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Abstract

Cervical tumor segmentation on 3D 18FDG PET images is a challenging task because of the 

proximity between cervix and bladder, both of which can uptake 18FDG tracers. This problem 

makes traditional segmentation based on intensity variation methods ineffective and reduces 

overall accuracy. Based on anatomy knowledge, including “roundness” of the cervical tumor and 

relative positioning between the bladder and cervix, we propose a supervised machine learning 

method that integrates convolutional neural network (CNN) with this prior information to segment 

cervical tumors. First, we constructed a spatial information embedded CNN model (S-CNN) that 

maps the PET image to its corresponding label map, in which bladder, other normal tissue, and 

cervical tumor pixels are labeled as −1, 0, and 1, respectively. Then, we obtained the final 

segmentation from the output of the network by a prior information constrained (PIC) thresholding 

method. We evaluated the performance of the PIC-S-CNN method on PET images from 50 

cervical cancer patients. The PIC-S-CNN method achieved a mean Dice similarity coefficient 

(DSC) of 0.84 while region-growing, Chan-Vese, graph-cut, fully convolutional neural networks 

(FCN) based FCN-8 stride, and FCN-2 stride, and U-net achieved 0.55, 0.64, 0.67, 0.71, 0.77, and 

0.80 mean DSC, respectively. The proposed PIC-S-CNN provides a more accurate way for 

segmenting cervical tumors on 3D PET images. Our results suggest that combining deep learning 

and anatomic prior information may improve segmentation accuracy for cervical tumors.
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1. INTRODUCTION

In 2015, cervical cancer was the second leading cause of death due to cancer in women aged 

20 to 39 years. Moreover, 13,240 new cases with cervical cancer are predicted for 2018 

resulting in an estimated 4,170 deaths (Rebecca L. Siegel, 2018). Positron emission 

tomography (PET) employing radiopharmaceutical 18fludeoxyglucose (18FDG) is a valuable 

imaging modality for staging, treatment planning, and follow-up in cervical cancer. Besides 

providing important complementary information for target volume delineation in radiation 
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treatment planning, PET imaging is also essential in evaluating treatment response and 

outcome. An essential step in these applications is cervical tumor segmentation on 3D PET 

images. In the clinic, manual segmentation is routinely used by radiation oncologists, but it 

is time-consuming and observer-dependent. Automatic or semi-automatic methods for 

segmenting cervical tumor on PET are needed to ensure more consistent tumor 

segmentation.

While many automatic segmentation techniques (Zhu and Jiang, 2003; Zaidi and El Naqa, 

2010; Zaidi et al., 2012; Erdi et al., 1997; Abdoli et al., 2013; Daisne et al., 2003; Miller et 

al., 2003; Mu et al., 2015; Roman-Jimenez et al., 2016; Roman-Jimenez et al., 2012; 

Crivellaro et al., 2012; Sironi et al., 2006; Bagci et al., 2013; Weina Xu, 2017) have been 

investigated for PET imaging, accurate automatic cervical tumor segmentation is still a 

challenging task because of the proximity between cervix and bladder. Traditional automatic 

segmentation methods including automatic thresholding and region growing are mainly 

based on the difference in the activity value (intensity value in image) between the lesion 

and normal tissues. However, because the bladder retains a large amount of 18FDG tracer, 

bladder intensity may be similar to cervical tumor intensity. Because the cervix is so close to 

the bladder, region growing-based methods often misclassify the bladder as a tumor. The 

same situation is expected for gradient-based (Geets et al., 2007) and active-contour (Li et 
al., 2008) methods, which primarily rely on variations in intensity values. Based on the 

graph-cut algorithm, a two-stage segmentation scheme that considers tumor position and 

area between adjacent slices was proposed earlier (Chen et al., 2018). Although the 

segmentation accuracy of cervical tumors was improved, this semi-automatic method needs 

manual contouring of the cervical tumor on a given slice. In addition to these unsupervised 

or semi-supervised methods for PET image segmentation, learning atlas-based methods have 

been proven to be effective to segment organs in medical images (Aljabar et al., 2009; Xue 

et al., 2006; Wu et al., 2014) (Kalinić, 2009). Deep convolutional neural networks (CNN) 

have also shown great promise in tumor segmentation (Rouhi et al., 2015; Havaei et al., 
2017; Arbabshirani et al., 2017; Zhu et al., 2017; Gibson et al., 2017; Cheng et al., 2016; 

Frederick, 1990; Pereira et al., 2016; Ronneberger et al., 2015; Kamnitsas et al., 2017). 

CNN-based tumor segmentation can be summarized into two categories: patch-to-patch 

(pixel) and image-to-image strategies. Redundancy and training efficiency are two major 

issues in the patch-to-patch (pixel) strategy because each patch overlaps and is predicted 

separately (Çiçek et al., 2016; Ronneberger et al., 2015). Moreover, because cervical tumors 

and bladder are so close and have similar intensities, extracting patches has been challenging 

for the patch-to-patch strategy so that the bladder pixel patch can be differentiated from the 

cervical tumor pixel patch. The fully convolutional networks (FCN) (Long et al., 2015; 

Shelhamer et al., 2017) and U-net (Ronneberger et al., 2015) aim to resolve the 

segmentation problem by using the whole image as the input. In these methods, the max-

pooling layer is used to reduce image resolution and obtain global features, while up-

sampling layer is added to guarantee that the output image size is the same as the input 

image size. Multiple modified networks based on FCN and U-net have been investigated and 

have shown to be promising to solve tumor and organ segmentation in magnetic resonance 

(MR) and computed tomography (CT) images (Pereira et al., 2016) (Zhu et al., 2017).
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As CNN-based segmentation methods learn and extract features only based on the images, 

they may not effectively learn some prior anatomical knowledge (ie, the bladder is always 

anterior relative to cervix). Integrating such prior anatomical knowledge into a CNN-based 

model can potentially enhance its ability to differentiate cervical tumors from the bladder. In 

addition to the relative anatomical position between bladder and cervix, round shape has 

previously been characterized as a feature for cervical tumors (Paiziev, 2014; Yang et al., 

2000; Fukuya et al., 1995; Liyuan Chen, 2018; Bourgioti et al., 2016; Liyanage et al., 2010). 

Thus cervical tumors are “rounder” than the bladder. We propose to integrate a CNN model 

with such prior anatomical information constrained post-processing procedure to segment 

cervical tumors in PET.

2. Materials and methods

2.1. Patient Dataset

The study includes 18FDG PET images from 50 cervical cancer patients (1176 slices in 

total). As reference we used cervical tumor contours delineated by a radiation oncologist 

with 4 years of experience and reviewed by another radiation oncologist with 19 years of 

experience. Bladder contours were drawn by a physicist using ITK-SNAP software slice by 

slice and reviewed in 3D by a radiation oncologist with 4 years of experience. Bladder 

contours were only used during the training process. The experiments were conducted by 

five rounds of five-fold cross validation. For each round, we randomly shuffle the dataset 

into five equal size subsets. Of the five subsets, a single subset (PET images from 10 

patients) is retained as the validation data for testing the model, and the remaining four 

subsets (PET images from another 40 patients~900 slices) are used as the training dataset. 

The cross-validation process is then repeated five times, with each of the five subsets used 

exactly once as the validation data. The validation results are combined (e.g. averaged) over 

five rounds to give an estimate of the model’s segmentation performance.

2.2. Overview

The proposed segmentation method integrates a convolutional neural network with prior 

anatomy information of cervical tumor including cervical tumor shape and anatomy 

location. Specifically, in this prior information constraint spatial information embedded 

CNN (PIC-S-CNN) method, we first constructed a convolutional neural network based on 

the relative positioning information between bladder and cervical tumor to map PET image 

to its corresponding label map, in which the bladder, other normal tissues, and cervical 

tumors are labeled as −1, 0, and 1, respectively. This enlarges the difference between 

cervical tumors and bladder such that bladder pixels have lower probabilities to be classified 

as cervical tumors. Based on the prior information including roundness of cervical tumors 

and relative anatomic positioning information between cervix and bladder, we derive the 

final segmentation result by applying an auto-thresholding method on the output probability 

map of S-CNN.

The pipeline of the proposed PIC-S-CNN method is shown in Fig. 1 and involves three main 

steps: 1) pre-processing including image normalization and region-of-interest (ROI) patch 

extraction; 2) spatial information embedded CNN-based initial segmentation; and 3) post-
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processing based on prior information constrained thresholding. These three steps are 

introduced in Sections 2.3, 2.4, and 2.5, respectively. The parameter such as the thresholding 

value in post-processing is also learned from the training dataset. Therefore, the proposed 

PIC-S-CNN method is completely automatic.

2.3. Preprocessing Procedure

Building an effective neural network model requires careful consideration of the network 

architecture as well as the input data format. Before introducing the proposed S-CNN 

architecture, we present several data preprocessing steps for the presented segmentation 

problem. The data preprocessing steps mainly include image intensity normalization, region 

of interest (ROI) patch extraction, and reference labelling.

2.3.1 Image Intensity Normalization—The intensity value for each pixel in the PET 

image is related to its FDG uptake. Like in the other CNN-based image processing 

techniques, we first apply intensity normalization for each patient’s PET image to ensure the 

same intensity range for each input. This makes convergence faster during network training. 

For each patient’s 3D PET image I, we use unity-based normalization strategy to bring all 

the intensity values in the image I into the range [0, 1]. The unity-based normalization 

formula is as follows:

I′ =   I − Imin
Imax − Imin

, (1)

where Imin and Imax are corresponding to the minimum and maximum intensity value of the 

image I. This normalization strategy is applied to both training and testing images.

2.3.2 ROI Patch Extraction—The distribution of the training data affects the 

performance of CNN (Hensman and Masko, 2015). A balanced number of samples of each 

label is desired during the training process. Hence, we exclude background and part of 

normal tissues with low intensity values from training data by extracting a region-of-interest 

(ROI) for each slice of PET images that covers both bladder and cervix. We extracted a 

56×56 ROI patch from each slice of all the patients’ PET images, which is sufficient to 

include all the tumors and bladders. The reduced dimension of the input also significantly 

decreases the training time of the network. An example of an extracted ROI patch for one 

PET image slice is shown in Fig. 2. Bladder and cervical tumor were both included in the 

ROI patch. Meanwhile, most of background and other normal tissues were excluded.

2.3.3 Reference Label for Each Slice—A main challenge of our segmentation 

problem is to differentiate bladder from cervical tumors these organs are anatomically close 

and share similar FDG activity values. To sufficiently differentiate between bladder and 

tumor in the labeled image, we label each pixel as follows: bladder with −1, cervical tumor 

with 1, and other background normal tissue with 0. Using this labeling, the output 

probability map of a multi-class neural network trained in this work will have better separate 

between bladder and cervical tumor. An example of the generated label map for network 

training is shown in Fig. 3.
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2.4. Spatial Information Embedded Convolutional Neural Network (S-CNN)

A convolutional neural network is usually composed of several convolution, activation, 

pooling, up-sampling, and fully connected layers. In each convolutional layer, a set of 

learnable kernels are included. After several stacked convolutional layers, the extracted 

features become more and more abstract and will be used for the final prediction or 

segmentation. Each convolution layer is followed by an activation layer, which is controlled 

by a non-linear function to make the network complex, representing real complications. 

Different CNN architectures can capture different kinds of image features, generating 

different outputs. Because the bladder is always in front of cervical tumors, we designed the 

following spatial information embedded CNN (S-CNN) architecture to fully consider the 

global spatial information to differentiate between bladder and cervical tumor.

2.4.1. Proposed S-CNN Architecture—The architecture of the proposed S-CNN is 

summarized in Table 1. For each convolutional layer in the proposed S-CNN model, we first 

assigned zero around each feature map from the previous layer and then conduct the 

convolution to make the output image size the same as the input image size. For example, 

for the first convolutional layer with a kernel size of 7×7, the input within that layer will be 

expanded by 3 pixels along all four borders, which is presented as padding [3, 3, 3, 3] in 

Table 1. For the fourth convolutional layer with a kernel size of 5×1, the input within that 

layer will be expanded by 2 pixels along the left and right borders, which is presented as 

padding [2, 2, 0, 0] in Table 1. The activation function that we used in the activation-layer 

after each convolutional layer (Table 1) is rectifier linear units (ReLU). Its definition is f(x) 

= max(0, x) This function is non-linear to ensure complexity (that is, nonlinearity) of the 

CNN model. In addition, ReLU has been shown to propagate the gradient and compute more 

efficiently than the logistic sigmoid and hyperbolic tangent activation function.

The input of the proposed S-CNN model is equivalent to the extracted ROI patches (Sec. 

2.3.2). Then, the first two convolutional layers (Table 1) are used to capture the local 

features for each pixel. The third and fourth convolutional layers are designed to learn the 

features along the y-axis and x-axis directions for each slice, respectively. Because the 

bladder is located in front of the cervix, we utilize large 1×31 kernels to learn the globally 

relative positioning information between the bladder and cervix along the y-axis. The 1×31 

kernels along the y-axis were chosen because 31 can cover the maximum total length of the 

cervical tumor and bladder. The last convolutional layer with 25×25 kernels is used to 

further seek for global spatial features. The final prediction layer is constructed by a 

convolution layer with 3×3 kernels and generates the final output, in which bladder, other 

normal tissue, and cervical tumor pixel values approach −1, 0, and 1, respectively. We 

denote the output of the proposed S-CNN model as the probability map for each input patch.

2.4.2. Train the Proposed S-CNN Model—To train the proposed S-CNN model, 

several key steps were followed:

Initialization:  Initialization of the network weights will affect the network convergence. In 

our S-CNN model, we used the Xavier initialization method (Glorot and Bengio, 2010). The 

Xavier initialization assigns the network weights from a Gaussian distribution with zero 
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mean and a variance of 1/N where N specifies the number of input neurons. Through Xavier 

initialization, we can guarantee the variance of input and output for each layer to be same to 

prevent back-propagated gradients from vanishing or exploding and allow activation 

functions to work normally.

Loss Function:  Differently from mostly used soft-max function for segmentation, the loss 

function that we used to train the proposed S-CNN model is L1 norm, which is defined as:

ℒl1 P = 1
N ∑p ∈ P x p − y p , (2)

where p is the index of the pixel and P is the input patch; x(p) and y(p) are the values of the 

pixels in the predicted output and reference, respectively. L1 norm loss function is less 

sensitive to the outliers than the L2 norm loss function (Ke and Kanade, 2005) and it has 

been widely used to solve CNN-based image restoration problems (Zhao et al., 2017). 

Additionally, the L1 norm is more suitable than the L2 norm segmenting bladder and 

cervical tumor regions out (relatively small to the region of background) because it can 

produce sparser solutions.

Optimization algorithm:  We used the stochastic gradient descent (SGD) algorithm to train 

the proposed CNN model. The learning rate and momentum are set as 0.01 and 0.9, 

respectively. The maximum epoch for training is set as 200.

2.5. Post-processing by Thresholding with Prior Information

The output of S-CNN will be finally processed by a thresholding method combined with 

prior information. The threshold used in this step is learned from the training samples. By 

measuring changes in segmentation accuracy according to different thresholds, we obtain an 

optimized threshold value from the training dataset. Here, the accuracy refers to the mean 

value of the Dice Similarity Coefficients (DSC) and all the possible thresholds were selected 

in the range of [0, 1] with a step-size of 0.05. Then, we use this optimized threshold value to 

determine the initial label of each pixel of the images from the output probability map of 

CNN for testing images. The change in mean-DSC values with different thresholding 

applied to the output probability map from S-CNN during one round cross-validation is 

illustrated in Fig. 4. In this example, the optimal threshold value is 0.4 under which the 

mean-DSC value for the training dataset is 0.902. In our experiments, the optimal threshold 

was selected for each cross-validation round. The selected optimal values for all five rounds 

of cross-validation are within a range of 0.35–0.45 (Table 2). When the thresholds are within 

this range, the mean-DSC values do not change much (Fig. 4). For future applications, the 

optimal threshold of the finally trained CNN model can be selected according to the whole 

training dataset.

In addition to the thresholding used in post-processing, we also consider the relative 

anatomy positioning of bladder and cervix and the roundness of cervical tumors. Based on 

the anatomical prior knowledge, a more anterior object should be considered as bladder 

rather than cervical tumor. After applying the optimal threshold to the S-CNN output 

probability map, if more than one connected object is present, we first find the central pixel 
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of each connected object. By denoting the position of the central pixel for each object i as

 ci =   cxi , cyi , the object with the largest cy value (cymax) is treated as the initial cervical tumor. 

Additionally, if the center of another object cyj is within two pixels of the initially identified 

object (i.e., cyj in the range of [cymax − 2, cymax]), this object is also included as the initial 

cervical tumor to take the uncertainty of determining central position into account.

Cervical tumors are quantified as “rounder” than the bladder (Liyanage et al., 2010) 

(Bourgioti et al., 2016) (Paiziev, 2014; Yang et al., 2000; Fukuya et al., 1995). For any object 

i in a binary image, we estimate its area Di and perimeter Pi first. Then, the roundness R of 

this object i is estimated by the following formula:

R i = 4πDi

P i 2 (3)

The roundness value R is closer to 1 if the object is closer to a circle. After applying the 

optimal threshold to the S-CNN output probability map, the object with the roundness R 
value closer to 1 is considered as the cervical tumor. Several calculated roundness R values 

of cervical tumors and bladders are listed in Fig. 5, demonstrating that R values of cervical 

tumors are much closer to 1 than those of bladders.

By integrating all the above information, we obtain the final segmentation result. The post-

processing steps are summarized in Fig. 6. The only object present after thresholding the 

network output is considered as cervical tumor; otherwise, we will calculate the central 

position of each object i and determine whether the object belongs to the initial cervical 

tumor based on the value of cyi . If two or more objects are included in the initial cervical 

tumor, we will calculate the roundness of each object and select the one with largest 

roundness value as the final cervical tumor. In our dataset, 23 slices out of 1176 slices need 

to calculate the roundness of the objects to differentiate the tumor from other misclassified 

objects.

2.6. Influence of zero-padding during convolution

For the proposed S-CNN model, we use zero-padding during the convolution process to 

preserve the output size. If we don’t use zero-padding during convolution, the predicted 

output size will be smaller than the input size by a constant border width, which is 

determined by the convolutional kernel size and number of convolution layers in the CNN-

based models. A larger input size is required for the unpadded convolution-based CNN 

model to obtain the segmentation result of an image with given size. To investigate the 

influence of zero-padding during convolution on the final cervical tumor segmentation 

result, we designed two different set-ups for the popular U-net-based (Ronneberger et al., 

2015) medical image segmentation scheme as follows:

Set-up 1: Set-up 1 for U-net (U-net-S1) uses unpadded convolutions, and the input image 

is a 96×96 patch containing the ROI (56×56) patch from the original PET image slice. Based 

on the input size, only two 2×2 max-pooling layers can be applied to this set-up so that the 
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final output of U-net is exactly the same size as that of the ROI patch. Otherwise, a larger 

patch that includes more background pixels is needed so that more max-pooling layers can 

be applied. In this case, the numbers of each label pixel are more imbalanced.

Set-up 2: Set-up 2 for U-net (U-net-S2) uses padded convolutions to ensure that enough 

max-pooling layers can be applied. The output size can be the same as the input size if the 

input size is selected so that all 2×2 max-pooling operations are applied to a layer with an 

even x- and y-size. In this set-up, we extended the ROI patch to a 64×64 patch cropped from 

the original PET image. Then, we can use up to five 2×2 max-pooling layers in the U-net to 

capture global and spatial information. Through our testing, we found that four 2×2 max-

pooling yielded the most accurate segmentation results.

2.7. Influence of different types of labelling

In both U-net-S1 and U-net-S2, the output contains three probability maps (bladder, cervical 

tumor, and background) following the standard U-net implementation. In our proposed S-

CNN model, instead of generating three output maps, we generate only one output map in 

which background, cervical tumor, and bladder should be labelled with 0, 1, and -1 

respectively. To fairly compare the performance of the proposed network with that of U-net, 

we also train a U-net with the same as that of the proposed PIC-S-CNN method, denoted as 

U-net-S3. In U-net-S3, while the architecture is same as that of U-net-S2 with padded 

convolution, the output contains one map (i.e., -1 for bladder, 0 for background, and 1 for 

cervical tumor) instead of three probability maps for each category.

2.8. Comparison methods

To evaluate the performance of the proposed PIC-S-CNN method, we compare it with 

region-growing, Chan-Vese (Chan and Vese, 2001; Vese and Chan, 2002), and graph-cut 

(Bağci et al., 2011), which are traditional segmentation methods for PET image. We also 

compared our method with two widely used deep learning methods: fully convolution 

network (FCN) (Long et al., 2015; Noh et al., 2015; Arbabshirani et al., 2017; Shelhamer et 
al., 2017) and U-net (Ronneberger et al., 2015). Roundness and relative positioning 

information constraint were applied to the region-growing method, Chan-Vese, and graph-

cut methods to obtain the final segmentation results. FCN-8s (8 pixel stride net) generates 

more accurate segmentation results than other FCN-based methods (Shelhamer et al., 2017). 

We compared the proposed PIC-S-CNN model with FCN-8s as previously described 

(Shelhamer et al., 2017). In addition, PET resolution is low and the cervical tumor in some 

slices can be small. The use of an 8-stride may skip some small cervical tumors and obtain 

segmentation boundaries in coarse resolution. Thus, we modify the FCN-8s into a FCN-2s 

net in which the last 8× up-sampling layer is replaced by three 2× up-sampling layers to 

obtain results at finer scale. Meanwhile, the detailed information from pool 1 and 2 layers 

are preserved. This FCN-2s net is also compared with the proposed PIC-S-CNN method. 

The post-processing procedure (introduced in Section 2.5) was also applied to all the FCN-

based methods. Furthermore, because we implemented U-net with three different set-ups, 

the U-net with the set-up, which achieved the best segmentation result, was chosen as the 

comparison method. The final segmentation results of the U-net were also obtained by 

applying the post-processing procedure (introduced in Section 2.5) to the probability maps 
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of U-net. All the parameters of the comparison methods in this study were fine tuned to 

achieve the highest average DSC values.

2.9. Evaluation criteria

Five criteria were used to quantitatively evaluate the segmentation accuracy including DSC, 

positive predictive value (PPV), intersection over union value (IoU), sensitivity (SEN), and 

specificity (SPC). The formulas for these five criteria are listed in Table 3.

3. Results

3.1. Illustration of Learning Process of PIC-S-CNN

Several randomly selected 7×7 small filters and 25×25 large filters are shown in Fig. 7, and 

their corresponding captured local and global features are shown in Fig. 8. Edge information 

is illustrated in Fig. 8 (a) while spatial and localization information is illustrated in Fig. 8 

(b).

To better understand the learning process of the proposed S-CNN architecture, we show the 

learning progression during the training process (Fig. 9). The first column includes the 

original PET images and the second column gives the reference label of the cervical tumor. 

Columns three to eight show the outputs of the network by different epochs (1, 5,20,30,50, 

and 200). More accurate probability maps were obtained as the epoch number increased. 

The probability maps obtained by epoch=200 distinguished the boundaries between bladder 

and cervical tumor. By applying the post-processing procedure described in Section 2.5 on 

these probability maps, we obtain the final segmentation results of cervical tumor.

After showing the probability maps obtained from the proposed S-CNN model (Fig. 9), we 

provide an example that illustrates the role of the proposed post-processing procedure (Fig. 

10). The boundary between cervical tumor and bladder is unclear in the original PET image. 

Meanwhile, the intensity values of cervical tumor and bladder are similar (Fig. 10(a)). Even 

though most of bladder pixels were mapped approximately to -1 by the proposed S-CNN 

model, some bladder pixels were still mapped to values which are larger than 0. After 

thresholding the output of the S-CNN model, we obtained a binary image (Fig. 10(d)), 

which includes two objects. After calculating the distance norms for these two objects, we 

can determine the final segmentation result in (e).

3.2. Comparison among Different Set-ups of U-net

3.2.1. Influence of Zero-padding during Convolution—The values of the five 

evaluation criteria obtained by U-net-S1 and U-net-S2 are shown in Fig. 11. Four of the five 

evaluation criteria values obtained by U-net-S2 are equal to or greater than those obtained by 

U-net-S1. Using padded convolution with more max-pooling layers equipped can capture 

better global features than using unpadded convolution with less max-pooling layers, 

yielding better segmentation results.

3.2.2. Influence of Different Types of Labeling—U-net-S3 shows better 

segmentation results (average DSC of 0.80) than U-net-S2 (average DSC of 0.66). 
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Segmentation results obtained from three set-ups of U-net for two PET image slices from 

two different patients are illustrated in Fig. 12. The red and green contours represent 

reference contours given by the radiation oncologists and the segmentation results obtained 

by U-net, respectively (Fig. 12). For each set-up, we show segmentation results from U-net 

with and without the post-processing procedure. Segmentation results were improved by the 

post-processing procedure for both U-net-S1 and U-net-S2 because post-processing 

considers the lower object as cervical tumor based on the anatomy location of the bladder 

and cervix. For U-net-S3, the segmentation result was not affected greatly because there was 

only one object left after thresholding. For all patient data, the segmentation accuracy of U-

net-S1, 2, and 3 measured by DSC increases by 0.02, 0.02, and 0.01 on average, 

respectively, through the post-processing procedure. Overall, U-net-S3 outperforms the other 

two methods in terms of quantitative and visual aspects. In the following comparisons, the 

segmentation results of U-net were obtained from U-net-S3 with the post-processing 

procedure.

3.3. Qualitative Evaluation

Upon comparing our proposed PIC-S-CNN method with region growing, Chan-Vese, graph-

cut, U-net, and FCN based methods, we show segmentation results from six different 

patients obtained by seven methods in Fig. 13. The PET images in Fig. 13 can be divided 

into three categories: (1) bladder intensity is lower than cervical tumor intensity (Row 1–2); 

(2) bladder intensity is similar to cervical tumor intensity (Row 3–4); and (3) bladder 

intensity is higher than cervical tumor intensity (Row 5–6).

For PET images from category (1) in which cervical tumor intensity value is higher than 

bladder intensity value, region-growing, Chan-Vese and graph-cut methods sometimes can 

segment the correct part of the image as cervical tumor, but sometimes can misclassify the 

bladder as tumor. FCN-8s, FCN-2s, and U-net can all segment the correct part of the image 

as cervical tumor. Because of the inhomogeneity of cervical tumor intensity, the boundary of 

segmented cervical tumor obtained by these methods is not as accurate as PIC-S-CNN. The 

segmentation results obtained by the proposed PIC-S-CNN method are closer to those of the 

reference. For PET images from category (2), region-growing, Chan-Vese, and graph-cut 

methods cannot differentiate bladder from cervical tumor as they mostly misclassify bladder 

pixels into cervical tumor pixels. Although FCN-8s, FCN-2s, and U-net methods can 

distinguish between bladder and cervical tumor to some extent, the cervical tumor contours 

obtained by these three methods are not accurate enough. For example, the shape of the 

segmented cervical tumors obtained by FCN-8s or U-net is close to rectangular or irregular, 

respectively, while the reference is close to the circle (row 3). The PIC-S-CNN method 

generates almost same the segmentation results as those of the reference contour. Overall, 

the PIC-S-CNN method outperforms the other methods for patients from category (2). For 

PET images from category (3) where cervical tumor intensity is much lower than bladder 

intensity (Row 5–6), the region-growing method may misclassify bladder as cervical tumor 

or may not detect cervical tumors because cervical tumor intensity is closer to that of the 

background. The Chan-Vese, graph-cut, FCN-8s, FCN-2s, and U-net methods sometimes 

misclassify bladder pixels into cervical tumor pixels. In this circumstance, the PIC-S-CNN 

method can segment cervical tumor accurately. Overall, the proposed PIC-S-CNN method 
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can generate more accurate segmentation results than the other methods in any 

circumstance. For small tumors in the top or bottom slices, the proposed PIC-S-CNN model 

can also generate accurate segmentation (Fig. 14).

3.4. Quantitative Evaluation

Other than visually, we also compared the proposed PIC-S-CNN method quantitatively with 

region-growing, Chan-Vese, graph-cut, U-net, and FCN-based methods. We list the (average 

± std) values of DSC, PPV, IoU, SEN and SPC obtained from these different methods in 

Table 4. The higher the values, the better are the segmentation results. Region-growing, 

Chan-Vese, and graph-cut methods can only achieve 0.55, 0.64, and 0.67 DSC values on 

average because they cannot differentiate between bladder and cervical tumor in some cases. 

Because FCN-8s uses 8 pixels stride in the last up-sampling layer, cervical tumor location 

and boundary are not accurate enough because less detailed features are incorporated. The 

average DSC value for the FCN-8s method is 0.71. FCN-2s replacing the last ×8 up-

sampling layer by three ×2 up-sampling layers of FCN-8s detects location and boundary 

information more accurately, and achieves an average DSC value of 0.77. U-net-S3 performs 

better than region-growing, FCN-8s, and FCN-2s methods, achieving an average DSC value 

of 0.80. The DSC value obtained by our proposed PIC-S-CNN method yielded the highest 

value with an average DSC value of 0.80 0.84. The PIC-S-CNN method generates more 

accurate segmentation result for cervical tumor than region-growing, FCN-8s, FCN-2s, and 

U-net methods. Moreover, we also list the evaluation criteria values obtained by the S-CNN 

model without using the post-processing procedure in Table 4. The average DSC value 

obtained by using the S-CNN model only is 0.82, while the post-processing procedure can 

further increase DSC values by 0.02 on average. Such increase is smaller than the difference 

between different models (e.g., the difference of DSC between PIC-U-Net-S3 and PIC-S-

CNN is 0.04). These results suggest that network architecture plays a more important role in 

improving the segmentation accuracy for the whole algorithm.

4. Discussion

We didn’t include any pooling layer in the S-CNN architecture to preserve output image 

size. Although pooling layer can help to achieve positional and translational invariance and 

to discard irrelevant details, it can also eliminate important details, potentially leading to 

losing a precise sense of tumor location. In our S-CNN architecture, spatial and global 

features were captured by using large size convolution kernels in the convolutional layer. In 

addition, even though we didn’t include any dropout layer, which is usually used to avoid 

overfitting, we alleviated the overfitting concern by balancing the parameters of the network 

with number of training samples. In summary, all the processing conducted by the S-CNN 

model was completed by convolution and activation layers. Additionally, we investigated the 

influence of class labelling order by designing a different class labelling way in which 

bladder, other normal tissue, and cervical tumor were labelled as 0, -1, and 1, respectively. 

Under this labelling way, DSC decreased by 0.03. This illustrates that the labelling way 

described in Section 2.3.3, which makes bladder class and tumor class sufficient different, 

can generate more accurate segmentation results.
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The post-processing procedure we developed is mainly used to exclude some separated 

regions that are incorrectly labelled as tumor after the output thresholding. If only one object 

area is present after thresholding the network output and this area contains both cervical 

tumor and bladder, the presented post-processing procedure will not help to improve the 

segmentation results further. However, in our dataset, only 19 slices out of 1176 could 

connect bladder and tumor after thresholding. In most of these 19 slices, only a small part of 

bladder was connected to tumor after thresholding. Additionally, if more than one tumor 

region is present in a slice, the proposed post-processing procedure will exclude the upper 

region and select the lower region as the cervical tumor. This is a limitation of the proposed 

post-processing procedure for some irregular tumors in images of higher resolution, 

although we have not observed this situation for all the 1176 slices of the cervix PET.

Because of the limited number of samples from real patients, the proposed PIC-S-CNN 

method is a 2D convolutional neural network. Three-dimensional convolutional neural 

networks need more training samples than 2D convolutional neural network. Thus, for fair 

comparison, we didn’t compare the proposed method with the 3D U-net (Çiçek et al., 2016) 

and V-net (Milletari et al., 2016) methods. We can modify the proposed PIC-S-CNN method 

into a 3D convolutional neural network once we have accumulated a sufficient number of 

patient images. We can then compare the proposed 3D PIC-S-CNN method with the 3D U-

net and V-net methods. Since the 3D convolutional neural network can take advantage of the 

3D nature of objects in the images, more accurate segmentation results are expected.

Another limitation of our current study is that the proposed segmentation scheme strongly 

depends of the quality of PET images, which could be affected by different factors such as 

patient motion, bladder filling change during the scan, and spill-in counts from bladder to 

cervical tumor. Advanced motion correction strategies (Rahmim et al., 2007) or PET scanner 

design (Zhang et al., 2017) with limited scanning time could help alleviate the influence of 

patient motion and bladder filling change during the scan. The spill-in counts from the 

bladder can introduce bias in quantifying small regions such as cervical tumor in PET 

images (Silva-Rodríguez et al., 2016). The effect of spill-over effect from the bladder to 

cervical regions was not considered in our neural network design. To correct the spill-over 

effect, advanced reconstruction algorithms should be used to reconstruct cervical PET 

images by removing the contribution of the bladder to the final image (Silva-Rodríguez et 
al., 2016). Alternatively, we can design a neural network that considers the partial volume 

effect (Rousset et al., 2007) during segmentation, where one voxel can have contributions 

from both bladder spill-over and cervical tumor. To train such a neural network, simulation 

or phantom studies are needed to obtain the ground truth of cervical tumors.

5. Conclusion

We propose a prior information constraint spatial information embedded convolutional 

neural network (PIC-S-CNN) to segment cervical tumors on 3D PET images. Since CNN 

has shown great promise in capturing image features, combining it with some prior 

information (roundness of cervical tumor and relative positioning information between 

cervix and bladder) can help resolve the cervical tumor segmentation problem. First, an S-

CNN model should be used to map the original PET image into a classification map in 
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which bladder, other normal tissue, and cervical tumor are labelled as -1, 0, and 1, 

respectively. In designing the S-CNN architecture, prior positioning information between 

cervical tumor and bladder has been considered by using different kernel sizes along the x- 

and y-directions and relatively large kernel size in the final convolutional layer to exploit 

global spatial information. Then, the final segmentation result is obtained via an auto-

thresholding technique which is, again, constrained by the known prior information. 

Experimental results have shown that the proposed PIC-S-CNN provides a more accurate 

way for segmenting cervical tumors on 3D PET images.
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Fig. 1: 
The pipeline of the proposed PIC-CNN method.
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Fig. 2: 
An example of ROI extracted from an original 2D slice of a PET image. The red rectangle 

indicates the ROI boundary.
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Fig. 3: 
One example showing the generated input image label: (a) original PET slice image; (b) 

cervical tumor label of (a); and (c) generated label map for the network training.
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Fig. 4: 
Threshold-accuracy (Mean-DSC) V.S. threshold for one training dataset. The optimal 

threshold in this example is 0.4.
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Fig. 5: 
List of roundness values R of bladder and cervical tumor from different patients.
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Fig. 6: 
Flowchart for the post-processing procedure.
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Fig. 7: 
(a) and (b) contain several convolution kernels with size 7×7 and 25×25, respectively.
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Fig. 8: 
Some local features (a) from the first convolution layer with 7×7 kernels and global features 

(b) from the fifth convolution layer with 25×25 kernels.
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Fig. 9: 
Progression of learning in the proposed CNN. The first two columns contain the original 

PET images and the reference labels of cervical tumor. The other columns list the outputs of 

the network by different epochs.
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Fig. 10: 
Illustration of post-processing to obtain final segmentation results: (a) original PET image; 

(b) cervical tumor with reference label; (c) predicted probability map from CNN; (d) initial 

label with threshold = 0.4 applied on (c); and (e) the final segmentation result based on the 

prior information.
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Fig. 11: 
Values of five evaluation criteria obtained by U-net for three different set-ups.
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Fig. 12: 
Segmentation results (green contour) obtained from three setups of U-net for two PET 

images from two different patients. Red contour is the reference. (a) Original PET images; 

(b)-(d)-(f) are segmentation results directly from the U-net probability maps; (c)-(e)-(g) are 

segmentation results which were obtained after the post-procedure.
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Fig. 13: 
(a) Original PET image; blue arrow indicates bladder and yellow arrow indicates cervical 

tumor; (b)-(h) Predicted cervical tumor contours (green contour) obtained by PIC-Region-

growing, PIC-Chan-Vese, PIC-Graph-cut, PIC-FCN-8s, PIC-FCN-2s, PIC-U-net-S3 and 

PIC-S-CNN methods, respectively. Red contour is the reference.
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Fig. 14: 
All the slices containing cervical tumor from one patient’s PET image. Row 1: Original PET 

slices; Row 2: Reference segmentation of cervical tumor; Row 3: Segmentation results of 

cervical tumor obtained by the proposed PIC-S-CNN method.
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Table 1:

Architecture of the proposed S-CNN model

Layer Kernel Size Padding Features Patches

Input - 1

Conv1 7×7 [3 3 3 3] 32

Conv2 3×3 [1 1 1 1] 32

Conv3 1×31 [0 0 15 15] 32

Conv4 5×1 [2 2 0 0] 32

Conv5 25×25 [12 12 12 12] 32

Prediction 3×3 [1 1 1 1] 1

*
Conv indicates Convolution layer + activation layer
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Table 2:

The optimal threshold values for the five rounds of cross-validation. The step-size used in threshold selection 

is 0.05.

R1 R2 R3 R4 R5

F1 0.40 0.40 0.35 0.35 0.40

F2 0.35 0.40 0.45 0.35 0.35

F3 0.45 0.35 0.35 0.40 0.40

F4 0.35 0.45 0.40 0.45 0.45

F5 0.40 0.45 0.35 0.35 0.35
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Table 3:

Five criteria for quantitatively evaluating the segmentation accuracy.

Criteria Formula

DSC DSC = 2TP/(2TP+FP+FN)

PPV PPV = TP/(TP+FP)

IoU IoU = TP/(TP+FP+FN)

SEN SEN = TP/(TP+FN)

SPC SPC = TN/(TN+FP)

Note: TP (true positive) is the number of correctly classified tumor pixels; FN (false negative) is the number of tumor pixels labeled as normal 
pixels; TN (true negative) is the number of correctly classified normal pixels; FP (false positive) is the number of normal pixels labeled as tumor 
pixels.
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Table 4:

Values of five evaluation criteria obtained by different methods.

DSC PPV IoU SEN SPC

PIC-Region-growing 0.55 0.60 0.40 0.74 0.985

PIC-Chan-Vese 0.64 0.82 0.48 0.55 0.993

PIC-Graph-Cut 0.67 0.82 0.52 0.54 0.993

PIC-FCN-8s 0.71 ± 0.009 0.65 ± 0.018 0.57 ± 0.009 0.84 ± 0.010 0.988 ± 0.0005

PIC-FCN-2s 0.77 ± 0.013 0.71 ± 0.018 0.64 ± 0.017 0.88 ± 0.014 0.989 ± 0.0007

U-net-S3 0.79 ± 0.011 0.80 ± 0.010 0.67 ± 0.013 0.83 ± 0.011 0.994 ± 0.0002

PIC-U-net-S3 0.80 ± 0.011 0.81 ± 0.010 0.69 ± 0.032 0.84 ± 0.011 0.994 ± 0.0002

S-CNN 0.82 ± 0.008 0.78 ± 0.010 0.71 ± 0.010 0.92 ± 0.005 0.991 ± 0.0004

PIC-S-CNN 0.84 ± 0.007 0.82 ± 0.005 0.73 ± 0.010 0.89 ± 0.011 0.993 ± 0.0002
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