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Abstract

Purpose: The ability to register image data to a common coordinate system is a critical feature of 

virtually all imaging studies. However, in spite of the abundance of literature on the subject and 

the existence of several variants of registration algorithms, their practical utility remains 

problematic, as commonly acknowledged even by developers of these methods.

Methods: A new registration method is presented that utilizes a Hamiltonian formalism and 

constructs registration as a sequence of symplectomorphic maps in conjunction with a novel phase 

space regularization. For validation of the framework a panel of deformations expressed in 

analytical form is developed that includes deformations based on known physical processes in 

MRI and reproduces various distortions and artifacts typically present in images collected using 

these different MRI modalities.

Results: The method is demonstrated on the three different magnetic resonance imaging (MRI) 

modalities by mapping between high resolution anatomical (HRA) volumes, medium resolution 

diffusion weighted MRI (DW-MRI) and HRA volumes, and low resolution functional MRI (fMRI) 

and HRA volumes.

Conclusions: The method has shown an excellent performance and the panel of deformations 

was instrumental to quantify its repeatability and reproducibility in comparison to several available 

alternative approaches.
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1 | INTRODUCTION

Modern imaging systems are increasingly capable of acquiring data sensitive to a wide range 

of physical parameters at multiple resolutions, thus offering greater sensitivity to structural 

and dynamical information in complex biological systems. However, these technological 

advancements present the increasingly important theoretical and computational challenge of 

how to rigorously and efficiently combine, or register, such data in order to be able to 

accurately detect and quantify subtle and complex system characteristics.

An important example of this problem, and our motivation for the current paper, is presented 

by the application of magnetic resonance imaging (MRI) methods to human neuroimaging 

(neuro-MRI). MRI is an exceedingly flexible technology for measuring various 

characteristics of water in biological systems and three major techniques have emerged as 

the cornerstone of neuro-MRI: high resolution anatomical acquisitions (HRA) that facilitates 

the characterization of brain morphology, diffusion weighted MRI (DW-MRI) that allows 

the characterization of focal alterations in tissue diffusion as well as the reconstruction of 

neural fiber pathways critical to brain function, and functional MRI (FMRI) which is 

capable of detecting spatial-temporal variations in brain activity, even if the subject is “at 

rest” and not performing a task in the magnet (called resting state fMRI, or rsFMRI). Each 

of these modalities is typically acquired at different spatial resolution and possess unique 

contrast characteristics.

The ability to register image data to a common coordinate system is not only important for 

combining different modalities, but is also for combining data across subjects. It is thus a 

critical feature of virtually all imaging studies that require quantitative statistical analysis of 

group populations. Consequently, this subject has been the focus of a great deal of research. 

This has been a focus in computational neuroanatomy which has motivated the developed of 

diffeomorphic registrations methods1–5 for which faster and more efficient algorithms 

continue to be developed,6–10 as well as various regularizations11,12 and addition 

enhancements such as local-global mixture, contrast changes, multichannel mapping, etc,
13–15 and the use of probabilistic diffeomorphic registration methods.16,17 These registration 

advancements are important to group analyses and the development of standard atlases18–24 

which serve a critical role in the standardization of studies. The emergence of diffusion 

tensor imaging (DTI) methods and their variants for connectivity studies required the 

extension of diffeomorphic registration methods to accommodate tensor data.25–38 These 

methods have had a profound effect on the success of numerous scientific studies on 

important clinical issues such as Alzheimer’s and traumatic brain injury,39–44 as well as 

studies in other organs (cardiac, lungs, etc).45–49

In spite of the abundance of literature and the existence of several variants of diffeomorphic 

algorithms their practical appeal are still rather limited (possibly due to an interplay of a 

variety of reasons—speed, accuracy, robustness, complexity, repeatability, etc), as 

commonly acknowledged even by developers of these registration methods. For example 

citing the developer of one of the relatively broadly used approach—Large Deformation 

Diffeomorphic Metric Mapping30,34,35,37,44,50 “applications of the LDDMM framework on 

volumetric 3D medical images still remain limited for practical reasons”.51 Two large and 
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thorough comparison studies (i.e.52,53) also confirm that although currently available 

methods are in general able to perform the registration task with varying degrees of success 

(although some are exceedingly slow and some are not particular accurate), the practical use 

limitations seem to drive an interest in improvements at least in terms of speed and accuracy.

To address these issues we present in this paper a new method that is similar in spirit to 

diffeomorphic mapping, but is more general and flexible. The transformation is developed 

within a Hamiltonian formalism54–56 in which not just the spatial coordinates are 

considered, but the entirety of phase space, which is a called a symplectomorphism. This 

theoretical construct enables a novel flexible, accurate, and robust computational method 

based on a sequence of energy shell transformations. The approach adds a novel phase space 

regularization based on the powerful entropy spectrum pathways framework.61 The 

framework provides a unique opportunity to tailor image details into the regularization 

scheme by choosing an image derived regularization kernel. The incorporation of phase 

space constraints allows us to use the same simple metric on the space of diffeomorphisms 

that remains valid even with image dependent regularization, something that is missing in 

currently available methods. A spherical wave decomposition is applied as a powerful 

preconditioning tool in the position domain to allow accurate and fast interpolation, 

resampling and estimation of fixed shape rotation and scale. The result is an efficient and 

versatile method capable of fast and accurate registration of a variety of volumetric images 

of different modalities and resolutions.

2 | METHODS

2.1 | Symplectomorphic mapping

We introduce the Hamiltonian function ℋ(q, p) on a fixed Cartesian grid x as

ℋ(q, p) = 1
2V ∫ p2 + I0(x) − I1(q) 2 dx . (1)

Here I0 and I1 are two multidimensional images defined on the same fixed Cartesian grid x, 

V is the measure (volume) of the reference I0 image domain V ≡ ∫ dx , and (q(x, t), p(x, t)) 

is a set of canonical coordinates, that define a time dependent mapping from Cartesian grid x 
to a new curvilinear grid y ≡ q(x, t), such that initially at t = 0 the grids are identical, i.e. 

(q(x, 0), p(x, 0)) ≡ (x, 0).

The Hamiltonian Equation 1 defines a flow at each location on a fixed grid through a system 

of Hamilton’s equations

dq
dt = δℋ

δp ≡ p (2)

dp
dt = − δℋ

δq ≡ I0 − I1
∂I1
∂q (3)

where δℋ/δ… denotes variational (or functional) derivative.
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We should emphasize that a simple squared image difference is used as a measure of the 

distance between the reference and original images in Equation 1 for the clarity of notation. 

Any expression for the image distance can be substituted in general functional form as 

ℱ I0(x), I1(q)  resulting in a replacement of image difference term (I0−I1) by − 1
2

∂ℱ
∂I1

 in the 

momentum Equation 3.

The flow defined by Equations 2 and 3 is called a Hamiltonian flow and takes place in the 

space of the coordinates (q, p), which is called phase space. Diffeomorphisms in this phase 

space are called Hamiltonian diffeomorphisms or symplectomorphisms since a phase space 

is a symplectic manifold. Thus symplectomorphisms preserve the symplectic structure 

(including the volume) of phase space. This is a very important feature that will allow the 

generation of a shell-like sequence of transformations suitable for volumetric measurements 

and quantifications.

Because the Hamiltonian function Equation 1 and the reference image I0 are defined on a 

Cartesian grid x we do not calculate the curvilinear gradient 
∂I1
∂q  directly. Instead we express 

I1(q) as a function on a Cartesian grid I1(q(x, t)) and use the chain rule to evaluate the 

curvilinear gradient through a gradient on Cartesian grid 
∂I1
∂x  and Jacobian 

J ≡ ∂q
∂x  as 

∂I1
∂x

∂q
∂x

−1
.

An evolution of the Jacobian with time can be obtained by differentiating the position 

Equation 2 on a fixed grid, giving a closed set of equations

dq
dt = p (4)

dp
dt = I0 − I1

∂I1
∂x J−1 (5)

dJ
dt = ∂p

∂x (6)

Integrating these equations with initial conditions q(x, 0) = x, p(x, 0) = 0, and J(x, 0) = 1
generates a symplectomorphic transformation x→q(x, t). A new metric can be defined for 

the position part q of the canonical coordinates by introducing the metric tensor G ≡ {gij} = 

(J−1)TJ−1, where indices i and j correspond to derivatives over qi and qj components of the 

curvilinear coordinates q such that in Euclidean space gij = δij where δij is the Kronecker 

delta. The metric tensor is important for providing accurate measures of line and surface 

properties using the curvilinear coordinate system q. For example, a length of a curve 

parameterized by x(s) with a parameter s between zero and one in Cartesian space can be 

expressed using the metric tensor and curvilinear mapping as
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∫
0

1
dx
ds ds = ∫

0

1

gij
dqi

ds
dqj

ds ds, (7)

where repeated indices i and j represent summation.

To ensure that the transformation is symplectomorphic at every location on a fixed grid x 
during numerical integration we set a small constant ε and impose a requirement that both 

the Jacobian and the inverse Jacobian are bounded by this constant, i.e.

ϵ < |J(x, t) | < ϵ−1, (8)

For the majority of the results presented in the paper a value of ε = 0.01 was used. When the 

Jacobian becomes sufficiently close to zero the further integration does not make sense as it 

will not be able to guarantee either the symplectomorphic or diffeomorphic properties of the 

flow (even numerical stability of the solution can be compromised). Therefore, when the 

condition of Equation 8 is violated we stop numerical integration, freeze the flow, and restart 

the integration (i.e., setting t = 0) beginning at a new set of phase space coordinate {q(n)(x, 

0), p(n)(x, 0)} where n is the number of restart times. Since the Hamiltonian is an operator 

that describes the “energy” of a system, we refer to these n different sets of initial conditions 

as energy shells. Each restart of the integration therefore represents the initiation of a new 

energy shell.

The new initial conditions that define the energy shells are related to the stopping point of 

the coordinates in the previous energy shell by the following conditions:

q(n)(x, 0) = q(n − 1) x, t(n) − t(n − 1) , (9)

p(n)(x, 0) = 0, (10)

J (n)(x, 0) = 1 (11)

Repeating this sequence of initial conditions therefore generates a set of shell-embedded 

symplectomorphic transformations such that the total transformation is diffeomorphic with 

the Jacobian defined as a product of J(n)

J(x, t) = J (n) x, t − t(n) ⋅ J (n − 1) x, t(n) − t(n − 1) ⋅ … ⋅ J0 x, t(1) (12)

It is worth noting that this updating equation for the Jacobian effectively results in an 

updating of the metric tensor G = (J−1)TJ−1 that characterizes the local geometry and assures 

volume preservation.
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The similarities between the Hamilton function Equation 1 and the traditional objective 

function of nonlinear registration (either diffeomorphic4,57,58 or non-diffeomorphic59) can 

be cast by viewing the first momentum part as the regularity term which assures the 

smoothness of velocity field, and the second part as the fitting term which guides the 

displacement field. But the Hamiltonian formalism provides a number of important 

advantages, e.g., it allows the use of different spatially varying regularization strategies for 

momentum and displacement parts and at the same time includes those terms as a part of the 

Hamiltonian function itself rather than applying them at a post processing step.

We would also like to emphasize that our use of Hamiltonian framework provides a major 

advantage over conventional approaches in both efficiency and accuracy. For example, 

similar considerations for limiting the Jacobian were employed in60 where Euler equations 

of viscous flow were used to describe the displacement field on a fixed grid. The 

introduction of fixed Eulerian reference frame resulted in frequent use of costly and 

inaccurate template regridding procedure that is completely avoided by our formulation.

An important practical implementation issue is that the number of shells n does not have to 

be introduced in advance and can be determined based on overall convergence (or even 

devised from running time constraints). In our numerical implementation the shells were 

terminated as soon as I1 → I0 convergence condition

∫ I0(x) − I1 q(n) 2 I0(x) − I1 q(n − 1) 2 dx < 0 (13)

2.2 | Entropy spectrum pathways as a phase space regularization

The form of Hamiltonian function used in Equation 1 assumes only local input from 

difference between I0 and I1 images to the flow momentum p at every point on the fixed grid 

x. A more reasonable assumption would be an inclusion of some information relevant to the 

structure of I0 and I1 images. One possible (and by far the most straightforward) way to 

provide this structure based preconditioning is the entropy spectrum pathways (ESP) 

approach61 that takes into account nearest neighbor coupling between adjacent grid 

locations.

The ESP approach starts with generating the coupling density Q(x, x′) which can be as 

simple and trivial as just the adjacency matrix

Q x, x′ = 1  if x and x′ are connected 
0  if x and x′ are not connected  (14)

or may in general include a strength of coupling through some kind of coupling potentials 

that may depend on the grid positions. The ESP approach solves the generalized eigenvalue 

problem

λψ(x) = ∫ Q x, x′ ψ x′ dx′, (15)
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finding the largest eigenvalue λ and corresponding eigenvector ψ(x) and then constructs the 

quantity

ρ x′, x = Q x, x′ ψ x′
λψ(x) (16)

calling it the transition probability density for transition between grid locations x and x′. 
The square of the eigenvector ψ(x) is called the equilibrium probability μ(x) in the sense that 

it represents the stationary solution that satisfies the stationary point condition

μ x′ = ∫ ρ x′, x μ(x)dx (17)

Equation 16 can be included in Equation 1 to take into account nonlocal effects and provide 

a way of regularization by defining a non-local Hamiltonian

ℋnl(q, p) = 1
2V ∬ δ x, x′ p2 + ρ x, x′ I0 x′ − I1(q) 2 dxdx′, (18)

here δ(x, x′) is Dirac delta function, q ≡ q(x′, t) and p ≡ p(x′, t). This nonlocal expression 

for the Hamiltonian function produces non-local Hamilton’s equations

dp
dt = p (19)

dp
dt = ∫ ρ x, x′ I0 − I1

∂I1
∂x J−1 dx′ (20)

dJ
dt = ∂p

∂x (21)

where the momentum Equation 20 is the non-local version of Equation 5 that now includes 

the convolution of a local potential (gradient of squared image difference in our case) with a 

kernel ρ(x, x′) that depends on the coupling between grid locations.

Alternatively the non-local Hamiltonian function can be specified as

ℋnl(q, p) = 1
2V ∬ ρ x, x′ p2 + I0 x′ − I1(q) 2 dxdx′, (22)

providing alternative non-local form for the coordinate Equation 4 as well

dp
dt = ∫ ρ x, x′ pdx′ (23)

Assuming that the coupling density Q(x, x′) does not depend on position x but depends only 

on a difference between them (i.e. Q(x, x′) ≡ Q(x−x′)), the ESP scheme can provide a 
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variety of position independent regularization kernels often used as convolution filters in 

image registration.2 As a trivial example, an eigenvalue problem (15) for position 

independent Gaussian coupling density Q(x−x′) = exp(−(x−x′)TS(x−x′))) in infinite n-

dimensional domain has maximum eigenvalue λ = πn/detS and a trivial eigenvector ψ(x) = 

const, resulting in the commonly used Gaussian regularization kernel. This simple 

illustration is merely meant to demonstrate that the commonly used Gaussian kernel is 

naturally derived from our very general procedure. In practice, more complex coupling 

schemes can provide more informative prior information, resulting in more robust warping 

schemes.

We would like to emphasize the significant advantages that ESP regularization provides. Its 

general formulation61 is probabilistic in nature and provides a framework for the 

incorporation of available information. In the present context of image registration it 

naturally provides a mechanism to incorporate information from either or both of the I0 and 

I1 images. The position dependent coupling naturally creates image dependent 

regularization. Moreover, the ESP approach can also include any information that is not 

present in the images themselves but known a priori and related to images in some 

quantitative way can be easily included into the coupling scheme with some sort of linear or 

nonlinear parameterization. We have recently demonstrated this ability to incorporate 

multiple priors in ESP coupling in the related problem of multi-modal parameter estimation,
62 where the symplectomorphic registration method of this paper was used for registration of 

multiple modalities. Additionally, incorporation of the ESP method into the Hamiltonian 

formalism provides a simple and efficient way for introduction of different image matching 

terms by modification of the position–based part of either local or nonlocal Hamiltonian 

function. This provides great flexibility for tailoring the method to specific applications.

2.3 | Spherical waves decomposition as a position domain preconditioning

The set of Hamilton’s Equations 19–21 used in the previous sections to generate a sequence 

of energy shell-embedded symplectomorphic transformations (12) requires equal 

dimensionality of images I0 and I1. However, in many cases the images to be registered are 

of different spatial resolutions so that some form of interpolation is required. To provide an 

effective way to do position domain resampling, interpolation, filtering and estimation of the 

best orthogonal transform in a single step we used the spherical waves decomposition 

(SWD) approach.63 The SWD is based on fast FFT–based algorithms to expand images in 

spherical wave modes and therefore allows image resampling, scaling, rotating and filtering 

with the highest possible order of polynomial accuracy (much more accurately than nearest 

neighbors, tri-linear or tri-spline used by all other methods), but at a fraction of the time.

The SWD approach uses fast algorithms to expand both I0 and I1 images in spherical wave 

modes

flmn
(0, 1) = ∫

0

a∫
0

π∫
0

2π
I 0, 1 (r, θ, ϕ)Rnl(r)Y l

m ⋆ (θ, ϕ)r2drsinθdθdϕ, (24)

Galinsky and Frank Page 8

Magn Reson Med. Author manuscript; available in PMC 2020 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where Y l
m ⋆ (θ, ϕ) are the spherical harmonics, and Rnl(r) can be expressed through the 

spherical Bessel function

Rln(r) = 1
Nln

jl klnr , (25)

with an appropriate choice of normalization constants Nln and the discrete spectrum wave 

numbers kln determined by the boundary conditions. The number of modes (l, m = 0…Lmax 

and n = 1…Nmax) are determined by the highest image resolution. The details of definitions 

of the spherical harmonics Y l
m(θ, ϕ) and spherical Bessel Functions jl(r) can be found in.63 

The interpolation and resampling are then implemented as fast inverse spherical wave 

transform

I(0, 1)
NL (r, θ, ϕ) = ∑

n = 1

N
∑
l = 0

L
∑

m = − l

l
ℱlmnflmn

(0, 1)Rln(r)Y l
m(θ, ϕ), (26)

using appropriate grid locations (r, θ, ϕ) and assigning flmn to zeros for modes with n > Nmax 

or l, m > Lmax. A variety of low/band/high pass filters can be used for frequency domain 

filter ℱ following the standard image processing techniques.

The scale and the amount of rigid rotation between images can be easily and effectively 

estimated using the decomposition of the radial and spherical parts with the partial 

transforms

I 0, 1
N (r) = 1

2 π ∑
n = 1

N 1
N0n

ℱ00nf00n
(0, 1)j0 k0nr , (27)

I(0, 1
L (θ, ϕ) = ∑

l = 0

L 1
Nl1

∑
m = − l

l
ℱlm1flm1

(0, 1)Y l
m(θ, ϕ), (28)

and finding the parameters of the similarity transformation (scale sr and rotation angles θr 

and ϕr) by solving the two (one and two dimensional) minimization problems

sr = arg min
sr

∫
0

Rmax

I0
N(r) 2 − I1

N srr
2 dr, (29)

θr, ϕr = arg min
θrϕr

∫
0

2π

∫
0

π

I0
L(θ, ϕ) 2 − I1

L θ − θr, ϕ − ϕr
2 dθdϕ, (30)

using a small number of modes (L < Lmax and N < Nmax) for initial coarse search and 

increasing them to refine the estimate, thus avoiding being trapped in local minimums and at 

the same time creating computationally efficient approach. Criteria similar to the 
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considerations about optimal order of SWD transform expressed in63 can be used as a 

stopping condition for this scale refinement procedure. A similar scale refinement procedure 

was also used for the calculation of the symplectomorphic mapping.

2.4 | Algorithm implementation

The processing workflow of symplectomorphic registration involves the following steps:

1. Computing SWD transforms Equation 24 for both the reference (I0) and the 

source (I1) volumes;

2. Finding best similarity transformation starting with low radial (Nmin) and angular 

(Lmin) scales and repeating the following steps with higher scales (L > Lmin, N > 

Nmin) as needed:

a. Reconstructing radial Equation 27 and angular Equation 28 parts;

b. Estimating scale (sr) and rotation (θr, ϕr) from Equations 29 and 30 

respectively;

3. Applying the final similarity transformation ((sr)–(θr, ϕr) to the source volume;

4. Interpolating and resampling both the reference and the source volumes using 

Equation 26 again starting with low radial (Nmin) and angular (Lmin) scales and 

improving the scales as needed;

5. Integrating the non-local Hamiltonian Equations 19–21 or Equations 20–23 

using symplectic scheme64,65;

6. a. Generating the transitional probability ρ(x′, x) Equation 16 based on 

the select coupling density Q(x, x′) for the current scales;

b. Propagating the momentum p, the position q and the Jacobian J to the 

new time t;

c. Verifying the invertibility condition Equation 8;

d. Reinitializing the p, q flow and the Jacobian J with Equations 9–11 if 

the Jacobian is out of bounds;

7. Repeating the integration updating the scales as needed until the convergence 

condition Equation 13 is not satisfied.

3 | RESULTS

All results shown below were coded in standard C/C++ and parallelized using POSIX 

threads.

3.1 | Phantom data registration

To test the approach we first applied it to 3D extension of a classical “toy” example 

commonly used to show the performance of non-linear registration approaches—the 

registration of the “C” shape to the ”circle” shape. The original 200 × 200 × 200 3D “C” 

and ”circle” volumes are shown in Figure 1A and B. Panels C and D show 3D view and 
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central slices for the forward and inverse maps. Panels E and F show grid lines for a subset 

of points selected from three groups of orthogonal planes. The overall performance of our 

approach seems to be very good, with nearly perfect forward map of the “circle” to the “C” 

shape, and only a slight signature of the original hole in the inverse map of “C” shape to the 

“circle”. No SWD preconditioning was used in this example and simple adjacency type 

matrix was used for phase space coupling.

The second stage of our evaluation procedure was the comparison with some of the existing 

state-of-the-art nonlinear registration methods commonly used. As it is clearly beyond the 

scope of our paper to conduct a comprehensive evaluation using all possible variations of 

nonlinear deformation algorithms versus all possible variations of accuracy metrics (such as 

is done in evaluation studies, like e.g.,52 we decided to report here just the simplest and the 

most straightforward type of metrics and have restricted our choice of registration tools to 

those commonly used at our institution. Following the recommendation from52 concerning 

the speed and accuracy, we processed the phantom registration using Diffeomorphic 

Demons (which is reported as one of the fastest) and symmetric diffeomorphic image 

registration SyN (reported as one of the most accurate), both from the Advanced 

Normalization Tools (ANTs) package,66 as well as using FNIRT non-linear registration 

utility from the FSL67 and 3dQwarp non-linear warping utility from AFNI.58

As noted above, our quantitative comparison of accuracy and efficiency are based on two 

simple and well-understood metrics: The time is used as a practical measure of efficiency 

and a simple root mean square deviation between the reference and the registered image is 

used as a measure of accuracy. The evaluation results are summarized in Table 1 and 

demonstrate the enhanced accuracy and efficiency of our symplectomorphic registration 

approach in comparison with some well established non-linear registration techniques for 

these two simple metrics and a well-defined standard numerical phantom.

3.2 | High resolution anatomical MR data registration

3.2.1 | Multi-subject registration—For our first test of the method on actual data, we 

addressed the most common usage of registration algorithms: to register a set of high 

resolution anatomical (HRA) images to a common reference image. This is a typical multi 

subject analysis task appearing in a variety of group studies that involve morphometry based 

comparison between different subjects or subject groups. We utilized HRA data collected on 

the 3T GE Discovery MR750 whole body system at the UCSD Functional MRI (CFMRI) 

using a 32 channel head coil for ten different subjects previously collected in a study to 

determine the effects of caffeine on the resting state brain activity.69 However, only high 

resolution T1 data (all having 290 × 262 × 262 voxel resolution) were used for registration 

test described in the current subsection. Further details are available in.69 Normalized T1 

intensities were used as matching terms I0 and I1 in symplectomorphic registration.

Figure 2 shows the collage of images related to this registration test. The central plane from 

anatomical volume used as reference is shown in (A) panel. The same location planes for 

randomly selected four volumes out of ten subjects are shown in (B). Panel (D) shows the 

result of SWD preconditioning step equivalent to rigidly fitting each volume to reference 

with orthogonal transform that includes rotation and uniform scaling for the same four 
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volumes. Panel (C) shows image obtained by averaging of SWD preconditioned volumes for 

all ten subjects. The next four panels show results of symplectomorphic transforms using 5 

(F) and 15 (H) embedded energy shells again with correspondent all subject averages in (E) 

and (G) respectively. Plots of RMSD as a function of a number of shells (convergence plots), 

as well as illustrative plots of curvilinear grids for the same randomly chosen four subjects 

are available in Supporting Information Figure S1 and S2.

Overall, as would be expected, the symplectomorphic registration shows significant 

improvement over rigidly fitted volumes, with additional improvement due to increase of a 

number of energy shells used in registration. In general, there is no obvious relationship 

between the number of shells and the accuracy, although practically, as the number of shells 

is determined by selected limits of Jacobian range (ε) (and indirectly can be affected by a 

selected policy of time step adjustments), symplectomorphic registration with increased 

number of shells may allow to obtain better overall accuracy. The total processing time for 

all ten subject fitting ranges from 15 to 40 minutes based on the selected quality (this is time 

measured by running the registration on 12 cores Intel ® CoreTM i7–4930K CPU 3.40 

GHz).

We note, while the quality of the fit is measured here by RMSD, the most advantageous 

implementation in any particular clinical or research scenario of course depends on several 

parameters, including the desired quality of the fit, the type of regularization, the type of 

coupling in ESP step, aggressiveness of time step updating, etc. These trade-offs necessarily 

depend on the specific desires of the user in any particular application.

3.2.2 | Synthetic deformation maps—An important practical aspect of non-linear 

registration methods in their application to MRI is their robustness to image distortions 

produced in the MRI procedure. The dependence of the spatial encoding process in MRI on 

magnet field gradient linearity results, in practice, in a wide range of complex non-linear 

distortions due to gradient non-linearities induced by both machine dependent factors (e.g. 

imperfect gradients) and subject morphological variations (e.g. susceptibility effects). To add 

to the complexity of this problem, the machine dependent variations can depend not only on 

the scanner vendor, but on the scanner software revision as well. And the subject 

morphological variations certainly differ between subjects.

Therefore, in order to provide a quantitative assessment of the symplectomorphic 

registration using HRA data under more realistic conditions encountered in practical 

applications, we took several T1 brains acquired on different hardware (Siemens and GE 

scanners) at different resolutions using different acquisition sequences and subjected them to 

artificially generated distortions designed to mimic some of the most prominent non-linear 

distortions common to MRI acquisitions.

We utilized 5 different high resolution datasets: (1) MNI152 T1 2 mm with 91×109×91 

voxels, (2) T1 MPRAGE 1.2 mm with 160 × 200 × 200 voxels, (3) T1 MPRAGE 1 mm with 

212 × 240 × 256 voxels, (4) T1 1 mm with 290 × 262 × 262 voxels, and (5) T1 1 mm with 

256 × 176 × 176 voxels. All subjects were resampled into MNI152 space (to provide the 

same accuracy and required workload for all subjects) and then were distorted several times 

Galinsky and Frank Page 12

Magn Reson Med. Author manuscript; available in PMC 2020 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



using five different types of warpage (see Figure 3). The different types of warpage include 

nonlinear or differential rotation, nonlinear stretching, nonlinear compression, etc, and 

Figure 3 shows one of the subjects (MNI152 T1 2 mm with 91 × 109 × 91 voxels) with all 

five warpage types applied to this subject.

The idea of generation and use of synthetic deformation maps for validation is not new. A 

somewhat similar procedure of synthetic Gaussian 2D deformations was used recently for 

registration validation in.70 The important difference of our deformation panel is that it 

includes a variety of more complex deformation modes observed and frequently present in 

various MRI acquisition protocols and modalities.

The 25 warped volumes were then processed using the two non-linear registration methods 

most commonly used at our institution – ANTs SyN and AFNI 3dQwarp, in addition to 

SYM-REG, and compared the restored volumes with the original unwarped datasets. The 

results are summarized in Table 2 showing mean values for the RMSD as well as mean 

execution times for all subjects (top) and for all warpage types (bottom). The complete 

processing took 976, 3414 and 1223 s for SYM-REG, AFNI and ANTs respectively giving 

304.6, 358.5 and 584.0 for the RMSD values with SYM-REG providing both the lowest 

RMSD error and the lowest execution time (the default processing options were used for all 

packages). Supporting Information Figures S8–S12 show Matlab listings for each of the five 

different types of warpage used in Figure 3 and in Table 2.

3.3 | Diffusion weighed MR image registration

The second important application we investigated was the registration of diffusion-weighted 

images (DWI) to the HRA image of the same subject. This is a critical step required for 

collocation of diffusion tractography based quantities with high resolution anatomical 

morphometry. Registration of DWI to HRA is generally a more complicated problem than 

registering HRA to HRA because DWI images are typically acquired with echo-planar 

imaging (EPI) acquisitions that are not only prone to more severe non-linear susceptibility 

distortions than HRA images but are invariably acquired at lower spatial resolution than the 

HRA for the same subject.

The data used for this example were again collected at the UCSD Center for Functional MRI 

(CFMRI) using 3T GE Discovery MR750 whole body system to study the effects of 

traumatic brain injuries (TBI). The HRA T1 volume has 168 × 256 × 256 voxel size with 1.2 

× 0.9375 × 0.9375 mm resolution. The DWI data has 100 × 100 × 72 voxel size with 2 mm3 

resolution. The normalized HRA T1 intensity was used for the reference image matching 

term I0 and the equilibrium probability map (see71) was used as a moving image matching 

term I1.

Figure 4 shows a central slice and a 3D view of the reference volume A, DWI b = 0 volume 

B, DWI equilibrium probability volume that has the same resolution as b = 0 volume C, and 

the final symplectomorphic registration of the DWI equilibrium probability volume D. The 

details about the equilibrium probability and how it is obtained can be found in.71 The last 

two panels E and F show enlarged side by side comparison of the HRA reference and 

transformed DWI with the same resolution.
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Figure 5 shows a comparison of registration and its effects on tractography performance for 

the same non-linear registration methods used in registration validation with synthetic 

deformation maps of spin echo HRA images in the previous Section 3.2. These diffusion 

weighted EPI acquisitions have clinically relevant SNR differences, which could have a big 

impact on the accuracy and speed of the registration, but was not addressed in the 5 

simulated analytical warpage types of the previous section.

The comparison of SYM-REG with ANTs SyN and AFNI 3dQwarp clearly show that SYM-

REG is capable to achieve the best speed of registration (150 s vs 350 s/1050 s) and RMSD 

accuracy (0.27 vs 0.52/0.56) on the spin echo/EPI registration with the real life distortions 

and noise. The figure also shows that the symplectomorphic registration method allows very 

accurate localization of diffusion derived tracts with the high resolution anatomical features. 

More details that include a SYM-REG based tractography implementation as well as multi-

modal estimation in general are not relevant to this paper and are reported in.62

We would like to mention one important consideration here. A considerable amount of work 

has been spent recently not just on spatial registration of diffusion imaged volumes, but also 

on devising techniques for local reorientation of diffusion tensors that would be consistent 

with the new deformed spatial grid [see e.g25–27,29,30]. These methods are both time 

consuming and an unnecessary intermediate step from our viewpoint. An important feature 

of our method is that we can directly import the diffeomorphic maps together with the high 

resolution data into our diffusion estimation and tractography technique GO-ESP,71 so that 

both the estimation of local diffusion properties and the generation of tracts are performed in 

the locally warped space characterized by the spatially dependent metric tensor, thereby 

obviating the need to use any ad hoc proceed to impose geometric consistency, which in our 

method is guaranteed by the symplectomorphic nature of transformation. The result is a 

method that provides a fast and effective way of adding a new level of details to relatively 

low resolution output available from diffusion weighted tractography.

3.4 | Registration of functional MR images

The third and final important application we investigated was the registration of low spatial 

resolution functional resting state FMRI (rs-FMRI) data to HRA data from a single subject. 

As in DWI, FMRI data is typically acquired using EPI acquisitions that, as previously 

mentioned, are more prone to non-linear geometric distortions than HRA acquisitions, and 

are of lower spatial resolution.

The data used for this test were from the same caffeine study dataset69 used in Section. 

Registration of functional rs-FMRI data to anatomical images is required to establish an 

accurate localization of activation regions in the high resolution maps of gray matter.

Figure 6 shows side by side comparison for 3D views of rs-FMRI A, T1 B and rs-FMRI 

mapped to T1 C volumes. The processing was carried through 30 energy embedded shells 

and required about 5 minutes of waiting time from the start to the finish, with a subset of the 

final grid shown in D. The work is currently underway to include flexible mapping grids 

directly to our rs-FMRI mode detection approach.72,73 Figure 7 shows comparison of 

original and registered images for several of the resting state functional modes obtained 
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using our entropy field decomposition (EFD) technique.72,73 The default mode A and D, the 

visual lateral B and E, and the visual occipital C and F modes are shown for some of the 

subjects from Figure 2. The symplectomorphically mapped images overlayed over 

correspondent HRA slices D, E, and F show very accurate localization of functional modes 

in the appropriate regions of HRA volumes.

4 | DISCUSSION

The recent review paper74 conducted a retrospective analysis of the past two decades of the 

field of medical image registration since publication of the original review.75 It is of concern 

that the main conclusion of this twenty years retrospective is that, in spite of all the progress 

in the field of registration, “the two major problems mentioned in75 validation of registration 

methods and translation of these to the clinic—are major problems still, which have even 

been aggravated by the elaboration of registration methods.”

In this paper we have presented a new flexible multidimensional image registration approach 

that is based on the Hamiltonian formalism. The method generates a set of Hamilton’s 

equations capable of producing a symplectomorphic transformation for mapping between 

Cartesian and curvilinear grids that minimizes some predefined image difference metric. The 

final diffeomorphic mapping is constructed as a multiplicative sequence of 

symplectomorphic transforms with gradually diminishing levels of total energy, thus 

providing a sequence of energy embedded symplectomorphic shells. For demonstration 

purposes, we used both a simple local squared difference, as well as a more complicated 

non-local image squared difference, as a Hamilton function.

An application of the powerful and versatile ESP approach61 to the phase space domain 

resulted in a non-local form of Hamilton’s equations. The non-local form represents an 

efficient and relatively straight forward way to introduce regularization that is capable of 

taking into account some image specific details or even additional knowledge based 

parameterizations. More generally, the Hamiltonian formalism allows easy adaptation of 

custom and possibly more complex forms of image difference metrics, and at the same time 

allows the metric in the diffeomorphism space to be kept the same, which facilitates the 

comparison and validation between different techniques and regularization approaches.

By “resetting” of the Hamiltonian (or “freezing” the flow) our approach provides an 

effective way to move those singular points outside of the domain of interest creating a final 

diffeomorphic map as a composition of symplectomorphisms. Some methods (like 

LDDMM) employ a trick to remove some of the singular points (zeros in Jacobian) by using 

exponential mapping (at the expense of effectiveness, in particular due to limiting a space of 

available updates), but it still has to deal with other singular points (infinities in Jacobian) to 

ensure the invertibility. We employed a different trick by freezing the flow and thus moving 

the singularities in an image specific manner.

Hence overall shell-like sequence of transformations provides more flexibility and may 

potentially allow to reach better overall fits than fixed number of steps and fixed exponential 

mapping methods.
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The resolution differences between images as well as rigid shape alignment is addressed 

using the preconditioning step based on the SWD technique63 This efficient volumetric 

decomposition computes a set of fast spherical harmonics and spherical Bessel transforms 

and is able to produce accurate interpolation, filtering and fitting of rigid shapes.

One of the major hurdles in the translation of registration methods to clinical practice74 is 

the difficulty in validation of these methods in the face of the exceedingly complex interplay 

of the many pulse sequence details, the scanner hardware, and the anatomical variations that 

interact with the magnetic fields. To this end, we have developed a panel of analytically 

defined deformations based on known physical effects present in MR acquisitions. While 

these certainly do not constitute an exhaustive list of possible effects, they are a fair 

representation of the major distortions in the major MR image acquisition schemes. This 

deformation panel was used to validate our method and quantitatively demonstrate its 

robustness to a wide range of different types of distortions that regularly plaque MR studies. 

The deformations from the panel can be applied to images of different modalities and 

acquisition conditions and potentially can be appropriate for quick and robust validation in 

clinical settings. This validation approach is somewhat similar to 2D Gaussian deformations 

used in,70 but our panel includes deformations that can be attributed to a variety of real 

physical processes present in different acquisition protocols and modalities (i.e. twist, whirl, 

stretch, etc).

We should emphasize that although the use of the synthetic distortion data is a great test tool 

for the registration algorithm; however it can not be used as a substitute for a comprehensive 

study of effects of real SNR, pulse sequence and motion induced distortions, etc, in practical 

medical imaging. Therefore, for each and every application of any of the available 

registration methods to translational and more clinically relevant MRI data such test/retest/

validation studies will surely be required and reserved for future work.

Overall the symplectomorphic registration approach is both accurate and fast and is capable 

of processing of a variety of volumetric images of different modalities and resolutions. In the 

tests reported in this paper we were able to handle all three of the major neuro-MRI 

modalities routinely used for human neuroimaging applications, including mapping between 

high-resolution anatomical volumes, medium resolution diffusion weighted volumes and 

high-resolution anatomicals, and low resolution functional MRI images and high-resolution 

anatomicals. The typical processing time for high quality mapping ranges from less than a 

minute to several minutes on a modern multi-core CPU for a typical high resolution 

anatomical MRI volumes. The speed, accuracy, and flexibility of this new method has the 

potential to play an important role in the quantitative assessment of neuroimaging data in a 

wide range of both basic research and clinical applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX:: Individual subject and warpage accuracy and timings

Table 3 provides values of RMSD and wall execution time for all subjects and all warpage 

types after processing by AFNI 3dQwarp, ANTs SyN, and SYM-REG respectively and 

supporting Information Figures S3–S5 show corresponding image registration results.

Supporting Information Figures S6 and S7 show image registration results for the SYMREG 

method with no regularization and momentum only regularization.

Supporting Information Figures S8–S12 show Matlab listings for each of the five different 

types of warpage used in Figure 3 and in Tables 2 and 3.
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FIGURE 1. 
3D extension of the classical “toy” example used for benchmarking of diffeomorphic 

registration: fitting “circle”—sphere in (B)—to “C”—spherical shell with a hole in (A). 

Results of direct (C) and inverse (D) maps obtained in 8 embedded energy shells. Subset of 

curvilinear grid lines plotted for three neighboring layers selected from three orthogonal 

planes for direct (E) and inverse (F) maps. The different colors were used to distinguish 

between the anterior-posterior grid lines (blue), the dorsal-ventral grid lines (green) and the 

right-left lateral grid lines (red). Both inverse and direct maps were obtained in a single run, 

the processing time for 200 × 200 × 200 volumetric datasets was just above 30 s on 12 cores 

Intel ® CoreTM i7–4930K CPU 3.40 GHz
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FIGURE 2. 
Results of high resolution anatomical (HRA) mapping to the same anatomical reference 

volume (shown in A). (B) Central planes for four volumes out of ten subjects used for 

mapping. (D) Residual images of SWD preconditioning (fitted with orthogonal transform) 

for the same four volumes, (C) all ten volumes averaged. Residual images of 

symplectomorphic transforms using 5 (F) and 15 (H) embedded shells with all ten subject 

averages in (E) and (G) respectively
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FIGURE 3. 
Different nonlinear warpage types applied to 5 different subjects (only one subject is shown 

for each warpage type—MNI152 T1 2 mm with 91 × 109 × 91 voxels): (A) an original 

subject; (B) differential rotation with the amount of rotation proportional to the distance 

from the center in the axial plane (whirl); (C) differential stretch in the anterior direction; 

(D) differential rotation with the amount of rotation proportional to the distance from the 

axial plane in the longitudinal direction (twist); (E) nonuniform compression in the axial 

plane proportional to the the longitudinal distance; (F) nonuniform compression in the 

longitudinal direction relative to the position in the axial plane
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FIGURE 4. 
Medium resolution (100 × 100 × 72) diffusion weighted (DWI) volume registration to high 

resolution (168 × 256 × 256) T1 reference. A, Reference T1 MRI image (2D center slice top 

and 3D view bottom), B, DWI b0 MRI image, C, equilibrium probability DWI image (same 

resolution as b0 image), D, DWI image SWD preconditioned and registered to T1 image 

(same resolution as T1 image). Side by side comparison of reference E, and 

symplectomorphic registration of DWI volume F (enlarged versions of A and D)
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FIGURE 5. 
Comparison of registration and diffusion weighted tractography using the original DWI 

volume space (100 × 100 × 72) (top row) and the warped HRA space (168 × 256 × 256) 

using the symplectomorphic registration (second row), the ANTs SyN method (third row) 

and the AFNI’s 3dQwarp (bottom row). The SYM-REG requires less time and results in 

largest overall quality improvements both in term of equilibrium probability (second 

column) and the details of tracts (third column). The latero–lateral (left to right and right to 

left), anterior–posterior, and dorsal–ventral tracts are shown in cyan, magenta and yellow 

respectively
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FIGURE 6. 
3D view of low resolution (64 × 64 × 30) rs-FMRI volume A vs T1 high resolution (290 × 

262 × 262) anatomical volume B. SWD preconditioned rs-FMRI volume after registration to 

high resolution T1 template C. The final mapping grid used 30 shells D and took about 5 

minutes on 12 cores Intel ® CoreTM i7–4930K CPU 3.40 GHz. The same color scheme is 

used for the displacement field with blue corresponding to the anterior-posterior grid lines, 

green to the dorsal-ventral grid lines, and red to the right-left lateral grid lines
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FIGURE 7. 
Several randomly selected resting state modes obtained using low resolution (64 × 64 × 30) 

rs-FMRI volume registered to T1 high resolution (290 × 262 × 262) anatomical volume—

default mode A and D, visual lateral B and E, and visual occipital C and F—for some of the 

subjects from Figure 2. The upper panels A, B, and C show the original low resolution rs-

FMRI modes. The symplectomorphic maps in lower panels D–F show accurate localizations 

of functional modes in the appropriate regions of HRA volumes
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