). This report highlights global
research showing that pollution alone kills 9 million people every year
(Landrigan et al., 2017), 15 times more deaths than from all wars and vio-
lence combined. The quality of air, water, and land is diminishing in
many parts of the world because of increasing global pollution
(Landrigan et al., 2017; Shaffer et al., 2019), and this degradation is being
borne disproportionately by poorer nations without adequate environ-
mental protections in place for their pollutions (Myers et al., 2017).
Much of this pollution has a long lifespan in the environment, and thus,
if a pollution revolution occurs tomorrow, the legacy contaminants will
remain in our environment for centuries (Filippelli, 2018).

The major advances in the coming century will come in mobilizing the
science, the policy, and the action to confront these issues. It will involve
engaging exposure science in a more convergent manner, engaging a
broader range of expertise including those now often at the table—geos-
cientists and health scientists, managers, engineers, policy makers, and
communities themselves. This is one of the reasons why the journal

GeoHealth was born, and the AGU GeoHealth section was launched shortly thereafter, and it is thus fitting
that this Centennial contribution appears here.

2. The Complicated Pathway From Pollution to Exposure to Disease

When examining the links between pollution and human health, it is important to consider the exposure
mechanism(s), the exposure source media, the exposure vulnerability of communities, and the toxicant of
health concern. The complication of this multilayer matrix is in and of itself one of the reasons why it is
so difficult and can take so long to truly understand connections between exposure and disease (Figure 1).
Each “layer” is governed by unique dynamics, often led by uniquely skilled investigators, and are disciplines
or services with unique criteria for sharing data and for disseminating it. The case of the Flint, Michigan,
water crisis provides an example of the failure to adequately integrate these sectors. Water managers
switched supply sources to save money, the involved water engineers inadequately modeled the impacts
of water chemistry on internal pipe deposit mineralogy, the surveillance system measured water chemistry
from the finished water side of the system but not at the tap, and the public health system had to wait for
hundreds of lead poisoned children showing up in clinics before the problem was traced back to its source,
over a year later (Hanna‐Attisha et al., 2016; Sadler et al., 2017). Even once the water system is ultimately
repaired, Flint, like many other older cities in the U.S., suffers from soil lead contamination, which remains
unaddressed (e.g., Filippelli et al., 2015)—in Flint, it is likely responsible for ~50% of the peak blood lead
levels even at the peak of the water crisis (Laidlaw et al., 2017). The links between lead poisoning, criminal
misconduct, and the environmental injustice of this situation have been highlighted (e.g., Needleman et al.,
2002), but it is not at all unique, and until we more fully integrate the geo‐side and health‐side in the area of
pollution exposure and disease, we are bound to continue failing the health of people, and often the most
vulnerable people.

The growth of data sets available that are geolocated has been a boon for researchers looking to integrate
appropriate data “layers” spatially and temporally. In terms of pollution‐health studies, the spatial inven-
tories of landfills, industrial facilities, roads, abandoned properties, and other potential sources of pollutants
are often available through public records, including those available in the U.S. at the Environmental
Protection Agency but also at numerous state and county level sources. Additionally, the growth of
citizen‐science networks of instruments is another way that geolocated environmental data are now open
to scientific research and discovery.

A limitation to integrating data layers that are geolocated comes largely in the human factor, where
many countries, including the United States, have strong restrictions on the acquisition and analysis of
human health data that could be identified at the individual level, for the very valid reason of

Figure 1. Schematic of pollution repositories, exposure pathways, and
disparities in health outcomes. (a) Represents a contaminant (zinc) with
limited toxicity, (b) a contaminant (lead) with significant community
vulnerability patterns, and (c) a contaminant (mercury) with limited
exposure pathways (fish) but strong toxicity for those exposed (from
Filippelli et al., 2015).
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protecting privacy. Various avenues do exist to acquire individual health data for analysis, largely
through oversight by university and independent review boards, but even here, researchers can be ham-
pered by the lack of central repositories of health data. Much as emission source data does not necessa-
rily inform researchers about the spatial distribution of the deposition of pollutants, human health data
are typically pinned to home location, or location of treating hospital or clinic. This location data do not
take into the movement of the people whose data are being acquired, nor in the length of time they may
stay at a particular location.

Even with these limitations of access and availability, great strides have been made in the past decade to
integrate environmental and health data sets in useful ways. Examples of this integration include (1)
detailed spatial and temporal analysis of urban temperatures and heat‐related morbidity (disease) and
mortality (death; Johnson & Wilson, 2009), (2) analysis of the temporal correlation between the applica-
tion of nitrate fertilizers and atrazine (a pesticide banned in Europe but widely used in the United States)
and birth defects tied to early in utero exposure (Winchester et al. ,2009), and (3) the temporal relation-
ship between atmospheric lead loading and levels of lead in children's blood (Laidlaw et al., 2012). For
this reason, new research advances in pollution and health will largely require coordination and colla-
boration between researchers and research groups with expertise in environmental chemistry, transport,
and fate analysis, geostatistics and biostatistics, disease epidemiology, sociology, geographic information
systems, and medicine.

This Centennial contribution utilizes an “environmental sector” approach to understanding the past,
present, and future of pollutants and human health. We focus on soil (and dust generated from soil).
These are disciplinary distinctions in environmental science and in environmental regulation, but like
all categorization schemes, this approach can suffer a bit from siloism. At a minimum, however, it
provides a useful construct for understanding environmental exposure from multiple sources and is a
tool for mapping out the past century of the science, and in helping to identify future developments
and research needs.

Much of the soil pollution section will use the metal lead as an example of pollution exposure risks, in
general, both because of the profound human health impact of global lead pollution (e.g., Landrigan
et al., 2017) and because it exemplifies the challenges, and opportunities, of mitigation and ultimately
of human health improvements. It is important to recognize that many pollution exposure issues
involve simply poor education and/or few choices—the poisoning of millions by arsenic and fluoride
in water in Southeast Asia is largely tied to the delayed nature of exposure‐disease manifestation plus
the necessity for free and available water (Case Study 1). We will illuminate several of these future
directions with “case studies” of novel approaches to identifying and eliminating pollution and improv-
ing global health.

Case Study 1 Geogenic Toxicants in Groundwater

Entirely natural processes can also lead to the heterogeneous distribution of a human health risk.
High levels of arsenic (As) and fluoride (F) in well water are two examples whose severity and global
impact have been well documented (Amini, Abbaspour, et al., 2008; Amini, Mueller, et al., 2008).
What is perhaps less widely known is the extent to which spatial heterogeneity complicates prediction
but also creates opportunities for rapid mitigation at very little if any monetary cost. This is important
because chronic exposure to As from drinking well water has been linked to spontaneous abortions,
stillbirths and infant mortality, inhibited intellectual and motor functions in children, and adult mor-
tality from cardiovascular and other diseases (Flanagan et al., 2012; Quansah et al., 2015; Smith et al.,
2000; Wasserman et al., 2016).
The satellite image below (Figure 2) shows a typical village in Bangladesh, the country most affected
by elevated levels of As in groundwater (BGS/DPHE, 2001). Also shown is the location and status
with respect to As of dozens of handpumps installed by individual households. The distribution of
As in well water shows that portions of the village are more affected but also that many of the less
fortunate households live with walking distance of neighboring wells that is low in As. On the basis
of blanket testing of all 6,000 wells within a larger 25 km2 area, van Geen et al. (2002) calculated that
although half the wells were high in As, 90% of these wells were located within 100 m of low‐As well.
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Over time, the limited number of medium‐ to long‐term studies that have been conducted have
shown that when As concentration in well water are low, if they change at all, it will usually be only
gradually (BGS/DPHE, 2001; McArthur et al., 2010). One of the reasons is that aquifer sediments, iron
oxides, in particular, represent a much larger pool of As than what is contained in groundwater.
Given that the two pools are to first order in equilibrium with respect to adsorptive exchange, this
means that any perturbation in groundwater flow, for instance, has to modify the large exchangeable
in aquifer sediment before it can measurably change As concentrations in groundwater (Fendorf
et al., 2010). This type of buffering against changes in groundwater flow, also referred to as retarda-
tion, is important because it means that any arrangements needed to share the subset of safe wells in
particular village are well worth making as a short‐term and possibly long‐term solution for reducing
As exposure.
Spatial heterogeneity and temporal stability mean that from a public health and Earth science issue
two decades ago, the problem of As in groundwater has evolved to one of access to information
and incentives for sharing safe wells. There are now an estimated 10 million wells in Bangladesh,
most of which have never been tested (Jamil et al., 2019). Testing in the laboratory of a such a large
number of wells, which are replaced on average once a decade, is not realistic. There are several field
kits on the market now that are entirely suitable for knowing whether a well contains 1, 10, 100, or
even 1,000 ppb As (George et al., 2012). Households are willing to make an ~$100 investment to
access water that is seemingly safe but are not willing to pay a few dollars for a test (Barnwal
et al., 2017). This means that a massive, permanent testing program should be supported by the gov-
ernment. Beyond providing the information that is essential for well sharing in the short to medium
term, the same test data can be the basis for targeting safe aquifers by individual households and the
government (Jamil et al., 2019). For both the collection of test data and dissemination of test results,
the growing use of smartphones in Bangladesh could improve this problem in the next few years.

3. Current and Legacy Pollution Sources From Soils
3.1. Soils and Soil‐Sourced Dust as a Human Health Concern

Soil is the geologic envelope of the Earth's surface that humans most interact with, whereas dust is a generic
term, which can include the fraction of dust that is transported by airborne processes but can also include
fine particles from a variety of anthropogenic practices. Here we restrict dust to the net sum of atmospheri-
cally deposited material leaving the actual suspended particulate matter for the following sections.

Figure 2. Distribution of As in hand‐pumped well water of a representative village of Araihazar upazila (subdistrict) of
Bangladesh (van Geen et al., 2014). The survey was conducted in 2012–2013 by 10 local women equipped with the ITS
EconoQuick kit (George et al., 2012). Symbols are color coded according to visual readings of the test strip of 0 and 10 (light
blue), 25 and 50 (green), and 50–500 ppb (red—levels that are unsafe for drinking water).

10.1029/2018GH000167GeoHealth

FILIPPELLI ET AL. 4 of 25



Soils develop via biogeochemical processes that occur over millennia (see Huggett, 1998, for a critical
review). Soils support plants and crops and the vast majority of our terrestrial biosphere mass. As such, they
contain contaminants that are geogenic in origin in addition to those of an anthropogenic nature (e.g., As in
groundwater from the underlying geology in Bangladesh). Soils are the primary source of geogenic airborne
dust. But soils are also susceptible to a host of human activities, including erosion and soil loss and contam-
ination from a number of human‐applied chemicals (i.e., fertilizers, herbicides, and pesticides) and human‐
emitted pollutants (i.e., lead, mercury, and organic chemicals). The hydrologic and geochemical absorptive
capacity of clays and organic matter that dominate surface soils can result in the hyperaccumulation of some
of these contaminants over time to levels that are dangerous for human exposure, both from the soil and
from the dust generated by that soil. Furthermore, microbial interactions in soils and sediments can also
convert relatively innocuous elements into lethal ones, such as the microbial methylation of mercury, which
then enables it to enter the food web and be bioconcentrated to harmful levels in fish.

The terms “toxic” and “soil” and “human” just began creeping into the scientific literature soon after the
birth of the American Geophysical Union, with the earliest clear link between soil chemistry and human
health, based on a Google Scholar search, published in 1935 (Beath et al., 1935). In the Journal of
Chronic Diseases, Schroeder and others (e.g., Schroeder et al., 1961) published a series of papers in
the 1960s with the title “Abnormal trace metals in man: XYZ” surveying the periodic table and summar-
izing the state of the literature at that time on metal excess and human health. Interestingly, this was
paired with a series of articles variously titled “Essential trace metals in man: XYZ” that tracked metal
limitation and human health. These studies set the stage for many studies over the next half century on
the exposure mechanisms (air, water, and soil/dust) and health impacts of metals. Since then, thousands
of papers and several books have been published on the topic, and we have gained some understanding
of the distribution, chemistry, toxicity, and exposure mechanisms of soils and dust to humans. In the fol-
lowing we discuss broadly the modern “state of science” for soil and dust pollution and health and focus
on several examples of these mechanisms by focusing on several of the most widespread and harmful
soil pollutants globally.

3.2. Soil Geochemistry and Human Exposure Potential

In these past decades, geochemists have been developing and employing a set of techniques to differentiate
the mineral reactivity, or bioreactivity, of metals in a number of media, including soils, water, gastric fluid,
and pulmonary fluid (Agemian & Chau, 1976; Sheppard & Thibault, 1992; Ure et al., 1992; Ruby et al., 1996;
Hamel et al., 1998; Dollar et al., 2001; Plumlee et al., 2006; Reeder et al., 2006; Plumlee &Morman, 2011; Xie
et al., 2012; Saunier et al., 2013), as it pertains to human health. Much of this work involves selective extrac-
tions in the lab and/or field‐based studies, using geochemical sensors, phytological responses, or animal
models. Often these are using mineral reactivity to standardized extractants that mimic either natural fluids
or biofluids (e.g., Tack & Verloo, 1995; Hamel et al., 1998; Ruby et al., 1996; Skowronski et al., 2010).
Additionally, isotopic tracers have been used to identify mineral and metal transformations and/or biologi-
cal uptake (e.g., Maddaloni et al., 1998; Guelke & von Blanckenburg, 2007). From these experiments, a set of
reactivity terms has been defined and debated. These include (1) bioaccessibility, which is the elemental
component that is released into solution from soil under a chemical digestion, and (2) bioavailable, which
is that portion of the bioaccessible component that can be absorbed in the body via the gastrointestinal tract,
the pulmonary system, and the skin (e.g., Alexander, 1982; Ruby et al., 1996; Herrchen et al., 1997; Ehlers &
Luthy, 2003; Peijnenburg et al., 2007; Hedberg et al., 2010; Luo et al., 2012; Kumpiene et al., 2017). To note
just one example of this distinction, in mining‐contaminated soils in Spain, Martinez‐Sanchez et al. (2012)
found that whereas total arsenic was dangerously high (well over the 15 ppm soil exposure guidelines for
a child set by the ATSDR, 2007), the bioaccessibility of that arsenic was relatively low, and thus, also, the
bioavailability was low.

Direct ingestion of soil or pollutant particles within the soil matrix is a common exposure pathway for metals
(or inhalation, mucus trapping, and swallowing, which has effectively the same net result; U.S. EPA, 2007).
The human gastric system is aggressive, and the subtle accessibility experiments appropriate for ecosystems
with a relatively small range of pH are not good models for human uptake. The stomach has a pH of 1.5–3.5,
well below that of all normal surface environments, and the intestines have a pH of 6 to 7.4 (variation largely
driven by stage within the intestinal tract) and myriad digestive enzymes and microbiota. This large
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sequential range in pH and the very matrix heavy nature of the gastric system has made moot many of the
other ecological digestion techniques used and thus has been more effectively modeled by simulated gastric
digestions in lab‐based studies.

Capitalizing on the fact that pollutant concentration might not be as important as uptake potential (i.e., the
bioavailable fraction of the total), a number of remediation technologies have been evolving to immobilize
harmful pollutants in place in cases where mitigation by removal of soil is not feasible or economical. Clay
minerals have been used in several field studies for cadmium (Cd) and lead (Pb) remediation of contami-
nated soils and sediments (e.g., Sun et al., 2015). But perhaps the most effective in situ remediation approach
for metals has been mineralization capture with phosphate minerals (Miretzky & Fernandez‐Cirelli, 2008;
Zia et al., 2011). After various laboratory‐based experiments have shown that the addition of large amounts
phosphate into soils contaminated by lead and other metals significantly lowers their bioavailability through
formation of a metal‐phosphate mineral, the U.S. EPA has funded several large‐scale field applications of
phosphate in lead‐contaminated communities (e.g., Freeman, 2012; U.S. EPA, 2011). The phosphate was
applied in the form of crushed fish bones, which is composed almost entirely of hydroxyapatite. The advan-
tages of this approach are (1) the beneficial utilization of a material, fish bones, that would otherwise be a
waste product of fish packing, (2) the in‐site immobilization of lead without the need for disruptive,
property‐by‐property soil removal, and (3) the fertilization effect of the phosphate itself that is also released
during bone decomposition. There is a potential for inadvertent remobilization of Pb through changing the
soil pH. Additionally, the mineral formation kinetics are slow, and thus, the treated properties have to have
proper irrigation and soil stabilization, typically achieved by adding a layer of topsoil over the fish bone‐
treated layer. This latter step alone has proven successful in several studies (e.g., Filippelli et al., 2015;
Mielke et al., 2011), and unlike the slow process of fish bone remineralization, the improvement
is immediate.

3.3. Spatial Distribution of Soil Pollution

Soils bear a legacy of hundreds to thousands of years of human occupation and industrialization (e.g.,
Bellinger, 2011; Chambers et al., 2016; Filippelli & Taylor, 2018). Some pollutants, including many metals
with poor mobility in soil media (i.e., lead, cadmium, and copper), have soil residence times on the order
of hundreds to thousands of years. Additionally, if the major pathway was via airborne deposition, surface

Figure 3. Blood lead levels of children in Indianapolis, Indiana, USA, for the period February 2002 to December 2008
(n = 12,431) for children between the ages of 0 and 5.99 years old in Indianapolis, Indiana (area = 1,044 km2; from
Filippelli et al., 2012).

10.1029/2018GH000167GeoHealth

FILIPPELLI ET AL. 6 of 25



soils have concentrated decades to centuries of deposition of these low‐mobility metals right near the sur-
face. The problem is that soil metal concentrations are highly heterogeneous at the small scale because of
multiple sources (house paint, automobile exhaust and debris, particulate matter from utilities, industrial
sources, etc.), and barring the identification of particular emission sources and sinks, these metal hot spots
prove exceedingly difficult to pinpoint (Filippelli et al., 2015; Laidlaw et al., 2017; Mielke et al., 2019; Zahran
et al., 2013). Indeed, we often need to resort to spatial distribution of metal‐poisoning children to map back
to potential sources (Figure 3).

We need a better understanding of the soil metal dynamics and patterns of distribution and associations in
the urban environment, with an eye toward identifying those processes and sources that have the highest
potential to cause human harm and ultimately remediating those sources in a surgical fashion (Case
Study 2).

Case Study 2 Pollution Biosensing

Understanding, measuring, assessing, and responding to environmental contaminant risk is an ever‐
increasing requirement for industry, government, and individuals. Much of industry and government
environmental monitoring is completed using standard methods and approaches (e.g., in Australia such
as those promulgated by Australian Standards). However, the wider community now has unprecedent to
environmental data and multiple sensing tools to better understand their environment (e.g., Kaufman
et al., 2017).
Rising out of the need to develop new and innovative approaches to assessing temporal and spatial shifts
in contaminants has been the use of terrestrial biomarkers, which are relatively easy to collect and ana-
lyze but provide dense data. Examples that people can readily connect environment to contamination
include the use of historic lichens and fungi (e.g., Flegal et al., 2010; Wu et al., 2017), decadal records
of stored red wine (Kristensen et al., 2016; Medina et al., 2000), and bees and honey (Zhou et al., 2017;
Zhou et al., 2018; Smith et al., 2019).
These studies show unequivocally that environmental contamination since the industrial revolution has
grossly contamination urban environments (Kristensen et al., 2017), with distal oceans and ice masses
being affected but to a much lesser extent (McConnell et al., 2014; More et al., 2017; Ndungu et al.,
2016). The data all show that environmental contamination from mining and smelting of lead and the
use in leaded gasoline have resulted in clear shifts in lead concentrations and isotopic compositions over
time. In particular, there were changes in lead concentrations and isotopic compositions associated with
the start of leaded gasoline use in the early twentieth century followed by cessation of use across most of
the global by the turn of the next century.
Recent studies out of Australia (Zhou et al., 2018) and Canada (Smith et al., 2019) using a variety of
detailed spatial sampling and geochemical analyses of environmental media (soils and dusts) and bees
honey and wax have confirmed that both native species and the more common Apis Mellifera (European
honey bees) are excellent trace element biomarkers for inorganic trace metal contaminants (Figure 4;
Negri et al., 2015; Van Der Steen et al., 2015; Taylor, 2019). These studies are important because bees
and honey production is growing rapidly in popularity in urban environments, producing thousands
of opportunities to understand the prevalence, distribution, and impact of the recycling of potential
toxic contaminants into food and ecological systems. The Canadian study of bees and honey in
Vancouver compared trace elemental concentrations to those found in local dust and air samples
and proxies such as lichens and tree rings. Their analyses showed different environmental and biomar-
kers contained corresponding data, providing additional evidence for the reliability of bees and honey
as biomarkers for anthropogenic contamination.
Even though global populations are becoming more urbanized and are consuming more, there is an
unprecedented awareness of human impact on the environment (EEA, 2016) with related concerns
about the quality and source of the food (e.g., Zhou, Taylor, Davies, & Prasad, 2018) produced in poten-
tially contaminated landscapes (U.S. EPA, 2014). Almost paradoxically, in the center of contamination
—our global cities—urban gardening has risen to an all‐time high, with ~35% of Americans (NGA,
2014) and 52% of Australians producing some food from their garden space (TAI, 2014).
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Soils are an enormous reservoir of lithogenic and atmospheric trace elements, some of which have been sig-
nificantly adulterated by anthropogenic emissions and depositions, in particular lead for paints and leaded
gasoline emissions (Ashrafzadeh et al., 2018; Filippelli & Taylor, 2018; Rouillon et al., 2017). Given that com-
munities are so heavily invested in their own welfare and producing clean and safe food from a reliable
source, they have proven to be an incredible resource for the biosensing of soils for urban trace metal con-
taminants. The citizen science soil sampling programs run out of Indiana University‐Purdue University
Indianapolis (USA) and Macquarie University (Sydney, Australia) have resulted in >15,000 soils from
>3,300 homes being tested for a range of knownmetal contaminants by XRF (Figure 5). Participants are pro-
vided with a results report containing information about soil guidelines and additional resources that con-
tain advice on soil contamination and prevention tips to reduce exposures (https://research.science.mq.
edu.au/vegesafe/). These programs have assisted urban gardeners by providing them with knowledge of
their own environment and ways to reduce exposure.

Figure 5. Soil lead concentrations at the home dripline from Indianapolis, Indiana (USA) in colored circles, and percent
of population in poverty at the census block level (www.mapmyenvironment.com).

Figure 4. Foraging distance and organism size of Australian native versus imported European bee populations (from
Zhou et al., 2018).
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To classify legacy soil pollution risk, some generalities based on the location and land use are useful.
Here, we break this up into urban settings and locations near mining facilities or abandoned mines.
One priority is understanding and mitigating those cases where pollutant levels are high and/or exposure
potential is high (e.g., arid and/or windy environments), and areas with a high exposure impact, largely
relating to population size. It is important to note that other human‐impacted environments exist, such
as agricultural areas, military facilities, and specialty chemical facilities, each with their own unique
exposure risks.
3.3.1. Urban Patterns
3.3.1.1. Roadways
Roads are linear point sources of pollution, and a strong relationship exists between morbidity/mortality
and distance that a person lives from a road. But this generalization masks a variety of individual pollu-
tant and resultant exposure dynamics that are important to untangle. First, it is not just proximity but
also traffic density that matters. Additionally, roadways create eddy systems that transport those solid‐
phase contaminants some distance from the roadway itself, and thus, traffic speed and road edge design
(barrier, no barrier) make a difference. Second, vehicles emit a vast and varying array of pollutants
through their tailpipes, their undercarriage, and their tires and brakes. These tailpipe pollutants include
particulate matter and gases from primary and secondary products of fossil fuel combustion (more on
these in the section 0.3). This emission profile varies substantially by fuel type, fuel quality, age, and
technology of emission control systems, and in the case of leaded gasoline, fuel supplements. Finally,
vehicle components themselves are slowly but surely degrading and leaving residues of this process
behind on the road, including various plating materials high in chromium, significant amounts of zinc
from tire wear, copper and copper alloys from brake wear, and lead wheel weights that can fall from
wheels and be degraded along roadways.

Cities, with their typical high density of roadways, large traffic volumes, and historical records of leaded
gasoline consumption, typically contain a crisscross of soil contamination that might have been originally
restricted to near the roadway but are now more diffuse due to soil and dust mobilization. One example
of this roadway legacy is seen in lead, which was emitted from tailpipes for decades with the combustion
of leaded gasoline. Lead was almost completely phased out of gasoline by 1980 in the U.S., but the legacy
of this past use is still painted onto urban soils, with old major roadways showing a clear pattern of enrich-
ment proximal to the road and gradual decrease by 30–50m of the roadway edge to whatever the urban back-
ground is in that region (e.g., Filippelli et al., 2005; Figure 6). Interestingly, newer urban throughways, even

Figure 6. Average lead concentrations in surface soil as a function of distance from the roadway in urban and suburban
transects, revealing the legacy signature of lead deposition from burning leaded gasoline many decades earlier (from
Filippelli et al., 2005).
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though high density, only show a hint of this roadway effect, presumably
because they were mostly used after leaded gasoline had been phased out.
3.3.1.2. Housing

Lead‐based paint is a critical component of the urban lead load, as this was
used for centuries before being phased out during the twentieth century.
Much of this lead is still on older housing stock but is anything but immo-
bile, as the degrading paint deposits both indoors and outdoors near the
house exterior, where values can be several times higher than the average
for the property as a whole (Filippelli et al., 2018). Other issues, including
zinc, can also be elevated at the house dripline, either due to inclusion in
paint and/or to the airborne fallout that occurs at the home barrier
(Filippelli et al., 2018). Houses in urban (and indeed rural) environment
can also contain myriad indoor issues, including a host of human‐
produced chemicals (PFOAs, VOCs, and others; Filippelli, 2019), the tox-
icology of which is poorly constrained.
3.3.1.3. Industrial Sources

Industrial facilities, particularly when colocated in urban areas as many
have been for proximity to employees and distribution hubs, can pose ser-
ious health impacts in urban communities. Off‐site emissions or migra-
tion via dust resuspension can impact nearby communities (Brandon,
2013; Filippelli & Taylor, 2018). Indeed, even with emission controls
increasingly implemented in many countries over the past 50+ years,
modern facilities still emit a host of pollutants, including particulate mat-
ter (with attendant chemical pollutant loads) and volatile components
that lead to poor air quality (e.g., EPA Emissions Inventories, 2019). In
countries without adequate protections, these emissions can cripple com-
munities with life‐shortening pollution (Dowling et al., 2016; Ericson
et al., 2013). Those industries that are now well controlled can also have
a legacy of past preregulatory emissions, making the identification and
mitigation of these legacy impacts a critical issue. More concerning, how-

ever, are so‐called “Ghost Factories,” those facilities that emitted pollutants before modern regulations but
which are now either abandoned or completely demolished. Often, inadequate records or site historical doc-
umentation is available to map out the potential past emissions from these facilities, making the identifica-
tion and mitigation that much more challenging (USA Today, 2012).

3.3.2. Mining Facilities

Mining andmineral extraction, as well as secondary processing of materials, concentrate potentially harmful
minerals and elements and, in so doing, can pose risks from direct occupational exposures and indirect risks
to families of workers and nearby localities if not tightly controlled. The growth of secondary mining and
processing from nonprofessional recyclers has caused widespread contamination and poisoning of proces-
sers and indeed entire neighborhoods (Bose‐O'Reilly et al., 2017). Primary exposures to workers can be con-
trolled and reduced by regulatory oversight and the use of Personal Protective Equipment (PPE), but one or
both of these measures can fail.

Arguably more elusive is control of pollution in abandoned mining facilities and from secondary processing.
One example, which will be expanded later as a case study, is the abandoned zinc and copper mining opera-
tions within the city of Kabwe, Zambia, termed “The world's most toxic town” (Guardian, 2017). A victim of
colonial mining, conducted with minimum concern of worker or population safety and maximum concern
of profits, Kabwe has been left littered with mine tailings and waste dumps with concentrations of lead and
other metals at toxic levels, resulting in profound lead poisoning epidemic in the city (Figure 7; Bose‐O'Reilly
et al., 2017). Additionally, the tailings are so rich in lead that they are often secondarily mined by residents,
with materials melted down in backyards and near homes for resale. Several active programs are underway
in Kabwe to identify the most contaminated properties and mitigate them (Case Study 3), but the scale of the
problem and the poor infrastructure for maintaining mitigation efforts (i.e., access to continuous and afford-
able irrigation to maintain grass groundcover) can limit effectiveness of these projects.

Figure 7. Over 95% of children living in the most affected townships of
Kabwe, Zambia, had high blood lead levels over the intervention level set
by many health agencies (Bose‐O'Reilly et al., 2017; photo taken by G.
Filippelli).
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Case Study 3 Measuring Pollution From Space

Planetary geologists have used the reflectance spectra from the Moon to interpret distribution of minerals
and elements on surface soils (e.g., Li, 2006). Reflectance spectroscopy is a powerful tool as it provides
interpretative resolution at the scale of the sensors used. The interactions of incoming solar radiation
and minerals at the planetary surface can result in distinctive patterns of reflectance spectra that are cor-
related to mineralogic properties of the reflecting surface. The presence of water, organic matter, and
photosynthesis‐active biological material significantly impacts the emission spectra—indeed, this charac-
teristic is typically exploited to measure exactly these components on Earth. This approach shows
extreme promise for mapping the concentration of metals in surface soils ((Figure 8); Pandit et al.,
2010), particularly when hyperspectral detectors are used, which separate reflected light into narrow
wavelength bands across a broad wavelength range. Although used for mining exploration (e.g., Bishop
et al., 2011), these reflectance techniques have not widely been used to detect the distribution of
pollution‐sourced metals and can be particularly important as a first‐level surveillance tool to identify
hot spots for further focus. In a pilot effort in Kabwe, Zambia, a team of researchers is collecting and ana-
lyzing surface soil samples (top 1 mm) for the geochemical composition and the hyperspectral signatures,
in an attempt to test current algorithms and prepare a predictive map for a subsequent drone‐based sur-
vey to validate this approach (Figure 8). It has the advantage of covering a broad area very quickly and for
providing a very small spatial footprint of detection—on the order of <0.1 m. This technique, if validated,
can be used to map broader areas of Kabwe and several other mining‐impacted cities in Zambia and
Mozambique, capitalizing on the extended dry season that occurs in these areas that minimize interfer-
ence from water and vegetation. This technique is not likely useful in all situations (i.e., tropical settings
with significant vegetation cover and high soil moisture), but it can provide another sensing tool for 21st
century identification of pollution hazards, with potential applications for satellite‐based
hyperspectral tools.

4. Air Pollution and Health
4.1. History

Humans have profoundly altered the composition of the Earth's air throughout the twentieth and 21st cen-
turies. Any time fuel is burned, it produces products of incomplete combustion, including air pollution, a
mixture of gaseous, liquid, and solid compounds that damage the environment and human health. While
air pollution is often viewed as an unfortunate byproduct of the Industrial Revolution, effects of emissions
from coal burning were documented in cities all the way back to 375 BC Rome and likely before. It was
not until the Belgium Meuse Valley (1930), the Donora Pennsylvania (1948), and the London (1952) smog
disasters that air pollution really gained public and policy attention. Subsequent to these infamous events
and their large associated death and morbidity tolls, domestic coal burning was prohibited in many parts
of the world, and a wide industrial restructuring took place. Together with a gradual emergence of

Figure 8. (left) Reflectance of soil samples, from a transect of near‐road (high lead) to far‐road (low lead) samples (sample
1 to sample 8), with reflectance measured outdoor and the noise at 1,400 and 1,900 nm is due to atmospheric water, (right)
laboratory‐determined abundance of lead plotted against the abundance of lead predicted by a partial least squares
regression model using 880 and 1,300 nm bands (from Pandit et al., 2010).
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various clean air acts, environmental acts, and pollution control technologies, air quality improvements
were realized across many regions and levels of several key pollutants declined considerably (Briggs et al.,
1997). Since then, the story of air quality has evolved from a focus on local disasters and air quality manage-
ment in the U.S. and Europe, to rapid increases in pollution levels in Asia and Africa, understanding of regio-
nal air pollution influences beyond national boundaries, and, more recently, recognition of interconnections
between air quality and climate change. In present urban areas, the principal source of outdoor air pollution
has also changed from coal‐based sources to road traffic, at least in developed nations.

4.2. Health Impacts

The health effects of air pollution are now well known and have been studied, confirmed, reanalyzed, and
confirmed again through decades of environmental epidemiology and other types of health studies, includ-
ing human exposure studies, animal studies, and cellular toxicology. Landmark studies that advanced the
field and our understanding of the wide range of health effects associated with air pollution notably include
the Harvard Six Cities study (Dockery et al., 1993) and the American Cancer Society Cancer Prevention
Study (Krewski et al., 2005), both of which have been independently reanalyzed and further extended in
numerous following publications. While these pioneering studies primarily focused on mortality, there is
now emerging evidence that links air pollution to a wide spectrum of diseases including childhood asthma,
congenital anomalies, dementia, low birth weight and preterm birth, lung cancer, obesity and diabetes,
among others (Sanchez, 2020).

Based on this body of evidence, which continues to rapidly evolve, the World Health Organization (WHO),
the European Commission and the U.S. Environmental Protection Agency (U.S. EPA), and other institu-
tions around the world have developed causality determinations linking individual air pollutants and air
pollution sources with health outcomes. These institutions also set ambient air quality guidelines (in the case
of WHO) and regulations (in the case of U.S. EPA and the European Commission) at levels intended to be
protective of public health. However, more recent evidence across a variety of health outcomes shows that
adverse health effects are associated with air pollution levels well below current guidelines and regulatory
standards, suggesting that these values do not reflect the latest evidence put forward by several epidemiolo-
gical studies and that the science is outpacing legislation. Many studies have hinted at or suggested that air
quality guideline values need revision, and, in fact, the WHO is currently in the midst of such revision to
account for the most recent evidence linking air pollution to health effects.

4.3. Air Quality Trends

Overall, trends in air pollution levels are mixed globally. While the air in developed nations has generally
gotten cleaner even as economic conditions and productivity have grown, air pollution in developing nations
continues to rise at an alarming rate (World Health Organization, 2016). Also, importantly, trends in air pol-
lution and human exposures can significantly vary within cities and at the local scale. In general, air pollu-
tion, and therefore its associated adverse health effects, tend to be higher and more concentrated in lower
socioeconomic locales and ethnic minority communities (Grineski & Collins, 2018; Morello‐Frosch et al.,
2001; Mueller et al., 2018), despite some heterogeneity when observing in large metropolitan areas like
New York (Hajat et al., 2013). In the U.S., for example, reductions in fine particulate matter emissions from
U.S. manufacturing fell by about two thirds, even as real output from U.S. manufacturing grew substantially
(Shapiro & Walker, 2019). Similarly, analysis by the U.S. EPA annual report: Our Nation's Air shows that
concentrations of air pollutants have dropped significantly since 1990; for example, annual nitrogen dioxide
(NO2) levels dropped by 56% and PM2.5 by 41% (U.S. Environmental Protection Agency, 2018). A recent
nationwide analysis showed that NO2 levels across the contiguous U.S. decreased by 33% on average in
the period between 2000 and 2010 (Alotaibi et al., 2019). However, the racial disparity between whites
and nonwhites persisted in the same time period (Clark et al., 2017), indicating that although air quality
is improving in the U.S., environmental justice is not (Figure 9).

4.4. Challenges to and Opportunities for Future Improvements

Ensuring healthy air quality for the global population throughout the 21st century could be challenged by
anticipated global environmental change, large‐scale social and demographic shifts, and economic and tech-
nological developments. The overall air quality improvements in some regions over the last several decades
have been largely achieved through emission control and abatement technologies, such as catalytic
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converters and diesel particulate filters on vehicles and scrubbers on power plants, in addition to
productivity growth and movement of polluting industries, such as steel and cement, to places like China.
Emissions, however, have been increasing in other parts of the world—notably in China throughout the
2000s and 2010s, and now in India. Large‐scale changes in the global environment, demographics, and
economic and technological development in the future could affect population exposure to air pollution
in different ways, and the pollution control measures relied on historically may not be enough in the future.
Further, the emerging evidence showing consistent adverse health effects at low levels of air pollution is
concerning and has great implications to risk assessment and policy decisions, as it indicates that health
effects are still occurring at the lower levels of air pollution achieved in countries where air quality levels
have improved over the last decades.

Effects of global climate change on air quality are increasingly studied and recognized as having a potentially
profound impact on global public health. Climate change can affect ambient air pollution levels by changing
photochemical rates of secondary pollutant formation and by increasing “natural” emissions (e.g., from soil
dust and wildfire smoke). For example, climate change has been shown to increase ozone air pollution in the
United States, particularly throughout the Midwestern states (Fann et al., 2015; USGCRP, 2016). Effects of
climate change on particulate matter pollution are less well understood, and results of studies focusing on
this topic are somewhat mixed due to multiple poorly understood and potentially competing effects occur-
ring simultaneously. However, recent research indicates that climate‐driven meteorological changes can
have strong effects on “natural” emissions. In the U.S., for example, climatic changes can lead to greater
ambient soil dust concentrations in the Southwestern states (Achakulwisut et al., 2018; Achakulwisut
et al., 2019) and increased smoke PM2.5 from wildfires throughout the country (Ford et al., 2018). While
the net effect of climate change on air quality in different locations remains uncertain, the current evidence
suggests potentially large impacts that are clearly deserving of further study.

Social and demographic changes may also influence air pollution emissions and impacts on public health
throughout the 21st century, as has been shown to be the case over the last several decades (Cohen et al.,
2017; Health Effects Institute and Institute for Health Metrics and Evaluation, 2019). These social and
demographic changes include population aging, epidemiological shifts from infectious to noncommunicable
diseases, and rapid urbanization, particularly in Asian and African countries. Potential future worsening of
air quality throughout Africa and Asia is particularly concerning given that nearly all population growth
projected through 2050 is expected to occur in African and Asian cities (United Nations, 2014). Health

Figure 9. Annual average concentrations of PM2.5 in the Harvard Six Cities Study. Monitoring data for available years
1980–1988 and PM2.5 estimated from Aerometric Information Retrieval System and extinction data for years where Six
Cities data were not available (from Laden et al., 2006).
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equity issues may also be exacerbated as wealthy nations in North America and Europe continue the trend of
outsourcing manufacturing and associated pollution to other locations (Moran & Kanemoto, 2016; Zhang
et al., 2017). In many cases, these countries have less stringent environmental regulations, resulting in
higher emission factors per unit energy consumed. Populations in these locations often also have poor access
to healthcare, medication, and other health systems, in addition to lower socioeconomic status and poten-
tially poor diets and additional adverse coexposures, making them more vulnerable to health effects from
air pollution. In total, population aging and urbanization combined with continued economic globalization
may exacerbate the health impacts of air pollution, and inequities, over the coming decades.

Technological developments could also be game changers. The last few years have brought rapid declines
in prices of renewable energy like solar and wind and shifts of energy production away from highly pol-
luting coal (Watts et al., 2018). In the transportation sector, consumers are turning away from diesels in
Europe in the wake of emissions cheating scandals, and hybrid electric vehicles are now cheaper than
diesel vehicles in some parts of the world (Diaz et al., 2017). It remains unclear what large‐scale electri-
fication of vehicle fleets, autonomous vehicles, and ride sharing will mean for air quality and public
health, and only few studies have examined these issues. For example, if pervasive ride sharing displaces
public transportation ridership or active commuting by bicycle and walking, transportation emissions
may increase and physical activity could decrease. Vehicle electrification could improve air quality in
cities but has the potential to increase pollution closer to electricity generating units where rural,
nonurban car users might reside. Decarbonization of electricity generation as the price of renewables
and natural gas drop makes vehicle fleet electrification increasingly attractive, at least from an air quality
standpoint. Nonetheless, electricity generation is yet unclean in many parts of the world, and the relative
importance of nonexhaust vehicle emissions, which may increase with fleet electrification due to increas-
ing vehicle weights (Timmers & Achten, 2016), is often understudied. These technological changes may
result in substantial air quality changes, and their influences on both combustion and noncombustion air
pollution remain unknown (Figure 10).

Economic shifts may also affect levels of exposure to both household air pollution and ambient air pollution.
Economic growth and governments implementing large‐scale programs to electrify rural households and
deliver cleaner fuels (e.g., LPG) and stoves are reducing the number of households that burn solid fuels
inside or near their homes for cooking, heating, and lighting (Health Effects Institute and Institute for
Health Metrics and Evaluation, 2019). Economic development may have the opposite effect on ambient
PM2.5 levels—previous analyses indicate that as economies transition from low income to low‐middle and
middle income, ambient PM2.5 and associated disease burdens rise (Figure 11; World Bank Group and
Institute for Health Metrics and Evaluation, 2016). It will therefore be important to continue the

Figure 10. Trends in manufacturing pollution emissions and real output in the U.S. (from Shapiro & Walker, 2019).
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transition away from household use of solid fuels and simultaneously accelerate adoption of world‐class
emission standards and national ambient air quality standards to ensure that both household and
ambient air quality improve for people around the world.

Major intergovernmental institutions have turned their attention to air pollution in recent years, even
though it is not a major goal or target of the United Nations Sustainable Development Goals. The increased
attention was sparked in part by recent “airpocalypse” events in China and India and the Global Burden of
Disease studies that place air pollution as the leading environmental health risk factor globally, and the fifth
leading health risk factor overall, resulting in millions of premature deaths worldwide each year. The
Climate and Clean Air Coalition to Reduce Short Lived Climate Pollutants launched in 2012 and is aimed
at mitigating both climate change and air pollution. In 2014 and 2015, the World Health Assembly and
the United Nations Environment Programme, two high‐level platforms for making decisions on global
health and the environment, passed resolutions to address air pollution. Other intergovernmental institu-
tions, such as the Convention on Long‐Range Transboundary Air Pollution, have focused on air pollution
many years earlier. Nongovernmental organizations are also taking action. One example is the C40 cities
network (C40 Cities, 2019), which has traditionally focused on greenhouse gas mitigation and is currently
expanding its focus on air quality management and working toward achieving climate, air quality, and
health cobenefits in cities worldwide.

4.5. Air Pollution in the 21st Century

While the efforts described above have the potential to be transformative, more work needs to be done to
promote awareness of air pollution and its public health consequences among the general public and
decision‐makers at all levels—city, state, national, and intergovernmental. A key challenge that could
hinder success in bringing down air pollution levels globally is the lack of funding. Air pollution has not
received the same degree of investment as other global health risk factors, such as malaria and AIDS. In
addition, many decisions affecting air quality are made at the local level, yet local jurisdictions often lack
funding to address the issue to the degree that is necessary, given many other competing needs. Another
key challenge is fragmented decision‐making at nearly all governance levels. Separate national or municipal
administration departments address energy, transportation, air quality, and health, though these topics are
highly interrelated and often interdependent.

Given what is currently known about the health risks from air pollution and its sources, what more needs to
be done to fill knowledge gaps and track progress toward a goal of universal access to clean air? Open

Figure 11. Comparison of percentages of deaths attributable to household air pollution, ambient PM2.5, and ozone by
sociodemographic index (from Health Effects Institute and Institute for Health Metrics and Evaluation, 2019).
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questions that warrant further investigation include a better understanding of mortality and morbidity
impacts at low and high air pollution concentrations, which are two ends that are becoming increasingly
relevant in developed nations as their air becomes cleaner, and in developing nations as their air pollution
levels are at unprecedented peaks. Further, several studies have identified negative health effects of pollu-
tants such as ammonia (a byproduct of Selective Catalytic Reduction technology and a contributor to the for-
mation of secondary fine particles and ultrafine particles), black carbon, nonexhaust PM components, and
ultrafine particles. In recent years, studies have shown that these pollutants are abundant on the local scale
due to traffic emissions and that their toxicity might be heightened due to factors such as size, high concen-
trations (and numbers in the case of ultrafine particles), high surface areas, and toxic chemistry. The levels of
these pollutants, however, are as yet unregulated in ambient air and are not routinelymeasured. More recent
research has focused on NO2 as a relatively easy to measure marker of traffic, especially in urban areas, yet
the putative agents especially in the traffic‐related air pollution mixtures remain largely unknown.
Researching awider range of air pollutants' effects, beyond PM2.5 andNO2, and specifically looking at subsets
of particulate matter and their chemistry, might advance the science further. Another contemporary issue
that warrants further attention is the relative importance of nonregulated, nontailpipe emissions in the
burden of disease. These emissions are likely to increase, both in the developed and developing world with
the expected widespread introduction of electric vehicles. Surprisingly, few studies have addressed the health
effects of nontailpipe emissions, which again relates to the need for better PM speciation and analysis.

Further research and practice gaps remain. Historically, air pollution surveillance has relied on costly and
resource‐intensive ground‐based monitors. We are now seeing rapid development of other types of technol-
ogies that are playing increasingly important roles in measuring air pollution concentrations. For example,
satellite remote sensing of aerosol optical depth and trace gases have advanced considerably over the last
decade and have been used to derive ground‐level estimates of PM2.5, NO2, and other pollutant concentra-
tions globally (Duncan et al., 2014; Larkin et al., 2017; Shaddick et al., 2018; van Donkelaar et al., 2016).
Rapid proliferation of low‐cost sensing technologies on the market, while still challenged by quality and
durability issues, is likely to be increasingly used in citizen science contexts and may serve a role in air qual-
ity surveillance, health studies, and public awareness (more on this in the Case Studies section) particularly
as the technology advances (U.S. Environmental Protection Agency, 2014). Pilot studies using air quality
monitors on vehicles have also shown some promise in highlighting how air pollution levels differ between
neighborhoods within cities (Alexeeff et al., 2018; Apte et al., 2017). Important limitations to using these new
technologies remain, including challenges with achieving a high enough degree of accuracy and precision.
The lack of ground‐based monitors in most of the world also makes it difficult to narrow uncertainties of
concentration estimates from remote sensing and other technologies, as there are no observations to
compare against. Advancing air quality surveillance globally should therefore remain a top priority for the
global community in the coming years.

Case Study 4 Sensors Everywhere

The explosion of wearable devices has brought a host of data to the personal level, whether it be fitness or
health information via watches or air quality warnings via smartphones. Wearable systems have also
been used to measure pollution exposure, including vest‐based systems for urban bikers in New York
City to measure pollution exposure loads during bike commutes (Chew et al., 2019) and silicone wrist-
bands used to measure exposure to a variety of human‐produced chemicals (e.g., Wang et al., 2019).
Beyond wearables, a range of small‐scale environmental monitoring devices are now available and have
been effectively deployed to measure air quality (mostly fine particulate matter PM2.5) at the local level.
This has proven crucial in many environments where regulatory air monitors are sparse or even nonexis-
tent and where hyperlocal measures are more important than regional measures of air quality. An exam-
ple of a commercial systemwith wide application is PurpleAir, which has a detailed yet still approachable
web presence to examine maps of air quality across the globe, updated every 60–90 s (Figure 12).
Research teams have used these networks to identify local risks to health, with the potential to offset the
relative inaccuracy (compared to regulatory monitoring systems) with sheer number of sensors and with
the ground‐level data that these sensors provide. An example of such an application is from the Santa
Rosa, California fire of October 2017 (Gupta et al., 2018), where researchers used the PurpleAir network
and compared results to the few scattered regulator monitors and with satellite‐based analysis of
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Atmospheric Optical Density (AOD) of PM2.5. This nested approach has the advantage of utilizing each
technique to its maximum potential, with (1) PurpleAir monitors being of lower accuracy and
precision as regulatory monitors for PM2.5 but capable of measuring this particulate at the personal
level and on rapid timescales; (2) regulatory monitors being very widely spaced with placement
specifically designed to capture regional air quality, but with data of high quality; and (3) satellite‐
based sensors measuring the total atmospheric load of PM2.5 rather than just ground‐level data but
having a broad coverage and including other meta‐data (e.g., IR to capture locations of active fires).
This combination can bring disaster response from the level of space to backyards and significantly
improves immediate response to protect public health.

There are emerging effects of air pollution that can substantially contribute to burden of disease analyses and
provide a more complete picture of the true burden across a spectrum of outcomes beyondmortality, such as
pregnancy complications and adverse birth outcomes, effects on fetal growth and birth defects, human
reproduction, and neurotoxicity. The effects of air pollution are also not proportionally distributed despite
the tendency in research (partly due to data availability and statistical power concerns) to estimate overall
risk estimates in the total population rather than subanalyzing susceptible subpopulations. Extrinsic and
intrinsic effect modifiers that have been identified in air pollution epidemiology, but that have not been
systematically studied, include socioeconomic status, nutrition, stress, exposure to violence, coexposures
(for example, noise, heat, and contamination), ethnicity, age, sex, and genetics. A better understanding of
these factors, and a more specific exposure‐response function estimation in subpopulations, can help
advance burden of disease assessment methods and better steer limited mitigation resources. Finally, there
is a general consensus that the benefits of regulations and pollution abatement solutions outweigh the costs
of implementation, especially when considering cobenefits beyond human health such as climate change
mitigation. However, the benefits of solutions and regulations are very policy and context specific.
Additional analysis, especially tracking the full‐chain between air pollution sources and their ultimate
health impacts, can shed light on the results of specific measures in specific locations and populations and
may strengthen the case for action.

Additional public health surveillance is needed to track how each emission sector is contributing to the air
pollution disease burden globally, nationally, and in urban areas in response to changes in policies, technol-
ogy, and population. Air pollution disease burden estimates should also be projected into the future to
account for the environmental, technological, social, and economic shifts expected over the coming decades.
Future projections can enable more informed decision‐making about how to mitigate the public health
consequences of air pollution.

Figure 12. Screenshot of PurpleAir global map, showing the U.S. EPA PM2.5 Air Quality Index.
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Often, decision‐making on air quality focuses on the lowest cost and fastest actions, evidenced by histor-
ical reliance in the U.S. and Europe on end‐of‐pipe emission controls, such as catalytic convertors and
diesel particulate filters on vehicles and scrubbers on power plants. These technological controls have
successfully reduced air pollution but do not reduce carbon dioxide or other greenhouse gas emissions
and do not mitigate other societal damages linked to the same air pollution sources such as limited phy-
sical activity, urban heat, noise, road injuries, and fatalities. Instead, a more holistic approach beyond air
pollution to consider other exposures and lifestyles is needed. Considering these other effects of air pol-
lution sources can better frame linkages with human health and support analyses, policies, and strategies
to holistically improve public health and avoid unintended consequences (Khreis et al., 2019). This more
holistic approach points to the need for more fundamental changes to our energy systems and urban
configurations. Fortunately, there are many ways to achieve multiple benefits for society simultaneously,
including investing in active transportation, electrified public transportation, renewable energy for elec-
tricity generation, and building efficiency.

5. Democratizing the Science of Pollution Identification and Eradication

As illustrated in several of our Case Studies, and in our final Case Study 5, citizen science has a profound
potential of democratizing science and placing facts and awareness in the hands of the very people who often
benefit most by gaining agency from this information. In terms of pollution exposure research, one key
responsibility is to effectively communicate how much a community should be concerned about the expo-
sure, what they can do within their own capacity to minimize harm, and what role the community itself
can and should play in alerting responsible parties and enforcing adequate mitigation. This can be particu-
larly challenging among communities that have been disenfranchised from engagement through inequities
in language, culture, race/ethnicity, and/or income compared to the majority population. One attempt to
provide a consistent, available platform for citizen‐involved research and to communicate potential risks
and provide interactive tools for assessment is provided by MapMyEnvironment.com (to disclose this is an
app developed to collect data from and expand the breadth and depth of citizen science programs currently
run by several of this paper's authors). At this point, this platform maps soil and dust geochemistry in a con-
sistent manner across multiple programs and additionally can provide the capability of adding user‐added
data on these media (Doyi et al., 2019). We envision the system accommodating multiple additional data
layers, including water chemistry, more detailed information about indoor dust and the dust exposome
(including allergens, flame‐retardant chemicals, antimicrobial resistance, to name a few), and any variety
of other geolocated data that is not necessarily collected for environmental compliance.

Collaboration with communities involving site access and sampling demonstrates that science can actively
respond to community demands for more evidence‐based knowledge and support their inventions. This
might include interpreting citizen‐science collected data or via the provision of a service. Moreover, commu-
nity engagement in scientific endeavors is an increasingly important aspect for researchers (e.g., Fryirs et al.,
2019). Researchers are frequently required to demonstrate the societal benefit of their research, without
which it is becoming increasingly difficult to gain access to the ever more competitive resources for research.

Case Study 5 Science in the Hands of People

The distribution of environmental contaminants of concern to human health is spatially often very het-
erogeneous. One example is the distribution of lead in surface soil. This heterogeneity has been shown,
for instance, in Peruvian mining towns on the basis of rapid field surveys conducted with a handheld
X‐ray fluorescence analyzer (Landes et al., 2019; van Geen et al., 2012).
Given the spatial variability of lead in soil, any area where children are likely to play and could ingest soil
while doing so should in principle be tested. This is logistically and financially hard to imagine happening
any time soon, especially in developing countries where priorities may lie elsewhere. A more feasible
approach, therefore, is to involve parents in sampling and, preferably, testing their child's environment
themselves. A field kit for screening soil for hazardous levels was recently developed with such an appli-
cation in mind (Figure 13; Landes et al., 2019).
The soil kit combines a modification of the widely used method for extracting bioaccessible lead (Drexler
& Brattin, 2007) with selective color detection using sodium rhodizonate. In order to achieve the
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necessary sensitivity, the soil/solution ratio of the extraction had to be increased tenfold relative to the
original method. Inevitably, this reduced the fraction of lead extracted to about one third of that
obtained with the original method but in a way that remained fairly constant across an
environmentally relevant range of concentrations (Landes, Paltseva, et al., 2019).
Deployment of the kit has since been incorporated in the high school science curriculum of several high
schools in Peru (Landes, Paltseva, et al., 2019). Under this project, all field data such as GPS coordinates
and laboratory data are collected electronically using a widely used app (surveycto.com). For confirma-
tion of the visual kit results, both the extracts and the soil samples collected by students are systematically
analyzed by local support staff and the results communicated to the students and their parents. By and
large, the visual and XRF measurements of lead concentrations in the extracts have been consistent. As
a whole, the proportion of soil samples that exceed a threshold of 200–300 mg/kg extractable lead in soil
is relatively well identified by citizen scientists using the colorimetric technique (Figure 14). Because of
these limitations, this inexpensive technique should be considered a screening tool rather than a regula-
tory one, and high values clearly require confirmation by standard analysis. Regardless, the information
is therefore well suited to students to learn about a locally relevant aspect of their environment and also
for informing local authorities that follow‐up studies using more standard laboratory methods
are needed.
It is important to remain realistic about the scale of adoption of this new field kit. A recent study has
been critical of the performance of a rhodizonate‐based 3M kit (Korfmacher & Dixon, 2007), but in our

Figure 14. The kit results were recorded as high (clearly red or pink swab), medium (pink areas on paint itself), low (no
red or pink anywhere) without knowing the lead content of the sample based on XRF (Landes, Inauen, et al., 2019).

Figure 13. Application of a simple field procedure to screen soil for lead, using sodium rhodizonate as a color indicator for
extractable lead concentration (from Landes, Inauen, et al., 2019).
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experience based on a comparison of kit results with XRF measurements, this kit reliably detects lead
levels >1% (unpublished data based on paint samples from U.S. military bases provided by a team of
reporters from Reuters: https://blogs.ei.columbia.edu/2018/08/21/lead‐is‐poisoning‐children‐on‐u‐s‐
military‐bases/) (Figure 15).

6. Conclusions: New Paradigms for Reducing Pollution Burdens in the
Next Century

This Centennial contribution has used several narrow examples to highlight the ways in which we have
gained a greater understanding of the roles that the contamination of air, soil, and dust. It has also looked
forward to where advances in this research should move to improve our global health outcomes in the face
of multiple contamination inputs. It has not yet addressed several fundamental underpinnings of how we do
our science in this area, and we argue that the current mechanisms for training of scientists, sharing data
across fields and sectors, funding research, and translating research to action at the community level are
woefully inadequate.

To address these shortcomings, we provided a series of Case Studies that exemplify novel emerging tools to
bridge the science of pollution with the health of society. We suggest that the case studies of current work
presage future developments in areas ranging from biosensing of contaminants, low‐cost testing kits and
citizen science, and remote sensing approaches to detecting contaminants. This is in no way an exhaustive
list but was aimed at providing some discrete examples of the bright future of identifying and addressing
legacy pollution sources in soils and thus limiting the potential for soils and dust generated from them to
harm people.

As our understanding of the complexity of the biogeochemistry and human exposure dynamics of pollutants
has advanced, so too has our understanding of the complexity of individual human response to that expo-
sure, as most research on pollution‐disease links has either been at the population level (so‐called ecological
analyses) or focused on animal models. That gap in study design is wide and exemplifies the disciplinary gap
between environmental sciences and human health sciences. Funding agencies are actively working to
bridge that void by promoting highly interdisciplinary and convergent research. But this push also points
to gaps in training and funding and research infrastructure, which will have to be filled in to make the head-
way needed. These current research funding priorities are designed to explore the question “What do we
now know that we don't know in terms of pollution and health—the known unknowns?”We now know that
the one chemical, one pathway, one human approach grossly underestimates the complexity of exposure

Figure 15. Comparison of Pb concentrations in paint measured by XRF with visual readings using the 3M kit: h = high,
m = medium, l = low.
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science and disease and does not address at all the grave and unequal toll that pollution takes on
global health.
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