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ABSTRACT: Predicting the bioactivity of peptides is an important challenge in drug development and peptide research. In this
study, numerical descriptive vectors (NDVs) for peptide sequences were calculated based on the physicochemical properties of
amino acids (AAs) and principal component analysis (PCA). The resulted NDV had the same length as the peptide sequence, so
that each entry of NDV corresponded to one AA in the sequence. They were then applied to quantitative structure−activity
relationship (QSAR) analysis of angiotensin-converting enzyme (ACE) inhibitor dipeptides, bitter-tasting dipeptides, and nonameric
binding peptides of the human leukocyte antigens (HLA-A*0201). Multiple linear regression was used to construct the QSAR
models. For each peptide set, a proper subset of physicochemical properties was chosen by the ant colony optimization algorithm.
The leave-one-out cross-validation (qloo

2 ) values were 0.855, 0.936, and 0.642 and the root-mean-square errors (RMSEs) were 0.450,
0.149, and 0.461. Our results revealed that the new numerical descriptive vector can afford extensive characterization of peptide
sequence so that it can be easily employed in peptide QSAR studies. Moreover, the proposed numerical descriptive vectors were able
to determine hot spot residues in the peptides under study.

■ INTRODUCTION

Peptides play crucial roles in biological systems and are therefore
recognized as an important target group for pharmaceutical,
nutritional, and cosmetic applications.1 As a result, thousands of
peptides are designed, synthesized, and screened for different
pharmacological systems. In this regard, design and prediction of
bioactivities of peptides remain one of the most challenging
areas in the life science because it is impossible to test all of the
peptides to find the most bioactive among them when
considering a large number of theoretical possible peptides.2

Bioinformatic studies have become more and more popular in
peptide’s design, particularly the quantitative structure−activity
relationship (QSAR) study. QSAR models utilize a mathemat-
ical function to summarize the relationship between biological
activities of a set of compounds and their structural character-
istics.3−6 So far, QSAR models have been successfully
established for angiotensin-converting enzyme (ACE)-inhib-
itory peptides,7 antioxidant peptides,8 antimicrobial peptides,9

bitter peptides,10 antitumor peptides,11 etc.12−16 To develop a
QSAR model, a set of numerical descriptors is generated to
characterize the structure of interest, e.g., amino acids, which

serves as independent variables, while the biological activities are
the dependent variables. Since the activities of peptides are
determined by the amino acid compositions, sequences, and
structures, a proper encoding technique should be employed for
representing the sequence of amino acids.
Several encoding approaches have been proposed for

representing the sequence of amino acids. Some of them are
based on the amino acid sequence. For example, in orthonormal
encoding,17 each amino acid of the sequence is represented by a
20 bit vector having all entries equal to zero except for that
corresponding to the considered amino acid which is set to one.
Consequently, a peptide sequence with M amino acids is
represented by the concatenation of M × 20 features. The 2 g
representation is another example.18 In this approach, a peptide
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is represented by a set of 202 pairs of values of νi and ci, in which
νi is a couple of amino acids and ci is the counts of the appearance
of that couple in the sequence. The other encoding approaches
are calculated from the physicochemical information. For this
category, a set of descriptors is calculated for each amino acid
and they are concatenated to produce a descriptor data matrix
for a set of peptides. An example is weighted physicochemical
encoding: in this method, instead of considering the
composition of the sequence in its natural order, it is represented
by concatenating alphabetically features of amino acids that have
been weighted according to the frequency of amino acids in the
sequence. Therefore, the resulted numerical vector is composed
by 20 × F features.19 Hemmateenejad et al. used quantum
topological molecular similarity parameters of each amino acid
instead of their physicochemical properties.20 In most of the
amino acid indices defined so far, there is more than one feature
for each amino acid in the resulting numerical descriptor vector
and, consequently, the length of the obtained numerical
descriptor vector is much longer than the length of the
sequence. In this specific situation, the introduction of a new
peptide representation that can be utilized in QSAR studies is
the frontier of the peptide research.
Recently, we introduced a new numerical descriptive vector

for proteins and applied it to reveal the similarities between
proteins. This numerical descriptive vector had the same length
as the original sequence. It was calculated based on the
physicochemical properties and principal component analysis.
We suggested here the applicability of our numerical descriptive
vector (NDV) for peptide representation and its usefulness in
peptide QSAR research.

■ RESULTS AND DISCUSSION

Five hundred fifty-three physicochemical properties of AAs were
extracted from the AAindex1 database. For a given peptide
sequence, a numerical descriptive vector with the same size of
the sequence length is calculated based on a set of
physicochemical properties of AAs and PCA.21 For example, if
a data set containing n hexapeptides was considered, a descriptor
data matrix with the number of rows and columns of n and 6,
respectively, would be obtained (Figure 1). The values of the
numerical descriptive vector are dependent on the types of the
AA indices used in the computation step. Since the number of
AA indices provided in the AAindex1 database was large, it was
necessary to employ a variable selection method such as the
Memorized_ACO algorithm for selecting the most convenient
subset of AA indices in a specified data set.

QSAR Models of ACE Inhibitors. ACE data set is
composed of 55 tripeptides as inhibitors of the angiotensin-
converting enzyme (ACE), among which 45 molecules were
selected as a training set and the remainders were used as an
external test set to validate the constructed QSARmodel (Table
1).

Figure 1. Graphical representation of the NDV calculation and QSAR modeling for the ACE data set.

Table 1. Characteristics of the Data Sets Used in This Paper

size

groups name
no. of
peptides

no. of
sequences

training
set

test
set refs

data set 1 ACE 55 3 45 10 30
data set 2 bitter

tasting
48 2 40 8 26

data set 3 HLA 177 9 131 46 20,
34
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Several subsets of AA indices with the different sizes were
selected by the Memorized_ACO algorithm. For each chosen
subset, a specific descriptor data matrix was calculated and used
in the QSAR model development. The resulting models based
on the use of different subsets of AA indices are summarized in
Table 2. The ability of the NDV to represent the peptide
sequences can be judged from Table 2. The QSAR model based
on the NDM computed using only two AA indices had
correlation coefficients of 0.83 and 0.80 for the training and test
sets, respectively. However, the quality of the QSAR model was
improved by considering more AA indices up to seven.
Consequently, seven physicochemical properties of AA were
used in the construction of the final QSARmodel. A list of these
AA indices is given in Table S1 (Supporting Information). The
calculated NDM for ACE data set together with the
experimental and predicted biological activities is also presented
in Table S2.
The plot of the predicted activities against the experimental

activities for both training and test sets, for the ACE inhibitor
tripeptides, is shown in Figure 2. The squared correlation

coefficient for the training set was calculated as 0.86. With the
purpose of confirming the reliability of the model, leave-one-out
and leave-m-out (for example, leave-5-out) cross validation was
applied on the training set and the corresponding qloo

2 and qlmo
2 of

0.831 and 0.830 were obtained. The closeness of these statistical
parameters to each other and to that of Rtraining

2 confirms that the
constructed model is stable. The R2 value for the test set (Rtest

2 =
0.859) was also very close to those for training and cross
validation, which revealed the good prediction power of the
QSAR model without the presence of significant overfitting. In
addition, the model possessed a very low value of the chance
correlation of RMP

2 (Table 2), highlighting that the model was
not chancy and the resulted relationship was systematic. Table 3

summarizes the consequences of different past QSAR models of
the ACE peptides alongside those obtained in this investigation.
Clearly, the QSAR model derived in this work for the ACE data
set has better quality in regard to all previous models. The results
of cross validation also approve the efficiency of the model in
comparison to the previous works.
One key ergonomic advantage of our QSAR model is its easy

understanding and interpretation. To determine the position of
the anchor residues in the peptides binding to ACE, it is enough
to check which ones of residues are significant in the QSAR
model. Moreover, the quantitative contributions for each
position reveal, directly, the importance of these positions.
Table 4 summarizes the statistical analysis of the selected

QSARmodel for ACE peptide inhibitors. It is clear from Table 4
that the regression coefficient associated with the second AA in
the peptide sequence is not significant. The following equation
shows the final QSAR model after removing the nonsignificant
term for the ACE inhibitor tripeptides

= − × + ×

= = = = =

= = =

y AA AA

N N R R q

F

1.88 0.28 0.66

45, 10, 0.86, 0.86, 0.83

RMSE 0.25, RMSE 0.30, 123.80

1 3

training test training
2

test
2

loo
2

training test

(1)

It means that the anchor positions for ACE peptide inhibitors
are the first and third positions. In other words, the amino acids
located at the two ends of the considered tripeptides would have
more impact on the ACE inhibition. This is in accordance with
the previous studies.20,30 It is also possible to check if there is a
peptide having activity more than the most bioactive peptide in
the ACE data set. The most activity value was measured for the
following sequence: “PPG”. By changing the type of AA at each
position of the peptide sequence, we found that the most
bioactive peptide was that previously recognized (i.e., PPG).
Preferred amino acids at each position were recognized, as well.
The preferred amino acids at position 1 were found to be Pro,
Trp, and Tyr and for the third position to be just Gly.

QSAR Study on Bitter Peptide. Bitter sensitivity, as one of
the gustatory sensitivities, shields humans and organisms from
damage by toxic substances. Studies demonstrate that the
conduction of taste signal in taste receptor cells includes a series
of complicated processes intervened by G protein-coupled
receptors.31 Bitter-tasting thresholds (BTTs) of 48 dipeptides
and their activities as the negative logarithm of concentration
(pT) were chosen by Collantes et al.24 This data set is frequently
utilized to approve the efficiency of amino acid descriptors.
Forty samples out of 48 dipeptides were treated as the training
set that was used to construct the QSAR model, and the
remaining were regarded as the test set.
Statistical parameters of QSAR models constructed with

different subsets of AA indices are given in Table 5. The results

Table 2. QSAR Models of the Peptides as ACE Inhibitors Obtained Using Different Sets of the AA Indices

number of used AA indices Rtraining
2 Rtest

2 qloo
2 qlmo

2 RSMEtraining RSMEtest RMP
2 a

2 0.829 0.801 0.797 0.788 0.266 0.376 0.150
3 0.830 0.826 0.806 0.803 0.265 0.341 0.217
4 0.843 0.852 0.814 0.814 0.255 0.265 0.121
5 0.849 0.842 0.822 0.819 0.250 0.317 0.176
6 0.845 0.844 0.818 0.816 0.253 0.314 0.104
7 0.855 0.859 0.831 0.830 0.245 0.302 0.160
8 0.855 0.861 0.831 0.829 0.245 0.295 0.099

aMaximum Rtraining
2 for the Y-randomization test.

Figure 2. Plot of predicted versus experimental pIC50 values of ACE
tripeptides.
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showed the proficiency of NDV in QSAR modeling of the
peptide sequences. As can be seen in Table 5, even with two AA
indices, the obtained QSAR model had good quality. However,
the best QSAR model was constructed using eight AA indices
(Table 5). These AA indices are listed in Table S3. The resulted
NDM for BTT is given in Table S4. The resulted multiple linear
regression (MLR) model was

= − − × − ×

= = = = =

= = =

y AA AA

N N R R q

F

1.92 0.33 0.32

40, 8, 0.94, 0.91, 0.93

RMSE 0.15, RMSE 0.28, 271.61

1 2

training test training
2

test
2

loo
2

training test (2)

As shown in eq 2, the best QSAR model yielded a squared
correlation coefficient (R2) of 0.936 and a root-mean-square
error (RMSE) of 0.149 for the training set. The squared
correlation coefficient calculated via leave-one-out cross
validation (q2) was found to be 0.926. Further validation of
the model was carried out on the basis of the external test set,
and a good result was obtained (Rtest

2 = 0.907, RMSE = 0.283).
The experimental and predicted biological activities for the BTT
data set are given in Table S4. The relationship between
predicted and experimental activities is shown in Figure 3. The
NDV-QSARmodel developed in this study for the BTT data set
is compared with the previously reportedQSARmodels in Table
6. Analysis of variance (ANOVA) of the final QSAR models

showed that both amino acids in the peptide sequence have a
significant impact on the BTT peptide set (Table S5).

QSAR Model for the HLA Data Set. This data set
comprises of 177 nonameric binding peptides of the HLA-
A*0201. Each peptide has nine residues. Several QSAR models
using different subsets of AA indices were built, and the results
are summarized in Table S6. The best NDV-QSAR model was
obtained using six AA indices. In total, 54.0% of variance in the
dependent variable was explained by this selected model, while
40.7 and 46.1% of variances were reproduced in leave-one-out
and leave-five-out cross validations, respectively. Although the
quality of this model is not as good as those obtained for two
later data sets, it is still comparable to those reported previously
for the HLA data set (row 6 in Table 7). The presence of outliers
was checked using the Williams plot. This plot utilizes
simultaneously the concepts of standardized residual and
leverage to show visually the applicability domain of the

Table 3. Comparison between QSAR Models for the ACE Data Seta

descriptors model variables/LVs Rtraining
2 RSMEtraining qloo

2 Rtest
2 refs

1 z scale PLS 2 0.770 NR NR NR Hellberg et al.22

2 GRID PP PLS 1 0.744 NR NR NR Cocchi and Johansson23

3 ISA-ECI PLS 2 0.700 NR NR NR Collantes and Dunn24

4 MS-WHIM (extended) PLS 2 0.708 NR 0.637 NR Zaliani and Gancia25

5 MS-WHIM (rotameric) PLS 6 0.657 NR 0.541 NR Zaliani and Gancia25

6 VHSE PLS 1 0.770 0.48 0.745 0.688 Mei et al.27

7 T scale PLS 2 0.845 0.39 0.786 0.798 Tian et al.28

8 VSW PLS 2 0.868 0.37 0.784 0.871 Tong et al.26

9 ATS−QTMS PLS 3 0.868 0.36 0.812 0.702 Yousefinejad et al.29

10 NDV MLR 3 0.855 0.245 0.831 0.861 this work
aNR, not reported.

Table 4. Statistical Analysis of the Selected QSAR Model for
ACE Data Set

regression coefficient SE t-value P-value

1.88 0.038 49.25 4.17 × 10−38

−0.27 0.046 −5.87 6.59 × 10−7

−0.02 0.046 −0.35 0.73
0.66 0.044 15.01 2.97 × 10−18

Table 5. QSAR Models of BTT Obtained Using Different Sets of the AA Indices

number of used AA indices Rtraining
2 Rtest

2 qloo
2 qlmo

2 RSMEtraining RSMEtest RMP
2 a

2 0.850 0.855 0.828 0.813 0.228 0.343 0.166
3 0.905 0.903 0.890 0.890 0.182 0.302 0.126
4 0.878 0.898 0.858 0.856 0.206 0.280 0.084
5 0.900 0.899 0.877 0.882 0.186 0.339 0.073
6 0.901 0.902 0.877 0.883 0.186 0.337 0.179
7 0.917 0.899 0.903 0.899 0.170 0.309 0.136
8 0.936 0.907 0.926 0.924 0.149 0.283 0.133
9 0.909 0.909 0.893 0.892 0.178 0.303 0.146

aMaximum Rtraining
2 for the Y-randomization test.

Figure 3. Plot of predicted versus experimental activities for the BTT
data set.
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model.6 Figure 4 depicts the Williams plot for the HLA data set,
indicating that there are several outliers. To obtain a stable

QSAR model, these outliers were removed and the MLR model
was reconstructed and rechecked for the presence of outliers.
Eleven peptides from the training set and three peptides from
the test set were found to be outliers. The resulted QSARmodel
after removing the detected outliers had better quality compared
to that of the original model. Features of this model are given in
row 7 of Table 7. The obtained QSAR model had better
prediction ability in comparison to those in all of the previous
reports. The root-mean-squared errors for the training and test
sets (RSMEtraining and RSMEtest) were 0.45 and 0.46,
respectively. The RMSE−CV was calculated as 0.50, which is
as good as the RSMEtest. The squared correlation coefficients for
the prediction of activities in the training and test sets were
found to be 0.70 and 0.71, respectively. Statistical parameters of
themodel are tabulated in Table 8. From the results in Table 8, it

was found that some regression coefficients associated to
residuals 1, 5, 6, and 7 were not significant. The calculated t-
values for these coefficients were more than 0.05, and the
corresponding p-values for these coefficients were high.
Omitting these nonsignificant variables resulted in a QSAR
model with Rtraining

2 and Rtest
2 of 0.69 and 0.71, respectively.

RSMEtraining and RSMEtest were both calculated to be 0.46. Based
on these results, it was found that the final QSAR model could
explain the variance in the training set as well as predict the
affinities of the test set accurately. On the other hand, based on
the variables remaining in the final QSAR model, it could be
concluded that the anchor positions are 2, 3, 4, 8, and 9. The final
QSAR model for the HLA data set was as follows

= − × + ×

= = = = =

= = =

y AA AA

N N R R q

F

1.88 0.28 0.66

45, 10, 0.86, 0.86, 0.83

RMSE 0.25,RMSE 0.30, 123.80

1 3

training test training
2

test
2

loo
2

training test

(3)

The relationship between predicted and experimental activities
is depicted in Figure 5. Searching for AAs for each anchor point
to find favored amino acids at each position led to find sequence

Table 6. Comparison between QSAR Models for the BTT Data Set

descriptors model variables/LVs Rtraining
2 RSMEtraining qloo

2 Rtest
2 refs

1 VSW PLS 2 0.873 0.23 0.751 0.713 Tong et al.26

2 z scale PLS 2 0.824 0.26 NR NR Hellberg et al.22

3 ISA-ECI PLS 2 0.8480 0.245 NR 0.245 Collantes and Dunn24

4 MS-WHIM (extended) PLS 3 0.754 NR 0.710 NR Zaliani and Gancia25

5 MS-WHIM (rotameric) PLS 3 0.704 NR 0.633 NR Zaliani and Gancia25

6 VHSE PLS 3 0.910 0.20 0.816 0.883 Mie et al.27

7 ATS/QTMS GA−PLS 2 0.872 0.22 0.826 0.770 Yousefinejad et al.29

8 NDV MLR 2 0.936 0.149 0.926 0.907 this work

Table 7. Comparison between QSAR Models for the HLA Data Set

descriptors model
variables/

LVs Rtraining
2 RSMEtraining qloo

2 Rtest
2 refs

1 QTMS−
ADFQ

GA−PLS 3 0.648 0.59 0.561 0.50 Hemmateenejad et
al.20

2 ATS/QTMS GA−PLS 6 0.782 0.47 0.682 0.50 Yousefinejad et al.29

3 additive PLS 3 0.85 NR 0.54 0.64 Doytchinova et al.33

4 global GA−MLR 0.43 0.75a NR 0.42 Doytchinova et al.33

5 z scales GA−MLR 0.67 0.59a NR 0.50 Doytchinova et al.33

6 NDV MLR 9 0.540 0.664 0.407 0.535 this work
7 NDV MLR (after removing outliers) 9 0.702 0.452 0.632 0.712 this work
8 NDV MLR (after removing outliers and omitting nonsignificant

variables)
5 0.690 0.461 0.642 0.713 this work

aStandard error of estimate (SEE).

Figure 4. Williams plot (standardized residual versus leverage) for the
HLA data set. Critical values of standardized residual and leverage are
shown by horizontal and vertical dashed lines, respectively.

Table 8. Statistics for the Best QSARModel for the HLAData
Set

AA no. β SE t-value P-value VIF

intercept 5.381 0.043 124.810 <10−11

1 0.002 0.049 0.049 0.96 1.26
2 −0.381 0.048 −7.878 <10−11 1.25
3 0.233 0.066 3.536 5.95 × 10−4 2.31
4 0.372 0.063 5.935 3.48 × 10−8 2.10
5 0.032 0.051 0.636 0.53 1.38
6 0.071 0.066 1.078 0.28 2.30
7 0.084 0.046 1.829 0.07 1.12
8 0.216 0.055 3.965 1.31 × 10−4 1.58
9 −0.281 0.048 −5.894 4.20 × 10−8 1.22
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“VVPPEEEPV” with a maximum pBL50 of 7.41. It is worth
noting again that entries of the calculated NDV for each
sequence are influential by the AA appeared at each position, the
neighbors of the AA in the sequence, and the types of AA indices
used in the calculation. Consequently, although positions 1, 5, 6,
and 7 were not recognized as the anchor positions, they could
affect the entries of the NDV. However, changing of AAs at
positions 1, 5, 6, and 7 of the best sequence had a small variation
on the binding affinity and the minimum and maximum pBL50
values were found to be 6.96 and 7.41, respectively. It should be
noticed that the most active peptide in the original data set is
“ILDPFPVTV” with a pBL50 of 8.65. This sequence was
detected as outlier and removed before the model construction.
Our model predicted pBL50 of 6.49 for this sequence. The other
most active peptides along with the experimental and predicted
activities are listed in Table 9. To find favored AAs for each

position, a list of suggested peptides by pBL50 values greater than
7.30 was provided by the replacement method (Table 10).
Inspection the results of Table 10 indicated that preferred amino
acids at position 1 are valine, leucine, alanine, methionine, and
isoleucine; at position 2 are valine and alanine; at position 3 are
proline and aspartic acid; at position 4 is just proline; at position
5 is just glutamic acid; at positions 6 and 7 are glutamic acid,
valine, leucine, methionine, and isoleucine; at position 8 is just
proline; and at position 9 are valine and alanine.
In the derived model, each anchor position has a regression

coefficient accounting for its contribution to the affinity. Thus,
positions 2 and 9 with negative coefficients decrease the affinity
because of their negative contributions and positions 3, 4, and 8
make positive contributions to the affinity.

■ CONCLUSIONS
A new numerical descriptive vector was introduced for peptide
QSAR analysis. Physicochemical properties of AAs and principal
component analysis were used in the calculation of NDVs of
peptide sequences. The application of the proposed NDV on
three peptide sets showed that this new peptide descriptor is
useful in bioactive peptide QSAR analysis. The resulted QSAR
models not only showed good self-prediction ability but also
exhibited sufficient prediction power for samples in the test sets.
On the other hand, since our proposed numerical descriptive
vector has the same length as the peptide sequence, the
interpretation of the resulted QSAR models is straightforward
and it seems that we can easily use them to have a hot spot
analysis for different kinds of biologically and pharmaceutically
peptides. Indeed, the active parts of the considered peptides
correspond to those AAs having statistically significant
regression coefficients in the resulted QSAR model.

■ COMPUTATIONAL METHODS
Data Sets and Descriptors. Three peptide data sets with

known biological activity were used to investigate the perform-
ances of the suggested AA indices. They were as follows: data set
1 contained a set of 55 angiotensin-converting enzyme (ACE)
inhibitors; data set 2 contained a set of 12 bactericidal peptides,
data set 3 comprised a set of 177 nonameric peptides binding to
the HLA-A*0201 molecule, and data set 4 contained a set of 48
bitter dipeptides. The data sets were picked up from the
literature.20,26,30,32−34 To ensure a fair comparison, the same
training and test sets were used for each considered data set.
Table 1 presents details of all data sets.

Descriptor Extraction andModel Development.One of
the essential steps in structure−activity relationship studies is

Figure 5. Plot of predicted versus experimental activities for the HLA
data set.

Table 9. Most Active Peptides along with the Experimental
and Predicted Activitiesa

peptide sequence experimental pBL50 predicted pBL50

ILDPFPVTV 8.65 6.4927
ILDPFPPTV 8.17 6.3781
ILDPFPPEV 7.68 6.4713
ILDPFPITV 8.14 6.4678
ILDPFPPPV 7.44 6.4911
ILDPLPPTV 7.15 6.4363
VVPPEEEPV 7.4082

aThe peptide in the last row is that introduced by the QSAR model.

Table 10. List of 50 Sequences withHigh Activities Suggested
by the QSAR Model

sequence
predicted
pBL50 sequence

predicted
pBL50

1 AVPPEEEPV 7.38 26 VVPPEVMPV 7.31
2 IVPPEEEPV 7.34 27 VVPPEEMPV 7.35
3 LVPPEEEPV 7.38 28 VVPPELMPV 7.30
4 MVPPEEEPV 7.37 29 VVPPELEPV 7.36
5 VVPPEEEPV 7.41 30 VVPPELEPA 7.32
6 VAPPEEEPV 7.36 31 VVPPEEEPA 7.36
7 VADPEEEPV 7.31 32 VVPPEMEPA 7.31
8 VVDPEEEPV 7.36 33 VVPPEVEPA 7.33
9 VVDPEIEPV 7.31 34 AVPPEVEPA 7.30
10 VVDPELEPV 7.32 35 LVPPEVEPA 7.30
11 VVDPEMEPV 7.31 36 LVPPEEEPA 7.34
12 VVDPEVEPV 7.34 37 LVPPEEVPA 7.30
13 VVDPEVVPV 7.30 38 LVPPEEVPV 7.35
14 VVPPEVVPV 7.34 39 AVPPEEVPV 7.34
15 VVPPEEVPV 7.37 40 IVPPEEVPV 7.31
16 VVPPEIVPV 7.31 41 MVPPEEVPV 7.33
17 VVPPELVPV 7.33 42 MVPPEVVPV 7.30
18 VVPPEMVPV 7.32 43 MVPPEVEPV 7.34
19 VVPPEMEPV 7.35 44 AVPPEVEPV 7.35
20 VVPPEMLPV 7.30 45 IVPPEVEPV 7.31
21 VVPPEELPV 7.36 46 LVPPEVEPV 7.35
22 VVPPELLPV 7.31 47 LAPPEVEPV 7.30
23 VVPPEVLPV 7.32 48 LAPPEEEPV 7.33
24 VVPPEVEPV 7.38 49 LAPPEEVPV 7.30
25 VVPPEVIPV 7.30 50 AAPPEEVPV 7.30
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the extraction of some numerical descriptors from the desired
compounds that can be useful in describing the structural
properties.
In the current research, for each peptide sequence, a

numerical descriptive vector is calculated based on a set of
physicochemical properties of AAs and PCA.21 Consider a
residue with n AAs. For each amino acid in the residue a
numerical matrixXiwith a size ofN× L is created, where L is the
number of considered physicochemical indices. For a residue of
length N, subsequently, N numerical matrices are created. The
entries of the ith X matrix are calculated by the following
equation

=
+

=

=

x
a d a

j N

l L

( )
( 1/ )

2
1, 2, 3, ..., and

1, 2, ...,

jl i
il ij jl
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where ai is a vector containing the physicochemical properties of
the ith AA and dij is

l
moo
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=
=
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i j

i j

i j

1
dist( , )

if

ifij
(5)

Here, the distance between the two AA in the residue is
calculated as the Euclidean distance. The first eigenvector of
each Xi matrix is computed. No pretreatment is carried out on
the Xi matrix prior to PCA. The resulted eigenvector vectors
from all Xmatrices are collected in a matrix Y (N ×N). The first
eigenvector of the Y matrix is considered as the numerical
descriptive vector of the residue. Figure 1 describes graphically
all of the above calculation steps for a tripeptide “RPG”, as an
example. For more information, the reader should refer to our
previous paper.21

The physicochemical properties of AAs were extracted from
the AAindex database. This database contains various
physicochemical and biochemical properties of amino acids
and pairs of amino acids.35,36 The AAindex database is divided
into three parts: AAindex1 for the amino acid indices of 20
numerical values, AAindex2 for amino acid substitution
matrices, and AAindex3 for amino acid contact potential
matrices.37 For the purpose of peptide descriptor calculation,
we considered only the 553 amino acid indices in AAindex1.
Keeping in the mind that the calculated numerical descriptive

vector for a peptide sequence is highly dependent on the AA
indices used in the calculation, a proper set of AA indices was
chosen by the Memorized_ACO algorithm38−40 for each data
set. The ACO algorithm is inspired by the behavior of real ants
that are able to find the shortest path from a food to their nest.
An ant deposits pheromone while moving. Ants explore the
space randomly, but a route with more pheromone deposited by
previous ants that have already passed is more likely to be chosen
by the future ants. The ACO algorithm is an iterative algorithm.
In this algorithm, equal pheromone values are initially assigned
to all AA indices. As time proceeds, the level of pheromone
deposited on the best AA indices increases, while that for other
variables decreases. The best AA indices are those yielding a
highly predictive power QSAR model. A graphical representa-
tion of the process is given in Figure 1. The Memorized_ACO
algorithm employs an external memory in which knowledge
incorporated from the previous ACO iterations is deposited. It
fills by running a simple ACO algorithm several times.
Another advantage of our proposed method is that modeling

of the relationship between the calculated numerical descriptive

vectors and the biological activities of peptides was simply
achieved by utilizing multiple linear regression (MLR) without
requiring variable selection. Assessment of the importance of
each residue, in the peptide sequence, in the biological activity is
carried out by considering the regression coefficients of the
resulted model.
To test the predictive power of the models, different cross-

validation approaches were applied. The correlation coefficient
of the test set (Rtest

2 ) was also computed. A Y-randomization test
was performed to assess the risk of chance correlation of the
model. All necessary programs were written in MATLAB
(MathWorks). The method is available for the research
community.
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