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Abstract

We present a systematic evaluation of state-of-the-art algorithms for inferring gene regulatory 

networks (GRNs) from single-cell transcriptional data. As the ground truth for assessing accuracy, 

we use synthetic networks with predictable trajectories, literature-curated Boolean models, and 

diverse transcriptional regulatory networks. We develop a strategy to simulate single-cell 

transcriptional data from synthetic and Boolean networks that avoids pitfalls of previously-used 

methods. Furthermore, we collect networks from multiple experimental single-cell RNA-seq 

datasets. We develop an evaluation framework called BEELINE. We find that the AUPRC and 

early precision of the algorithms are moderate. The methods are better in recovering interactions in 

synthetic networks than Boolean models. The algorithms with the best early precision values for 

Boolean models also perform well on experimental datasets. Techniques that do not require 

pseudotime-ordered cells are generally more accurate. Based on these results, we present 

recommendations to end users. BEELINE will aid the development of GRN inference algorithms.

Single-cell RNA-sequencing technology has made it possible to trace cellular lineages 

during differentiation and to identify new cell types1,2. A central question that arises now is 

whether we can discover the gene regulatory networks (GRNs) that control cellular 

differentiation and drive transitions from one cell type to another. In such a GRN, each edge 

connects a transcription factor (TF) to a gene it regulates. Ideally, the edge is directed from 

the TF to the target gene, represents direct rather than indirect regulation, and corresponds to 

activation or inhibition.

Single-cell expression data are especially promising for computing GRNs because, unlike 

bulk transcriptomic data, they do not obscure biological signals by averaging over all the 

cells in a sample. However, these data have features that pose significant difficulties, e.g., 
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substantial cellular heterogeneity3, cell-to-cell variation in sequencing depth, the high 

sparsity caused by dropouts4, and cell-cycle-related effects5. Despite these challenges, over a 

dozen methods have been developed or used to infer GRNs from single-cell data6–19. An 

experimentalist seeking to analyze a new dataset faces a daunting task in selecting an 

appropriate inference method since there are no widely-accepted ground truth datasets for 

assessing algorithm accuracy and the criteria for evaluation and comparison of methods are 

varied.

We have developed BEELINE, a comprehensive evaluation framework to assess the 

accuracy, robustness, and efficiency of GRN inference techniques for single-cell gene 

expression data based on well-defined benchmark datasets (Figure 1). BEELINE 

incorporates 12 diverse GRN inference algorithms. It provides an easy-to-use and uniform 

interface to each method in the form of a Docker image. BEELINE implements several 

measures for estimating and comparing the accuracy, stability, and efficiency of these 

algorithms. Thus, BEELINE facilitates reproducible, rigorous, and extensible evaluations of 

GRN inference methods for single-cell gene expression data.

Results

Overview of Algorithms

We surveyed the literature and bioRxiv for papers that either published a new GRN 

inference algorithm or used an existing approach. We ignored methods that did not assign 

weights or ranks to the interactions, required additional datasets or supervision, or sought to 

discover cell-type specific networks. We selected 12 algorithms using these criteria (Online 

Methods).

We used BEELINE to evaluate these approaches on over 400 simulated datasets (across six 

synthetic networks and four curated Boolean models) and five experimental human or mouse 

single-cell RNA-Seq datasets. Since eight algorithms require pseudotime-ordered cells, we 

used datasets (both simulated and real) that focus on cell differentiation and development, 

processes in which there is a meaningful temporal progression of cell states. We did not 

study GRNs relevant to other biological processes, e.g., changes in disease states or 

differences among cell types.

Datasets from Synthetic Networks

Our motivations for using synthetic networks were two-fold. First, we wanted to use a 

known GRN that could serve as the ground truth. Second, we desired to create in silico 
single-cell gene expression datasets that were isolated from any limitations of pseudotime 

inference algorithms. Therefore, we started with six synthetic networks (Supplementary 

Figure 1(a), Supplementary Table 1). Simulating these networks should produce a variety of 

different trajectories seen in differentiating and developing cells20. Several recent studies on 

GRN inference14,16,17,21,22 have used GeneNetWeaver23 to create in silico single-cell gene 

expression datasets. However, when we simulated the six synthetic networks using 

GeneNetWeaver (Online Methods), we observed no discernible trajectories in the two-

dimensional projections of these data (Supplementary Figure 1(d)).
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We therefore used our BoolODE approach (Online Methods) to simulate these networks. For 

each gene in a GRN, BoolODE requires a Boolean function that specifies how that gene’s 

regulators combine to control its state. We represent each Boolean function as a truth table, 

which we convert into a non-linear ordinary differential equation (ODE). This approach 

provides a reliable method to capture the logical relationships among the regulators precisely 

in the components of the ODE. We add noise terms to make the equation stochastic20,24.

For each network, we applied BoolODE by sampling ODE parameters ten times and 

generating 5,000 simulations per parameter set (Online Methods). We created five datasets 

per parameter set, one each with 100, 200, 500, 2,000, and 5,000 cells by sampling one cell 

per simulation, to obtain 50 different expression datasets. Analyzing the two-dimensional 

projections of these simulations reassured us that BoolODE was successful in correctly 

simulating the network models (Supplementary Figures 1(b) and 1(c), Supplementary Note 

1.1).

Setting each network as the ground truth, we executed the 12 algorithms on every one of the 

50 simulated datasets. For those GRN inference methods that required time information, we 

provided the simulation time at which we sampled each cell. For the Bifurcating, Bifurcating 

Converging, and Trifurcating networks, we ran the algorithms that need time information on 

each trajectory individually and combined the outputs (Online Methods). Six algorithms 

required one or more parameters to be specified. We performed a parameter sweep to 

determine the values which gave the highest median AUPRC (Supplementary Note 1.2).

For each network-algorithm pair, Figure 2 displays the median AUPRC ratio (the AUPRC 

divided by that of a random predictor). Supplementary Figures 2 and 3 show the box plots of 

AUPRC and AUROC values. The methods performed best for the Linear network: 10 out of 

12 algorithms had a median AUPRC ratio greater than 2.0. Seven methods had a median 

AUPRC ratio greater than 5.0 for the Linear Long Network. The Cycle, Bifurcating 

Converging, Bifurcating, and Trifurcating networks were progressively harder to infer, with 

no algorithm achieving an AUPRC ratio of two or more on the last network. SINCERITIES 

obtained the highest median AUPRC ratio for four out of the six networks. SINGE had the 

highest median AUPRC ratio for Cycle and PIDC for Trifurcating.

We examined the effect of the number of cells on AUPRC by comparing the values for 100, 

200, 500, and 2000 cells to those for 5000 cells (Supplementary Note 1.3). As the number of 

cells increased from 100 to 500, the number of algorithms with significantly lower AUPRC 

values in comparison to 5,000 cells decreased from seven to four. The number of cells had 

no significant effect on five algorithms (GENIE3, GRNVBEM, LEAP, SCNS, and SCODE).

To examine the stability of the results, we considered the GRNs formed by the k edges with 

the highest ranks, with k set to the number of edges in each synthetic network, computed the 

Jaccard indices of all pairs of GRNs, and recorded the medians of these values (Figure 2, 

Online Methods). While SINCERITIES, SINGE, and SCRIBE had the three highest 

median-of-median AUPRC ratios, the networks they predicted were relatively less stable 

(median Jaccard index between 0.28 and 0.35). PPCOR and PIDC, the other two methods in 

the top five, had higher median Jaccard indices of 0.62 each.
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We simulated the inferred GRNs to see if they had the same number of steady states as the 

ground truth networks. Apart from the linear network, we found that more than 60% of the 

GRNs yielded more steady states than in the ground truth (Supplementary Note 1.4). For 

networks with multiple steady states, there was no clear benefit to computing a single GRN 

after combining all trajectories over merging the GRNs inferred for each trajectory 

(Supplementary Note 1.5).

Datasets from Curated Models

Dense sub-networks of large-scale gene regulatory networks that have been used to generate 

simulated datasets of single-cell gene expression14,16,17,21,22 may not capture the complex 

regulation in any specific developmental process. To avoid this pitfall, we selected four 

published Boolean models: Mammalian Cortical Area Development (mCAD)25, Ventral 

Spinal Cord Development (VSC)26, Hematopoietic Stem Cell Differentiation (HSC) 27, and 

Gonadal Sex Determination (GSD)28 (Figure 3, Supplementary Table 2).

We confirmed that the BoolODE-simulated datasets for each Boolean model (a) captured the 

same number of steady states as in the model (Figure 3(b)) and (b) matched the unique gene 

expression pattern that characterized each steady state of that model, as reported in the 

corresponding publication (Supplementary Note 2.1). Encouraged by these results, we used 

BoolODE to create 10 different datasets with 2,000 cells for each model. For each dataset, 

we generated one version with a dropout rate of q = 50 and another with a rate of q = 70 

(Online Methods)14. We computed pseudotimes using Slingshot29 for each dataset and 

provided these values to the algorithms, to mimic a real analysis pipeline. We performed a 

parameter sweep and selected the values which gave the highest median AUPRC for each 

model (Supplementary Note 2.2). We then ran each of the 12 algorithms on each of the 120 

datasets (30 per model).

Figure 4 summarizes our findings for the datasets without dropouts. Only four methods 

(GRISLI, SCODE, SINGE and SINCERITIES) had a median AUPRC ratio greater than 1 

for the mCAD model. The reason may be the high density of the underlying network 

(Supplementary Table 2). For the VSC model, which only has inhibitory edges, three 

methods (PIDC, GRNBoost2, and GENIE3) had an AUPRC ratio greater than 2.5. These 

three methods also had an AUPRC ratio close to 2.0 for the HSC model. PPCOR, GRISLI, 

and SCRIBE tied for the highest median AUPRC ratio of 1.4 for the GSD model. Overall, 

GENIE3, GRNBoost2, and PIDC had among the highest median AUPRC ratios for two out 

of the four models. Surprisingly, SINCERITIES, SCRIBE, and SINGE, which were the best 

algorithms according to the AUPRC ratios for the datasets from synthetic networks, had a 

close to random median AUPRC ratio for all four curated models. We address this trend in 

“Discussion.”.

Supplementary Figures 4 and 5 show distributions of the AUPRC and AUROC values for all 

dropout rates. To study the effect of dropouts, for each algorithm, we compared the 

distributions of AUPRC scores across all Boolean models between q = 0 and q = 50 and 

between q = 0 and q = 70. Four and seven GRN inference methods had a statistically 

significant difference in AUPRC values for the 0–50 and the 0–70 comparison, respectively 

(Supplementary Note 2.3). The four algorithms that were unaffected by dropout rates 
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(GRNVBEM, LEAP, SCRIBE, SINCERITIES) had worse-than-random AUPRC values on 

the mCAD and VSC datasets.

Next, we studied the early precision and early precision ratio (EPR) values of the top-k 
predictions (Online Methods) for each of the four models. In at least one of the four models, 

11 algorithms had a median EPR less than or close to one, i.e., similar to a random predictor 

(black squares in Figure 4). In the 29 cases when the median EPR was at least one, it was 1.5 

or larger only 16 times. The mCAD model had the smallest number of algorithms (two, 

GRISLI and SCODE) with median EPR larger than one. For datasets with dropouts, we did 

not see any clear trends in terms of smaller or larger early precision values compared to the 

dropout-free results (Supplementary Figure 6).

We also investigated if the GRN inference methods were better at recovering activating 

edges or inhibitory edges. The mCAD model was again an outlier for EPR for activating and 

inhibitory edges, with only SCODE having slightly better-than-random scores for both. 

Overall, the GRN inference algorithms performed poorly when it comes to recovering the 

true edges within the top-k predictions.

We examined which algorithms produced similar reconstructions. For every model, the three 

best performing methods (PIDC, GENIE3, and GRNBoost2) had similar outputs 

(Supplementary Note 2.4). In addition, LEAP and PPCOR were similar to the first three 

methods for the mCAD and GSD models. Pairwise similarities were poor for the other 

algorithms.

The GRNs formed by the top-k edges contained a higher than expected number of feed-

forward loops and lower than expected feedback loops and mutual interactions 

(Supplementary Note 2.5). Further, a very large fraction of false positives in the top-k edges 

corresponded to paths of length two in the ground truth networks (Supplementary Note 2.6). 

This tendency to predict “indirect” interactions could be the reason for the low EPR values.

Experimental Single-Cell RNA-Seq Datasets

We selected five experimental single-cell RNA-Seq datasets, two in human and three in 

mouse cells, comprising seven cell types (Online Methods and Supplementary Table 3). We 

collected three different types of ground truth networks: cell-type-specific ChIP-Seq, non-

specific ChIP-Seq, and functional interaction networks (Online Methods and Supplementary 

Table 4).

To measure the running time of the algorithms, we selected three cell types, namely, hHEP, 

hESC and mHSC-E, which contained different numbers of cells. We executed the algorithms 

on multiple subsets of highly-varying genes in each dataset. For 5,000 genes, the running 

times ranged from minutes (PPCOR, LEAP, SINCERITIES, SCODE) to hours 

(GRNBOOST2) to nearly a day (GENIE3, PIDC). GRNVBEM, SCRIBE, and SINGE were 

the slowest methods taking a few hours to nearly a day for 1,000 genes (Supplementary 

Figure 7). There was little to no variation in the running times of any method with increasing 

number of cells. Since the implementations of GENIE3, GRNBoost2, and SINGE are 

multithreaded, their wall-clock times can be lowered by a factor proportional to the number 
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of threads available. Most of the algorithms did not require more than 4GB of RAM for up 

to 2,000 genes.

For further analysis, we selected the five algorithms with the highest median AUPRC in each 

of the earlier two datasets: SINCERITIES, SCRIBE, SINGE, PPCOR, and PIDC for 

synthetic networks and PIDC, GENIE3, GRNBoost2, PPCOR, and SCODE for Boolean 

models; PIDC and PPCOR were in both sets. We did not retain SINGE and SCRIBE 

because of the time taken for parameter search.

For each RNA-Seq dataset, we created four subsets of genes containing all the significantly-

varying TFs and either (a) the 500 or (b) 1,000 most varying genes and only the (c) 500 or 

(d) 1,000 most varying genes. We intersected each ground truth network with each set of 

genes.

We compared the algorithms based on the EPR, reasoning that predicted interactions of 

higher confidence will be more interesting to experimentalists. We used the top-k networks, 

setting k equal to the number of edges in the corresponding reduced ground truth dataset. We 

performed parameter search to optimize the EPR (Supplementary Note 3.1).

In general, the algorithms achieved lower EPR values in networks with higher densities, i.e., 

the cell-type specific ChIP-Seq networks (Figure 5 and Supplementary Figure 8). While the 

STRING and non-cell-type specific ChIP-Seq networks had similar densities, the GRN 

methods typically achieved a higher EPR for the former. STRING networks contain both 

physical and functional (indirect) interactions. The higher EPR ratios obtained for STRING 

networks compared to ChIP-Seq networks of similar density suggested that a substantial 

fraction of the edges in the inferred GRNs were indirect, reinforcing our findings for 

Boolean models. The densities of the cell-type specific ChIP-Seq networks varied 

considerably (from 0.08 to 0.58). The EPR of most of the methods on these networks was 

close to 1, i.e., similar to a random predictor, with no EPR value exceeding 1.5.

GENIE3, PIDC, and GRNBoost2 were the three methods with the highest EPR values for 

experimental datasets (Figure 5 and Supplementary Figure 8), just as they were for curated 

models (Figure 4). These methods also performed equally well for AUPRC ratios 

(Supplementary Figures 9 and 10). When we computed modules in the GRNs output by 

these methods, we found that they had a good concordance with clusters determined directly 

from the gene expression data (Supplementary Note 3.2). PPCOR, which was consistently in 

the top-four methods for both synthetic networks and curated models, had only a slightly 

better than random EPR across all experimental datasets. PPCOR’s AUPRC decreased 

moderately as we increased dropouts in datasets from curated models (Supplementary 

Figure 4). We speculate that dropouts in experimental single-cell RNA-Seq datasets had a 

severe effect on PPCOR.

To examine the effect of the number of genes, as well as including all significantly varying 

TFs, we evaluated the three top performing methods, PIDC, GENIE3, and GRNBoost2, on 

the non-specific ChIP-Seq and STRING networks. We found that the median EPR had a 

statistically-significant improvement when we included all significantly varying TFs in the 

analysis (Supplementary Note 3.3). However, the addition of highly varying genes (500 vs. 
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1,000) did not lead to a significant improvement in EPR values. The AUPRC ratio did not 

vary with the number of genes.

Almost every algorithm produced nearly identical outputs when we ran it on the same 

dataset multiple times (Supplementary Note 3.4). However, for the same dataset, the results 

varied substantially from one algorithm to another (Supplementary Note 3.5), in contrast to 

curated models where the top performing methods yielded similar results (Supplementary 

Note 2.4). Moreover, ensembles of the algorithm outputs did not perform systematically 

better than the best method for each dataset (Supplementary Note 3.5). This result stands in 

contrast to the success of ensembles in inferring GRNs from bulk transcriptional data30.

Discussion

We have presented BEELINE, a framework for benchmarking algorithms that infer GRNs 

from single-cell gene expression data. Figure 6 summarizes the properties of the algorithms 

and the insights from this study. Despite considerable variation in algorithm performance 

across the different types of datasets, we noted a few trends. The synthetic networks were 

easier to recover than the curated models. The reason may be that the synthetic networks 

have simple and well-defined trajectories. For curated models, each of which has multiple 

trajectories, we found that methods that do not require pseudotime information (GENIE3, 

GRNBoost2, and PIDC) performed the best. Methods that performed well for Boolean 

models also inferred GRNs of good accuracy for experimental datasets. Nevertheless, the 

overall performance of these approaches was less than ideal.

A surprising trend was that the best performing algorithms for datasets from synthetic 

networks (SINCERITIES, SCRIBE, and SINGE, Figure 2) had poor results on datasets from 

curated models (Figure 4); SINCERITIES had close to or worse-than-random EPRs on 

experimental datasets as well (Figure 5). When we inferred GRNs for synthetic networks 

using shuffled pseudotimes (Online Methods), we observed a general decrease in 

performance with an increase in the size of the window over which we shuffled the 

pseudotime values, with the effect being most pronounced for SINCERITIES, SCRIBE, and 

SINGE (“Pseudotime” in Figure 6 and Supplementary Figure 11). This analysis suggests 

that these algorithms may be sensitive to accurate pseudotime imputation.

Based on these observations, we make specific recommendations for users seeking to apply 

these methods.

i. PIDC, GENIE3, and GRNBoost2 are the methods of choice, since they were 

leading and consistent performers for curated models and experimental datasets 

in terms of accuracy.

ii. GENIE3 and PIDC also had better stability across multiple runs whereas 

GRNBoost2 was less sensitive to the presence of dropouts. Since these methods 

do not require pseudotime-ordered cells, they are immune to any errors in 

pseudotime computation. As the quality of pseudotime inference improves, 

SINCERITIES may become a good choice, especially since it is quite stable 

across multiple runs and in the presence of dropouts.

Pratapa et al. Page 7

Nat Methods. Author manuscript; available in PMC 2020 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



iii. Since GRNBoost2 and GENIE3 have multithreaded implementations8, they are 

as efficient as PIDC for 2,000 genes or less.

iv. Our results suggest that adding more highly-varying genes (1,000 rather than 

500) and/or considering all significantly-varying TFs contribute to significant 

improvements in the EPR of the best-performing algorithms. However, there is 

no effect on AUPRC. A recent best-practice guide31 has suggested using 1,000–

5,000 highly-variable genes for single-cell RNA-Seq analyses such as clustering 

and differential expression. However, GRN algorithms may require significant 

computation time beyond 1,000 genes. Hence, the strategy for selection of genes 

merits further analysis.

Inference of GRNs has been an active area of research for more than 20 years. Our 

evaluation shows that GRN inference remains a challenging problem. One possible reason is 

that single-cell RNA-Seq techniques may not still provide sufficient resolution and variation 

in expression for the reliable inference of GRNs despite rapid advances both in the number 

of cells that can be measured and the depth of coverage32. There may also be inherent 

shortcomings to the assumption that statistical relationships between expression patterns 

correspond to regulatory interactions. In this context, we observed that false positive edges 

form feedforward loops when added to ground truth networks (Supplementary Note 2.5). To 

avoid such indirect interactions, it may be important to integrate additional types of data 

such as known transcription factor binding sites or ChIP-Seq measurements15. Finally, a 

target gene’s expression level may change even if the regulating TF does not vary in 

abundance. Recent approaches that interrogate single cells along multiple modalities33,34 

may be important for the next generation of GRN inference algorithms.

BoolODE was a critical component of our analysis. We developed BoolODE after noting 

that reported AUROC or precision at early recall values for GRN algorithms were often 

close to that of a random predictor6,10,11,13,15, as we also observed. Therefore, we reasoned 

that it would be valuable to the community to benchmark GRN algorithms by applying them 

to accurate simulations of Boolean models with predictable trajectories. BoolODE is 

successful at this task and promises to be useful as an independent tool.

As single-cell experiments become more complex, cellular trajectories will also be more 

intricate, perhaps involving multiple stages of bifurcation and/or cycling. A key challenge 

that lies ahead is accurately computing the underlying GRNs. We hope that scientists will 

use BEELINE in conjunction with BoolODE as they develop new approaches for GRN 

inference.

Online Methods

Regulatory Network Inference Algorithms

We briefly describe each algorithm we have included in this evaluation. We have ordered the 

methods chronologically by year and month of publication. Every software package had an 

open source license, other than GRNVBEM and GRISLI, which did not have any license.
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1. GENIE3 (GEne Network Inference with Ensemble of trees)35 Developed 

originally for bulk transcriptional data, GENIE3 computes the regulatory 

network for each gene independently. It uses tree-based ensemble methods such 

as Random Forests to predict the expression profile of each target gene from 

profiles of all the other genes. The weight of an interaction comes from the 

importance of an input gene in the predictor for a target gene’s expression 

pattern. Aggregating these weighted interactions over all the genes yields the 

regulatory network. This method was the top performer in the DREAM4 In 
Silico network challenge (multifactorial subchallenge).

2. PPCOR7 This R package computes the partial and semi-partial correlation 

coefficients for every pair of variables (genes, in our case) with respect to all the 

other variables. It also computes a p-value for each correlation. We use this 

package to compute the partial correlation coefficients. Since these values are 

symmetric, this method yields an undirected regulatory network. We use the sign 

of the correlation, which is bounded between −1 and 1, to signify whether an 

interaction is inhibitory (negative) or activating (positive).

3. LEAP (Lag-based Expression Association for Pseudotime-series)12 Starting 

with pseudotime-ordered data, LEAP calculates the Pearson’s correlation of 

normalized mapped-read counts over temporal windows of a fixed size with 

different lags. The score recorded for a pair of genes is the maximum Pearson’s 

correlation over all the values of lag that the method considers. The software 

includes a permutation test to estimate false discovery rates. Since the correlation 

computed is not symmetric, this method can output directed networks.

4. SCODE13 This method uses linear Ordinary Differential Equations (ODEs) to 

represent how a regulatory network results in observed gene expression 

dynamics. SCODE relies on a specific relational expression that can be estimated 

efficiently using linear regression. In combination with dimension reduction, this 

approach leads to a considerable reduction in the time complexity of the 

algorithm.

5. PIDC (Partial Information Decomposition and Context)14 This method uses 

concepts from information theory. For every pair of genes x and y, given a third 

gene z, the method partitions the pairwise mutual information between x and y 
into a redundant and a unique component. It computes the ratio between the 

unique component and the mutual information. The sum of this ratio over all 

other genes z is the proportional unique contribution (PUC) between x and y. 

The method then uses per-gene thresholds to identify the most important 

interactions for each gene. The resulting network is undirected since the PUC is 

symmetric.

6. SINCERITIES (SINgle CEll Regularized Inference using TIme-stamped 
Expression profileS)16 Given time-stamped transcriptional data, this method 

computes temporal changes in each gene’s expression through the distance of the 

marginal distributions between two consecutive time points using the 

Kolmogorov–Smirnov (KS) statistic. To infer regulatory connections between 

Pratapa et al. Page 9

Nat Methods. Author manuscript; available in PMC 2020 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TFs and target genes, the approach uses Granger causality, i.e., it uses the 

changes in the gene expression of TFs in one time window to predict how the 

expression distributions of target genes shift in the next time window. The 

authors formulate inference as a ridge regression problem. They infer the signs 

of the edges using partial correlation analyses.

7. SCNS (Single Cell Network Synthesis)18 This method takes single-cell gene 

expression data taken over a time course as input and computes logical rules 

(Boolean formulae) that drive the progression and transformation from initial cell 

states to later cell states. By design, the resulting logical model facilitates the 

prediction of the effect of gene perturbations (e.g., knockout or overexpression) 

on specific lineages.

8. GRNVBEM (GRN Variational Bayesian Expectation-Maximization)17 This 

approach infers a Bayesian network representing the gene regulatory 

interactions. It uses a first-order autoregressive model to estimate the fold change 

of a gene at a specific time as a linear combination of the expression of the 

gene’s regulators in the Bayesian network at the previous time point. It infers the 

gene regulatory network within a variational Bayesian framework. This method 

can associate signs with its directed edges.

9. SCRIBE19 Similar to PIDC, this approach uses ideas from information theory. 

The relevant concept here is conditioned Restricted Directed Information (cRDI), 

which measures the mutual information between the past state (expression 

values) of a regulator and the current state of a target gene conditioned on the 

state of the target at the previous time point. To obtain efficiency for large 

datasets, the authors use an unconditioned version called RDI, followed by the 

Context Likelihood of Relatedness (CLR) algorithm36 to remove edges that 

correspond to indirect effects. We used this strategy for experimental single-cell 

RNA-seq datasets.

10. GRNBoost28 GRNBoost2 is a fast alternative for GENIE3, especially suited for 

datasets with tens of thousands of observations. Like GENIE3, GRNBoost2 

trains a regression model to select the most important regulators for each gene in 

the dataset. GRNBoost2 achieves its efficiency by using stochastic Gradient 

Boosting Machine regression with early-stopping regularization to infer the 

network.

11. GRISLI (Gene Regulation Inference for Single-cell with LInear differential 
equations and velocity inference)9 Like SCODE, this approach uses a linear 

ODE-based formalism. GRISLI estimates the parameters of the model using 

different ideas. Taking either the experimental time of the cells or estimated 

pseudotime as input, it first estimates the velocity of each cell, i.e., how each 

gene’s expression value changes as each cell undergoes a dynamical process37. It 

then computes the structure of the underlying gene regulatory network by 

solving a sparse regression problem that relates the gene expression and velocity 

profiles of each cell.
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12. SINGE (Single-cell Inference of Networks using Granger Ensembles)10 The 

authors observe that while many gene inference algorithms start by computing a 

pseudotime value for each cell, the distribution of cells along the underlying 

dynamical process may not be uniform. To address this limitation, SINGE uses 

kernel-based Granger Causality regression to alleviate irregularities in 

pseudotime values. SINGE performs multiple regressions, one for each set of 

input parameters, and aggregates the resulting predictions using a modified 

Borda method.

In summary, most algorithms developed explicitly for single-cell transcriptomic data 

required the cells to be ordered by pseudotime in the input, with PIDC14 being an exception. 

These methods ideally require datasets corresponding to linear trajectories; some techniques 

recommend that data with branched trajectories be split into multiple linear ones before 

input10,19. In contrast, methods that had originally been developed for bulk transcriptional 

data did not impose this requirement7,35. Almost all the methods we included output 

directed networks with exceptions being PPCOR and PIDC7,14. Only five methods output 

signed networks, i.e., they indicated whether each interaction was activating or 

inhibitory7,13,16–18. A number of methods inferred each pairwise interaction independently 

of the others, sometimes conditioned on the other genes7,12,14,19. Several other methods 

computed all the regulators of a gene simultaneously but solved the problem independently 

for each gene8–10,13,16,18,35.

Other methods—We now discuss other papers on this topic and our rationale for not 

including them in the comparison. We did not consider a method if it was supervised38 or 

used additional information, e.g., a database of transcription factors and their targets15 or a 

lineage tree39. We did not include methods that output a single GRN without any edge 

weights21,24, since any such approach would yield just a single point on a precision-recall 

curve. Other than SCNS, we did not consider methods that output Boolean networks21,39,40.

BoolODE: Converting Boolean Models to Ordinary Differential Equations

GeneNetWeaver23,41,42 is a widely used method to simulate bulk transcriptomic data from 

GRNs. GeneNetWeaver has also been applied in single-cell analysis14,16,17,21,22 but has 

limitations, as we have demonstrated (Supplementary Figure 1). To deal with this challenge, 

we develop a method called BoolODE that systematically and accurately converts a Boolean 

model into a system of stochastic differential equations.

We start this section by giving an overview of GeneNetWeaver. Next, we describe our 

BoolODE framework that we have developed and highlight its differences with 

GeneNetWeaver. We end this section by summarizing BoolODE and the reasons we prefer it 

over GeneNetWeaver.

GeneNetWeaver—This method starts with a network of regulatory interactions among 

transcription factors (TFs) and their targets. It computes a connected, dense subnetwork 

around a randomly selected seed node and converts this network into a system of differential 

equations. To express this network in the form of Ordinary Differential Equations (ODEs), it 

assigns each node i in the network a ‘gene’ variable (xi) representing the level of mRNA 
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expression and a ‘protein’ variable (pi) representing the amount of transcription factor 

produced by protein translation as follows:

d xi
dt = m f(Ri) − lx[xi]

d[pi]
dt = r[xi] − lp[pi]

where m is the mRNA transcription rate, lx is the mRNA degradation rate, r is the protein 

translation rate, and lp is the protein degradation rate. In the first equation, Ri denotes the set 

of regulators of node i. The non-linear input function f(Ri) captures all the regulatory 

interactions controlling the expression of node i42; we specify it below.

If there are N regulators for a given gene, there are 2N possible configurations of how the 

regulators can bind to the gene’s promoter. Considering cooperative effects of regulator 

binding, the probability of each configuration S ∈ 2Ri, the powerset of Ri, is given by the 

following equation43:

Pr(S) =
∏q ∈ S ([q]/k)n

1 + ∑T ∏q ∈ T ([q]/k)n

where k and n are the Hill threshold and Hill coefficient respectively. Here, we use q to 

denote a single regulator in the configuration S and the product in the numerator ranges over 

all regulators that are present (bound) in S. In the summation in the denominator of this 

equation, the set T ranges over all members of the powerset 2Ri other than the empty set. 

GeneNetWeaver further introduces a randomly-sampled parameter αS ∈ [0,1] to specify the 

efficiency of transcription activation by a specific configuration S of bound regulators. Thus, 

the function f(Ri) thus takes the following form:

f(Ri) = ∑
S ∈ 2Ri

αSPr(S)

Next, GeneNetWeaver adds a noise term to each equation to mimic stochastic effects in gene 

expression23. In addition, in order to create variations among individual experimental 

samples, GeneNetWeaver recommends adopting a multifactorial perturbation23 that 

increases or decreases the basal activation of each gene in the GRN simultaneously by a 

small, randomly-selected value. GeneNetWeaver removes this perturbation after the first half 

of the simulation. Simulating this system of SDEs generates the requisite gene expression 

data.

BoolODE uses Boolean models to create simulated datasets—In order to 

generate simulated time course data for our analysis, we used the GeneNetWeaver 

framework with one critical difference and one minor variation. The form of the equations 

Pratapa et al. Page 12

Nat Methods. Author manuscript; available in PMC 2020 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



used by BoolODE is identical to that of GeneNetWeaver. The critical difference is that we 

do not sample the αS parameters in Equation 2 randomly, i.e., we do not combine the 

regulators of each gene using a random logic function. Instead, we use the fact that in both 

the artificial networks and the literature-curated models, we know the Boolean function that 

specifies how the states of the regulators control the state of the target genes. Moreover, we 

can express any arbitrary Boolean function in the form of a truth table relating the input 

states (i.e., activities of transcription factors) to the output state (the activity of target gene). 

For a gene with N regulators in its Boolean function, we explore all 2N combinations of 

transcription factor states and evaluate the transcriptional activity of each specific regulator 

configuration. Since the value of the Boolean function is the logical disjunction (‘or’) of all 

these values, we set the α value to one (respectively, zero) for every configuration that 

evaluates to ‘on’ (respectively, ‘off’). The following example illustrates our approach. 

Consider a gene X with two activators (P and Q) and one inhibitor (R), represented by the 

following rule:

X = (P ∨ Q) ∧ ¬(R)

The truth table corresponding to this rule along with the α parameters is shown in 

Supplementary Table 5. Therefore, the ODE governing the time dynamics of gene X is

d X
dt = m

α0 + αP P + αQ Q + αR R + αPQ P Q + αPR P R + αQR Q R + αPQR P Q R
1 + P + Q + R + P Q + P R + Q R + P Q R − lx

[X]
= m P + Q + P Q

1 + P + Q + R + P Q + P R + Q R + P Q R − lx[X]

since only αP, αQ, and αPQ have the value one and every other parameter has the value zero.

Next, we discuss the minor variation of BoolODE from GeneNetWeaver, which is in how we 

sample kinetic parameters. The GeneNetWeaver equations use four kinetic parameters: one 

each for mRNA transcription, protein translation, and mRNA and protein degradation rates. 

Saelens et al.20 sample them uniformly from parameter specific intervals. Independently for 

every dataset, we sample each parameter from a normal distribution using the value shown 

in Supplementary Table 6 as the mean and a standard deviation of up to 10% of this mean 

value. Within a single dataset and for all simulations for that dataset, we fix each parameter 

(e.g., mRNA degradation rate) for all genes. We choose the values in Supplementary Table 6 

so as to achieve the following characteristics: The maximal steady state achievable by the 

mRNAs is two (the value of m/lx), of the proteins is 10 (the value of r/lp), and the timescale 

of protein production is ten times that of the mRNAs (since the characteristic time scale of 

production is inversely proportional to the degradation rate).

In order to create stochastic simulations, we use the formulation proposed by Saelens et al.20 

to modify the ODE expressions as follows:

d[xi]
dt = mf(Ri) − lx[xi] + s [xi]ΔW t
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d[pi]
dt = r[xi] − lp[pi] + s [pi]ΔW t

ΔW t = N 0, ℎ ,

where s is the noise strength. We use s = 10 in our simulations. We use the Euler-Maruyama 

scheme for numerical integration of the SDEs with time step of h = 0.01.

Defining a single cell—We define the vector of gene expression values corresponding to 

a particular time point in a model simulation as a single cell. For every analysis, we sample 

one time point, i.e. one cell from a single simulation. Using this procedure, for a dataset 

generated from 5,000 simulations, we can obtain up to 5,000 cells.

Creating GeneNetWeaver simulations for comparison with BoolODE—In order 

to simulate a synthetic network using GeneNetWeaver, we used its edge list as the input 

network to GeneNetWeaver. To create the simulations, we used the default options of the 

noise parameter (0.05) and multifactorial perturbations. We only performed wildtype 

simulations and used the DREAM4 time series output format for comparison with the 

BoolODE output.

Summary—We developed the BoolODE approach to convert Boolean functions specifying 

a GRN directly to ODE equations. Our proposed BoolODE pipeline accepts a file describing 

a Boolean model as input, creates an equivalent ODE model, adds noise terms, and 

numerically simulates a stochastic time course. Different model topologies can produce 

different numbers of steady states. Since we carry out stochastic simulations, we perform a 

large number of simulations in an attempt to ensure that we can reach every steady state. Our 

analysis of the trajectories computed by BoolODE on datasets from curated models 

demonstrates the success of our approach in this regard (Supplementary Note 2.1). We prefer 

BoolODE over a direct application of GeneNetWeaver to create datasets from synthetic 

networks and datasets from curated models for three reasons: (a) A dense regulatory 

subnetwork computed around a randomly-selected node, as used by GeneNetWeaver, may 

not correspond to a real biological process. (b) GeneNetWeaver introduces a random, initial, 

multifactorial perturbation and removes it halfway in order to create variations in the 

expression profiles of genes across samples. This stimulation may not correspond to how 

single-cell gene expression data is collected. (c) GeneNetWeaver’s SDEs do not appear to 

capture single-cell expression trajectories, as we have shown in Supplementary Figure 1(d).

Datasets

A major challenge that arises when we evaluate GRN inference algorithms for single-cell 

RNA-seq data is that the “ground truth”, i.e. the network of regulatory interactions 

governing the dynamics of genes of interest, is usually unknown. Consequently, it is a 

common practice to create artificial graphs or extract subnetworks from large-scale 

transcriptional networks.
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To address this challenge, we used three sets of networks that serve as the ground truth for 

GRN inference. The first group included six “toy” networks with specific topologies that 

give rise to different cellular trajectories with predictable qualitative properties20. For the 

second set of networks, we curated four published Boolean models that explore gene 

regulatory interactions underlying various developmental and tissue differentiation 

processes. Mutual inhibition between a pair of genes is a key characteristic of each of these 

models; this type of relationship is important in creating branching gene expression 

trajectories. The regulatory networks underlying the Boolean models serve as the ground 

truth during evaluation. We used the third group of networks for experimental scRNA-Seq 

datasets. We matched each scRNA-Seq dataset with an appropriate ChIP-Seq-derived 

network connecting TFs to their targets; we ensure that the ChIP-Seq data was collected in 

the same or similar cell type as the scRNA-Seq measurements. In addition, we used non-

cell-type-specific transcriptional regulatory networks44–46 as well as the functional 

interactions in the STRING47 database as the ground truth.

Creating Datasets from Synthetic Networks

We now describe how we selected synthetic networks, converted these networks into 

systems of stochastic differential equations (SDEs), simulated these systems, and pre-

processed the resulting datasets for input to GRN inference algorithms.

Selecting networks—In order to create synthetic datasets exhibiting diverse temporal 

trajectories, we use six “toy” networks created in Dynverse, a comparison of pseudotime 

inference algorithms20 (Supplementary Figure 1 and Supplementary Table 1). When 

simulated as SDEs, we expect the models produce to trajectories with the following 

qualitative properties:

Linear: a gene activation cascade that results in a single temporal trajectory with distinct 

final and initial states.

Linear long: similar to Linear but with a larger number of intermediate genes.

Cycle: an oscillatory circuit that produces a linear trajectory where the final state overlaps 

with the initial state.

Bifurcating: a network that contains a mutual inhibition motif between two genes resulting 

in two distinct branches starting from a common trajectory.

Trifurcating: mutual inhibition motifs involving three genes in this network result in three 

distinct steady states.

Bifurcating Converging: an initial bifurcation creates two branches, which ultimately 

converge to a single steady state.

We then used the following approach to simulate the above networks.

Converting networks into SDE models and simulating them—We manually 

convert each of these networks to a Boolean model: we set a node to be ‘on’ if and only if at 
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least one activator is ‘on’ and every inhibitor is ‘off’. We simulate these networks using 

BoolODE. We use the initial conditions specified in the Dynverse software20 

(Supplementary Table 6). In order to sample cells from the simulations that capture various 

locations along a trajectory, we limit the duration of each simulation according to the 

characteristics of the model (Supplementary Table 7). For example, we simulated the Linear 

Long network for 15 time units but the Linear network, which has fewer nodes, for 5 time 

units.

Comparing simulated datasets with the expected trajectories from synthetic 
networks—It is common to visualize simulated time courses from ODE/SDE models as 

time course plots or phase plane diagrams with two or three dimensions. The latter are 

useful to qualitatively explore the state-space of a model at hand. The recent popularity of t-

SNE as a tool to visualize and cluster high dimensional scRNA-Seq data motivated us to 

consider this technique to visualize simulated single-cell data. Supplementary Figure 1(b) 

shows two-dimensional t-SNE visualizations of each of the toy models.

Pre-processing datasets from synthetic networks for GRN algorithms—
Pseudotime inference methods perform well for linear and bifurcating trajectories20. 

However, even the best performing pseudotime algorithm fails to accurately identify more 

complex trajectories such as Cycle and Bifurcating Converging. Therefore, we sought to 

develop an approach for pre-processing synthetic datasets that mimicked a real single cell 

gene expression pipeline while isolating the GRN inference algorithms from the limitations 

of pseudotime techniques. Accordingly, we used the following four-step approach to 

generate single-cell gene expression data from each of the six synthetic networks:

1. Using the values in Supplementary Table 6 as the means, and 10% of these 

values as the standard deviations, we sampled a parameter set. We then used 

BoolODE to perform 5,000 simulations using this parameter set.

2. We represented each simulation as a |G| × |C| matrix, where G is the set of genes 

in the model and C is the set of cells in the simulation. We converted each of the 

5,000 matrices into a 1-D vector of length |G| × |C| and clustered the vectors 

using k-means clustering with k set to the number of expected trajectories for 

each network. For example, the Bifurcating network in Supplementary Figure 

1(b) has two distinct trajectories, so we used k = 2. We use the cluster 

information in Step 4.

3. We then randomly sampled one set each of 100, 200, 500, 2000, and 5000 cells 

from the 5,000 simulations.

4. Finally, we set as input to each algorithm the |G| × |D| matrix, where G is the set 

of genes in the model and D is the set of randomly sampled cells. For those 

methods that require time information, we specified the simulation time at which 

the cell was sampled along with the trajectory (cluster) to which each cell 

belonged.

We repeated this procedure on 10 different sampled parameter sets to obtain 50 datasets. We 

ran each algorithm on these 50 datasets.
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Note that we used the same set of sampled parameters for all simulations in a dataset and 

that we varied parameters only across datasets. As an alternative, we considered sampling a 

different set of parameters per simulation since they may vary from cell to cell. However, 

this approach caused so much variation that we could not recapitulate the steady states of the 

Boolean models in the BoolODE-created data.

Note that we clustered simulations themselves (with each simulation represented by the 

complete time courses of all genes) before we sampled cells. The reason we adopted this 

ordering is that the goal of the clustering was to partition the cells such that each group 

would (a) correspond to a distinct steady state of the network and (b) contain cells sampled 

from the entire time course of the simulations. Clustering the simulations helped us to 

compute these types of clusters. Subsequently sampling one cell from each simulation 

permitted us to assign each cell to the cluster to which its simulation belonged and satisfy 

both properties we desired.

In contrast, if we had sampled cells and then clustered them, we were concerned that some 

cells would have belonged to a cluster corresponding only to early timepoints and some only 

to intermediate, resulting in the possibility that some steady states would not have any 

clusters. Alternatively, we would have had to increase the number of clusters we sought to 

compute, which may also have resulted in clusters corresponding only to early or only to 

intermediate timepoints.

Creating Datasets from Curated Models

While the synthetic models presented above are useful for generating simulated data with a 

variety of specific trajectories, these networks do not correspond to any real cellular process. 

In order to create simulated datasets that better reflect the characteristics of single-cell 

transcriptomic datasets, we turned to published Boolean models of gene regulatory 

networks, as these models are reflective of the real “ground truth” control systems in 

biology.

Since tissue differentiation and development are active areas of investigation by single cell 

methods, we examined the literature from the past 10 years to look for published Boolean 

models of gene regulatory networks involved in these processes. We selected four published 

models for analysis. Supplementary Table 2 lists the size of the regulatory networks and the 

number of steady states. Below, we discuss the biological background, the interpretation of 

model steady states, and the expected type of trajectories for each of these Boolean models.

Mammalian Cortical Area Development—Giacomantonio et al. explored mammalian 

Cortical Area Development (mCAD) as a consequence of the expression of regulatory 

transcription factors along an anterior-posterior gradient25. The model contains five 

transcription factors connected by 14 interactions, captures the expected gene expression 

patterns in the anterior and posterior compartments respectively, and results in two steady 

states. Figure 3 displays the regulatory network underlying the model along with a t-SNE 

visualization of the trajectories simulated using BoolODE. In Supplementary Note 2.1, we 

show that the two clusters observed in the t-SNE visualization correspond to the two 

biological states captured by the Boolean model.
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Ventral Spinal Cord Development—Lovrics et al. investigated the regulatory basis of 

ventral spinal cord development26. The model consisting of 8 transcription factors involved 

in ventralization contains 15 interactions, all of which are inhibitory. It succeeds in 

accounting for five distinct neural progenitor cell types. We expect to see five steady states 

from this model. Figure 3 shows the regulatory network underlying the model along with the 

t-SNE visualization of the trajectories simulated using BoolODE. In Supplementary Note 

2.1, we show that the five steady state clusters observed in the t-SNE visualization 

correspond to the five biological states captured by the model.

Hematopoietic Stem Cell Differentiation—Krumsiek et al. investigated the gene 

regulatory network underlying myeloid differentiation27. The proposed model has 11 

transcription factors and captures the differentiation of multipotent Myeloid Progenitor 

(CMP cells) into erythrocytes, megakaryocytes, monocytes and granulocytes. The Boolean 

model exhibits four steady states, each corresponding to one of the four cell types mentioned 

above. Figure 3 shows the regulatory network of the HSC model along with the t-SNE 

visualization of the trajectories simulated using BoolODE. In Supplementary Note 2.1, we 

show that the four steady-state clusters observed in the t-SNE visualization correspond to the 

four biological states captured by the Boolean model.

Gonadal Sex Determination—Rios et al. modeled the gonadal differentiation circuit that 

regulates the maturation of the Bipotential Gonadal Primordium (BGP) into either male 

(testes) or female (ovary) gonads28. The model consists of 18 genes and a node representing 

the Urogenital Ridge (UGR), which serves as the input to the model. For the wildtype 

simulations, the Boolean model predominantly exhibits two steady states corresponding to 

the Sertoli cells (male gonad precursors) or the Granulosa cells (female gonad precursor), 

and one rare state corresponding to a dysfunctional pathway. Figure 3 shows the regulatory 

network of the GSD model along with the t-SNE visualization of the trajectories simulated 

using BoolODE. In Supplementary Note 2.1, we show that the two steady state clusters 

observed in the t-SNE visualization correspond to the two predominant biological states 

capture by the Boolean model.

Pre-processing datasets from curated models for GRN algorithms—As with the 

datasets from synthetic networks, we used the following approach to generate simulated 

datasets for each of the four curated models. Using the values in Supplementary Table 6 as 

means and 5% of these values as the standard deviations we sampled a parameter set. We 

used BoolODE to perform 2,000 simulations and randomly sampled one cell from each 

simulation. We repeated this procedure on 10 different sampled parameter sets to obtain 10 

datasets. In order to closely mimic the preprocessing steps performed for real single-cell 

gene expression data, we use the following steps for each dataset:

1. Pseudotime inference using Slingshot. In the case of datasets from synthetic 

networks, we used the simulation time directly for those GRN inference methods 

that required cells to be time-ordered. In contrast, for datasets from curated 

models, we ordered cells by pseudotime, which we computed using Slingshot29. 

We selected Slingshot for pseduotime inference due to its proven success in 

correctly identifying cellular trajectories in a recent comprehensive evaluation of 
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this type of algorithm20. Slingshot needs a lower dimensional representation of 

the gene expression data as input. In addition, if the cells belong to multiple 

trajectories, Slingshot needs a vector of cluster labels for the cells, as well as the 

cluster labels for cells in the start and end states in the trajectories. To obtain 

these additional input data for Slingshot, we used the following procedure:

a. We use t-SNE on the |G| × |C| matrix representing the data to obtain a 

two-dimensional representation of the cells.

b. We performed k-means clustering on this lower dimensional 

representation of the cells with k set to one more than the expected 

number of trajectories. For example, since we knew that the GSD 

model had a bifurcating trajectory, we used k = 3.

c. We computed the average simulation time of the cells belonging to each 

of the k clusters. We set the cluster label corresponding to the smallest 

average time as the starting state and the rest of clusters as ending 

states.

d. We then ran Slingshot with the t-SNE-projected data and starting and 

ending clusters as input. We obtained the trajectories to which each cell 

belonged and its pseudotime as output from Slingshot.

Figure 3(d) displays the results for one dataset of 2,000 cells for each of the four 

models. We observed that Slingshot does a very good job of correctly identifying 

cells belonging to various trajectories. Further, the pseudotime computed for 

each cell by Slingshot is highly correlated with the simulation time at which we 

sampled the cell (Supplementary Table 8).

Note that the k-means clustering whose results we display in Figure 3(c) is 

different from the k-means clustering described above. To obtain the results in 

Figure 3(c), we followed the procedure described for synthetic models: we 

clustered the simulations (complete time-courses) themselves, with k set to the 

number of steady states. Our goal was to confirm visually that each cluster 

contained cells spanning the entire length of the simulation. In contrast, before 

applying Slingshot, we clustered the (lower dimensional representation of the 

samples) cells; we set k as described above so that we could input to Slingshot 

one starting cluster and as many ending clusters as the number of steady states.

2. Inducing dropouts in datasets from curated models. We used the same procedure 

as Chan et al.14 in order to induce dropouts, which are commonly seen in single 

cell RNA-Seq datasets, especially for transcripts with low abundance48. We 

created a dataset with a dropout rate of q as follows: for every gene, we sorted 

the cells in increasing order of that gene’s expression value. We set the 

expression of that gene in each of the lowest qth percentile of cells in this order to 

zero with a q% chance. For example, choosing q = 50 resulted in a 50% chance 

of setting a gene’s expression values below the 50th percentile to 0, which 

affected about 25% of the dataset. Note that we used the same parameter twice 

simply for convenience; we do not expect the trends we find to deviate 
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considerably if we had used two different parameters for percentile and for 

probability. We applied two different dropout rates: q = 50 and q = 70. We used 

Slingshot to recompute pseudotime for each dataset with dropouts. We did note a 

considerable decrease in this correlation when we added dropouts to the 

simulated datasets, for all but the GSD network (Supplementary Table 8).

At the end of this step, we had 30 datasets with 2,000 cells for each of the four models: 10 

datasets without dropouts, 10 with a dropout rate of q = 50, and 10 with a rate of q = 70.

Collecting Experimental Single-Cell RNA-seq Datasets and Ground Truth Networks

Experimental Single-Cell RNA-seq Datasets—We obtained five different single cell 

RNA-seq datasets, three in mouse and two in human (Supplementary Table 3). There were a 

total of seven cell types across these datasets. We pre-processed each dataset using the 

procedure described in the corresponding paper. In general, if the publication did not provide 

normalized expression values, we log-transformed the TPM or FPKM counts using a 

pseudocount of 1 and used the results as the expression values. We additionally filtered out 

any genes that were expressed in fewer than 10% of the cells. We describe the details of the 

datasets and the pseudotime computation below:

1. Mouse Hematopoietic Stem and Progenitor Cells (mHSC)49: We obtained the 

normalized expression data for 1,656 HSPCs across 4,773 genes from the 

supplementary data provided by the authors. We used the first three dimensions 

from DiffusionMap in order to compute pseudotime values. We used the E-

SLAM population as the starting cell type and computed pseudotime using 

Slingshot along three lineages, namely, erythroid (E), granulocyte-monocyte 

(GM), and lymphoid (L). We inferred GRNs for each lineage independently.

2. Mouse Embryonic Stem Cells (mESC)50: This dataset contains scRNA-seq 

expression measurements for 421 primitive endoderm (PrE) cells differentiated 

from mESCs, collected at five different time points (0h, 12h, 24h, 48h, until 72 

hours). SCODE,13 SINGE,10 and GRISLI9 used this dataset to evaluate their 

performance. We computed pseudotime using Slingshot with cells measured at 

0h as the starting cluster and the cells measured at 72h as the ending cluster.

3. Mouse Dendritic Cells (mDC)51: This dataset corresponds to over 1,700 bone-

marrow derived dendritic cells under various conditions. Following SCRIBE19, 

we used the LPS stimulated wild-type cells measured at 1h, 2h, 4h, and 6h. We 

then computed the pseudotime using Slingshot with cells measured at 1h as the 

starting cluster and the cells measured at 6h as the ending cluster.

4. Human Mature Hepatocytes (hHep)52: This dataset is from an scRNA-seq 

experiment on induced pluripotent stem cells (iPSCs) in 2D culture 

differentiating to hepatocyte-like cells. The dataset contains 425 scRNA-seq 

measurements from multiple time points: days 0 (iPS cells), 6, 8, 14, and 21 

(mature hepatocyte-like (MH)). We computed the pseudotime using Slingshot 

with cells measured on day 0 (iPSCs) as the starting cluster and the cells 

measured on 21 (MHs) as the ending cluster.
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5. Human Embryonic Stem Cells (hESC)53: This dataset is from a time course 

scRNA-seq experiment derived from 758 cells along the differentiation protocol 

to produce definitive endoderm (DE) cells from human embryonic stem cells, 

measured at 0h, 12h, 24h, 36h, 72h and 96h. We computed the pseudotime with 

cells measured at 0h as the starting cluster and the cells measured at 96h as the 

ending cluster. SCODE13 used this dataset to evaluate its performance.

Once we obtained the pseduotime values for the cells in each dataset, we computed which 

genes had varying expression values across pseudotime. We used the general additive model 

(GAM) implemented in the ‘gam’ R package to compute the variance and the p-value of this 

variance. We used the Bonferroni method to correct for testing multiple hypotheses. 

Supplementary Table 3 provides the statistics on the number of significantly-varying genes 

and TFs in each dataset after using a corrected p-value cutoff of 0.01. We selected genes for 

GRN inference in two different ways.

i. We considered all genes with p-value less than a threshold. We selected 

thresholds so that we obtained 500 and 1,000 genes. We recorded the number of 

TFs in these sets.

ii. We started by including all TFs whose variance had p-value at most 0.01. Then, 

we added 500 and 1,000 additional genes as in the previous option. This 

approach enabled the GRN methods to consider TFs that may have a modest 

variation in gene expression but still regulate their targets.

After applying a GRN inference algorithm to a dataset, we only considered interactions 

outgoing from a TF in further evaluation.

Ground truth networks collection and processing—In the GRN inference literature, 

a common practice is to evaluate the accuracy of a resulting network by comparing its edges 

to an appropriate database of TFs and their targets. For example, SCODE used the 

RikenTFdb and animalTFDB resources to define ground truth networks for mouse and 

human gene expression data, respectively13. We used three types of ground truth datasets 

(Supplementary Table 4).

1. Cell-type specific: For each experimental scRNA-seq dataset, we searched the 

ENCODE, ChIP-Atlas, and ESCAPE databases for ChIP-Seq data from the same 

or similar cell type. We also included the loss-of-function/gain-of-function 

dataset from the ESCAPE database.

2. Non-specific: Here, we used the following resources:

a. DoRothEA46 integrates ChIP-Seq and transcriptional regulatory 

information from multiple sources. We considered two levels of 

evidence in this database: A (curated/high confidence) and B (likely 

confidence).

b. RegNetwork44 incorporates genome-wide TF-TF, TF-gene, TF-miRNA 

regulatory relationships in human and mouse collected from various 

sources. We used the TF-TF and TF-gene interactions for our analysis.
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c. TRRUST45 contains TF-target interactions collected based on text-

mining followed by manual curation for human and mouse.

3. Functional: Finally, we used the human and mouse STRING47 networks. An 

interaction here is functional and need not correspond to transcriptional 

regulation. We selected this type of ground truth network due to our observation 

that many GRN methods predict indirect interactions for Boolean models.

Evaluation Pipeline

One of the major challenges we faced was that the GRN inference methods we included in 

this evaluation were implemented in a variety of languages such as R, MATLAB, Python, 

Julia and F#. In order to obtain an efficient and reproducible pipeline, we Dockerized the 

implementation of each algorithm. Supplementary Table 9 contains details on the specific 

software or GitHub commit versions we downloaded and used in our pipeline. For methods 

implemented in MATLAB, we created MATLAB executable files (.mex files) that we could 

execute within a Docker container using the MATLAB Runtime. We further studied the 

publications and the documentation of the software (and the source code, on occasion) to 

determine how the authors recommended that their methods be used. We implemented these 

suggestions as well as we could. We provide more details in Supplementary Note 4.

Inputs—For datasets from synthetic networks and for datasets from curated models, we 

provided the gene expression values obtained from the simulations directly after optionally 

inducing dropouts in the second type of data. Eight out of the 12 methods also required some 

form of time information for every cell in the dataset (Figure 6). Of these, two methods 

(GRNVBEM and LEAP) only required cells to be ordered according to their pseudotime and 

did not require the pseudotime values themselves.

Parameter estimation—Six of the methods also required one or more parameters to be 

specified. To this end, we performed parameter estimation for each of these methods 

separately for datasets from synthetic networks, datasets from curated models, and real 

datasets and provided them with the parameters that resulted in the best AUPRC values. See 

Supplementary Note 1.2 for details.

Output processing—Ten of the GRN inference methods output a confidence score for 

every possible edge in the network, either as an edge list or as an adjacency matrix, which 

we converted to a ranked edge list. We gave the same rank to edges with the same 

confidence scores.

Performance evaluation—We used a common evaluation pipeline across all the datasets 

considered in this paper. We evaluated the result of each algorithm using the following 

criteria:

1. AUPRC, AUROC: We computed areas under the Precision-Recall (PR) and 

Receiver Operating Characteristic (ROC) curves using the edges in the relevant 

network as ground truth and ranked edges from each method as the predictions. 

We ignored self-loops for this analysis since some methods such as PPCOR 
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always assigned the highest rank to such edges and some other methods such as 

SINGE always ignored them. Most of the networks we considered have a density 

of 0.3 or less, i.e., the positive-to-negative ratio is worse than 1:3. Since the GRN 

inference problem for these networks is moderately imbalanced, we focus on 

AUPRC scores in the main text54,55. For readers who are interested in AUROC 

plots, we provide them as supplementary figures (only for the synthetic networks 

and curated models).

2. Stability across multiple runs: We executed each algorithm 10 times on a 

dataset to ask if the inferred networks changed from one run to another. We 

represented every result by the corresponding ranked list of edges. For every pair 

of results, we computed the Spearman’s correlation of the ranked lists. We 

performed this analysis for curated models and for experimental datasets.

3. Identifying top-k edges: We first identified top-k edges for each method, where 

k equaled the number of edges in the ground truth network (excluding self-

loops). In multiple edges were tied for a rank of k, we considered all of them. If a 

method provided a confidence score for fewer than k edges, we used only those 

edges. For experimental single-cell RNA-seq datasets, this number varied from 

one ground truth dataset to another.

4. Stability across multiple datasets: For each method, once we obtained the set 

of top-k edges for each each dataset, we then computed the Jaccard index of 

every pair of these sets. We used the median of the values as an indication of the 

robustness of a method’s output to variations in the simulated datasets from a 

given synthetic network or curated model.

5. Early precision (EP) and Early precision ratio (EPR): We defined early 

precision as the fraction of true positives in the top-k edges. We also computed 

the early precision ratio, which represents the ratio of early precision value and 

the early precision for a random predictor for that model. A random predictor’s 

precision is the edge density of the ground truth network.

6. Early precision of signed edges: We desired to check whether there were any 

differences in how accurately a GRN inference algorithm identified activating 

edges in comparison to inhibitory edges. To this end, we computed the top-ka 

edges from the ranked list of edges output by each method, where ka is the 

number of activating edges in the ground-truth network. In this step, we ignored 

any inhibitory edges in the ground truth network. We defined the early precision 

of activating edges as the fraction of true edges of this type in the top ka edges. 

We used an analogous approach to compute early precision of inhibitory edges. 

We also computed the early precision ratio for these values. We performed this 

analysis only for curated models.

Datasets with multiple trajectories—Seven methods we evaluated require pseudotime-

ordered cells (Figure 6), but cannot directly handle data with branched trajectories. In these 

cases, as suggested by many of these methods, we separated the cells into multiple linear 

trajectories using Slingshot and applied the algorithm to the set of cells in each trajectory 
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individually. To combine the GRNs, for each interaction, we recorded the largest score for it 

across all the networks and ranked the interactions by these values. In the case of GRISLI, 

which outputs ranked edges, for each interaction, we took the best (smallest) rank for it 

across all the networks.

As an alternative, we merged all the trajectories into one set of cells and executed each 

algorithm on this dataset. We performed this analysis for the three synthetic networks with 

multiple trajectories (Bifurcating, Bifurcating converging, and Trifurcating).

Shuffling simulation times—We investigated the effect of shuffling the pseudotime 

values on the performance of methods that require this information. We used three window 

sizes, namely, 15%, 30% and 45%, which defined the range of indices to sample from as a 

fraction of the total number of cells in a dataset. Thus, for a dataset with 2,000 cells, using a 

window size of 30% resulted in a range of 2000×0.3 = 600. Therefore, after sorting the cells 

in increasing order of pseudotime, for every index i, we sampled a new index from the 

interval [max(0,i−300),min(i+300,2000)] and swapped the cells at these two indices. We 

performed this analysis for the three synthetic networks with a single trajectory (Linear, 

Cycle, and Linear Long). Here each original (unshuffled) pseudotime was equal to the 

simulation time.

Procedure for creating Figure 6—We chose the following measures presented in earlier 

sections for summarize our key findings:

Accuracy: We computed the median of the per-network median AUPRC value 

obtained for datasets containing 2,000 and 5,000 cells for the six synthetic networks 

(Figure 2). For datasets from curated models, we used the median of the per-model 

median AUPRC value obtained for 10 datasets without dropouts for each the four 

datasets from curated models (Figure 4). For experimental single-cell RNA-Seq 

datasets, we used the median EPR obtained for each dataset-evaluation network 

combination (all significantly-varying TFs and the 500 most-varying genes) (Figure 

5). We have ordered the algorithms by their median EPR score across experimental 

single-cell RNA-Seq datasets followed by median AURPCs in datasets from synthetic 

networks.

Stability: We present four such measures: (a) across datasets: the median score of the 

Jaccard index obtained for all six datasets from synthetic networks (Figure 2); (b) 

across runs: median Spearman’s correlation of outputs for each of the four datasets 

from curated models (one dataset each, Supplementary Note 3.4); (c) across 
dropouts: median percentage decrease in AUPRC for the q = 50 dropout rate 

compared to no dropouts (Supplementary Figure 4); (d) across pseudotime: median 

percentage decrease in AUPRC after shuffling time values within a 30% window 

compared to the original simulation time for datasets from synthetic networks 

(Supplementary Figure 11).

Scalability: Median running times and memory consumption for three different 

scRNA-Seq datasets, namely hHEP, hESC and mHSC-E, which contain 400, 750 and 

1000 cells, respectively (Supplementary Figure 7). Missing values indicate that either 
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the method did not complete even after running for over a day or it gave a run-time 

error.

Data availability

The datasets simulated from the synthetic networks and curated models and the processed 

experimental single-cell gene expression datasets are available on Zenodo at https://doi.org/

10.5281/zenodo.3378975. The gene experimental scRNA-Seq datasets we downloaded from 

GEO had accession numbers: GSE81252 (hHEP), GSE75748 (hESC), GSE98664 (mESC), 

GSE48968 (mDC), and GSE81682 (mHSC).

Reporting Summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Code availability

A Python implementation of the BEELINE framework is available under the GNU General 

Public License v3 at https://github.com/murali-group/BEELINE

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
An overview of the BEELINE evaluation framework. We apply GRN inference algorithms 

to three types of data: datasets from synthetic networks, datasets from curated Boolean 

models from the literature, and experimental single-cell transcriptional measurements. We 

process each dataset through a uniform pipeline: pre-processing, Docker containers for 12 

GRN inference algorithms, parameter estimation, post-processing, and evaluation. We 

compare algorithms based on accuracy (AUPRC and early precision), stability of results 

(across simulations, in the presence of dropouts, and across algorithms), analysis of network 

motifs, and scalability.
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Figure 2: 
Summary of results for datasets from synthetic networks. The first six columns display the 

median AUPRC ratios for the 20 datasets with 2,000 and 5,000 cells, with algorithms (rows) 

ordered in decreasing order of the median of the median per-network AUPRC ratios. The 

next set of six columns display the median stability scores across multiple datasets (Online 

Methods). For each network, the color in each cell is proportional to the corresponding value 

(scaled between 0 and 1). We display the highest and lowest values for each network inside 
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the corresponding cells. Abbreviations: LI: Linear, CY: Cycle, LL: Linear Long, BF: 

Bifurcating, BFC: Bifurcating Converging, TF: Trifurcating.
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Figure 3: 
Visualization of t-SNE projections of simulations reveals trajectories leading to steady states 

that correspond to those of the curated models. Each row in the figure corresponds to a 

model, indicated on the left: Mammalian Cortical Area Development (mCAD), Ventral 

Spinal Cord Development (VSC), Hematopoietic Stem Cell Differentiation (HSC), and 

Gonadal Sex Determination (GSD). (a) Network diagrams of the models. (b) t-SNE 

visualizations of 2,000 cells sampled from BoolODE output. The color of each point 

indicates the corresponding simulation time. (c) Each color corresponds to a different subset 

of cells obtained by using k-means clustering of simulations, with k set to the number of 
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steady states reported in the relevant publication (two for mCAD, five for VSC, four for 

HSC, and two for GSD). (d) Pseudotimes and principal curves (black) computed by 

Slingshot showing correspondence with simulation times in (b) and clusters in (c), 

respectively. Colors of simulation time and pseudotime: blue for early, green for 

intermediate, and yellow for later.
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Figure 4: 
Summary of results for 10 datasets without dropouts from curated models. Rows 

corresponds to algorithms ordered by decreasing median of the per-model median AUPRC 

ratios. The four sets of four columns each display the median AUPRC ratios, median early 

precision ratio (EPR), median EPR for activating edges, and median EPR for inhibitory 

edges. For each model, the color in each cell is proportional to the corresponding value 

(scaled between 0 and 1, ignoring values that are less than that of a random predictor, shown 

as black squares). We display the highest and lowest values for each model inside the 

corresponding cells.
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Figure 5: 
Summary of EPR results for experimental single-cell RNA-seq datasets. The left half of the 

figure (TFs+500 genes) shows results for datasets composed of all significantly-varying TFs 

and the 500 most-varying genes. Each row corresponds to one scRNA-seq dataset. The first 

three columns report network statistics. The next six columns report EPR values. The right 

half (TFs+1000 genes) shows results for all significantly-varying TFs and the 1000 most-

varying genes. In both sections, algorithms are sorted by median EPR across the datasets 

(rows) for the TFs+500 gene set. For each dataset, the color in each cell is proportional to 
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the corresponding value scaled between 0 and 1 (ignoring values that are less than that of a 

random predictor, which are shown as black squares). We display the highest and lowest 

values for each dataset inside the corresponding cells. Abbreviations: GENI: GENIE3, 

GRNB: GRNBoost2, PCOR: PPCOR, SINC: SINCERIETIES.
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Figure 6: 
Summary of properties of GRN inference algorithms and results obtained from BEELINE. 

Each row corresponds to one of the algorithms included in our evaluation. The first six 

columns display algorithm methodology, required additional inputs, whether the method 

needs cells to be time-ordered, and whether the inferred edges are directed and signed. The 

next three columns summarize the results in Figures 2, 4, and 5. The next four columns 

present results for different types of stability. The final set of columns contain the running 

time and memory usage. For the “Pseudotime” column, we only considered the seven 

methods that required these values, ignoring SCNS due to its long execution time. See 

“Methods” for details on how we generated this figure. Abbreviations: MI: Mutual 

Information, RF: Random Forest, Corr: Correlation, Reg: Regression, GC: Granger 

Causality, Bool: Boolean Model.
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