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Abstract
Langerhans cells are key sentinel cells of the skin and muco-
sal lining. They sense microorganisms through their reper-
toire of pattern-recognition receptors to mount and direct 
appropriate immune responses. We recently demonstrated 
that human Langerhans cells interact with the Gram-positive 
pathogen Staphylococcus aureus through the Langerhans 
cell-specific receptor langerin (CD207). It was previously hy-
pothesized that two linked single nucleotide polymorphisms 
(SNPs; N288D and K313I) in the carbohydrate recognition 
domain of langerin would affect interaction with microor-
ganisms. We show that recognition of S. aureus by recombi-
nant langerin molecules is abrogated in the co-inheriting 
SNP variant, which is mainly explained by the N288D SNP 
and further enhanced by K313I. Moreover, introduction of 
SNP N288D in ectopically-expressed langerin affected cellu-
lar distribution of the receptor such that langerin displayed 
enhanced plasma membrane expression. Despite this in-
creased binding of S. aureus by the langerin double SNP vari-

ant, uptake of bacteria by this langerin variant was compro-
mised. Our findings indicate that in a proportion of the hu-
man population, the recognition and uptake of S. aureus by 
Langerhans cells may be affected, which could have impor-
tant consequences for proper immune activation and S. au-
reus-associated disease. © 2019 The Author(s)

Published by S. Karger AG, Basel

Introduction

Langerin (CD207) is a C-type lectin receptor that, in 
humans, is exclusively expressed on Langerhans cells 
(LCs). Langerin is a recycling receptor that binds its li-
gands, including sulfated glycans, β-glucans, N-acetylglu-
cosamine (GlcNAc), and complex bacterial glycans, in a 
Ca2+-dependent manner [1–3]. Its Ca2+ affinity stems 
from a fine-tuned allosteric network of communicating 
amino acids [4]. Engagement of langerin triggers ligand 
endocytosis, which is mediated by actin remodeling 
through the cytoplasmic proline-rich motifs of langerin 
[5, 6]. The internalized cargo is released from the receptor 
in the endosomal compartments as a consequence of low-
er pH and endosomal Ca2+ concentration [4, 5, 7]. This 
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mechanism allows langerin to recycle between the plasma 
membrane and endosomal compartments and prevents 
langerin degradation.

In the human population, several single nucleotide 
polymorphisms (SNPs) in langerin have been described 
[1, 8, 9]. Interestingly, some of these SNPs are situated in 
the carbohydrate recognition domain of langerin and af-
fect receptor-ligand interaction. Two particular SNPs, 
N288D (rs13383830) and K313I (rs57302492), are in 
strong linkage disequilibrium and co-inherit throughout 
the human population. The overall minor allele frequen-
cy of these SNPs is 13.0% (online suppl. Fig. S1; see www.
karger.com/doi/10.1159/000500547) [10]. Based on the 
Hardy-Weinberg equilibrium, this corresponds to an es-
timated 1.7% of homozygotes and 22.6% heterozygous 
carriers. The minor allele frequency is highest in the Af-
rican population (21.8%, 4.8% homozygotes), while it is 
lowest in populations of native American (5.3%, 0.3% ho-
mozygotes) and European (6.2%, 0.4% homozygotes) an-
cestry (online suppl. Fig. S1).

Based on glycan array analysis, the non-naturally oc-
curring single K313I variant abolishes interaction of lan-
gerin with terminal sulfated glycan residues, but enhanc-
es interaction with terminal GlcNAc structures [1, 9]. 
SNP N288D decreases affinity for all ligands as a result of 
destabilized Ca2+ binding [8, 9]. Together, the SNPs skew 
ligand specificity from sulfated glycans to GlcNAc, with 
an overall decreased binding to glycan structures [9]. 
These findings sparked the hypothesis that these com-
mon langerin SNPs could influence recognition of 
GlcNAc-containing structures on microorganisms, 
which can be present on wall teichoic acid of Gram-pos-
itive bacteria including Staphylococcus aureus [11]. The 
possible influence on microbial recognition was also pro-
posed to drive selection for K313I as compensatory muta-
tion for N288D, explaining the strict co-inheritance of the 
two SNPs [9].

We recently identified langerin as a receptor for 
β-GlcNAc modifications on S. aureus wall teichoic acid, 
which strongly influenced LC activation and skin inflam-
mation in response to S. aureus [12]. Therefore, we aimed 
to identify the effects of the naturally occurring combina-
tion of SNPs N288D and K313I in human langerin on S. 
aureus binding and internalization. Overall, our data 
demonstrate that uptake of S. aureus by cells expressing 
the langerin double SNP variant was compromised. This 
indicates that in a proportion of the human population, 
the recognition and uptake of S. aureus by LCs may be af-
fected, which can have important consequences for prop-
er immune activation and S. aureus-associated disease.

Material and Methods

Bacterial Strains and Culture Conditions
S. aureus strains [12] (Table 1) were grown overnight at 37  ° C 

with agitation in 5 mL Todd-Hewitt broth (THB; Oxoid). For S. 
aureus Newman ΔspaΔsbi pCM29, THB was supplemented with 
10 µg/mL chloramphenicol (Sigma Aldrich). Overnight S. aureus 
cultures were subcultured the next day in fresh THB and grown to 
an optical density at 600 nm (OD600nm) of 0.6–0.7, which corre-
sponds to mid-exponential growth phase. S. pyogenes MGAS315 
[12] (Table 1) was grown overnight at 37  ° C without agitation in 5 
mL THB (Becton Dickinson) supplemented with 1% yeast extract 
(Oxoid).

Production of Recombinant Langerin Extracellular Domains
The extracellular domains of truncated human langerin (resi-

dues 148–328) and SNP variants thereof were recombinantly ex-
pressed from codon-optimized constructs containing a C-termi-
nal TEV cleavage site followed by a Strep-tag II cloned into pUC19 
expression vectors, expressed in E. coli BL21 (DE3; Thermo Fish-
er), purified and labeled as described previously [3]. SNP variants 
N288D and K313I and the double SNP variant were created from 
the langerin wildtype pUC19 expression vector by site-directed 
mutagenesis using QuikChange Lightning (Agilent) and primer 
pairs pUC19 288D and pUC19 313I [12] (Table 2), according to 
the manufacturer’s instructions.

Langerin Binding Assay
Wildtype S. aureus strains, S. aureus USA300 ΔtarM and S. 

pyogenes MGAS315 were harvested by centrifugation (4,000 rpm, 
8 min) and resuspended at OD600nm = 0.4 in TSM buffer (2.4 g/L 
Tris [Roche], 8.77 g/L NaCl [Sigma Aldrich], 294 mg/L CaCl2·2H2O 
[Merck], 294 mg/L MgCl2·6H2O [Merck], pH = 7.4) with 0.1% bo-
vine serum albumin (BSA; Merck). Bacteria were incubated with 
0–50 µg/mL recombinant langerin-FITC (wildtype or SNP vari-
ants) for 30 min at 37  ° C with agitation, washed once with TSM 1% 
BSA, fixed in 1% formaldehyde (Brunschwig Chemie), and ana-
lyzed by flow cytometry.

Table 1. Strains used in this study [12, 32–35]

Strain Source

S. aureus USA300 (NRS384, CC8) NARSA strain collection
S. aureus USA300 ΔtarM (WTA

α-GlcNAc deficient) [32]
S. aureus Newman (CC8) ATCC, cat. No. 13420
S. aureus Newman ΔspaΔsbi

pCM29 (sGFP expressing) [12]
S. aureus 82086 (CC398) [32]
S. aureus PS66 (CC30) Udo Bläsi, Vienna
S. aureus MW2 (CC1) [33]
S. aureus Wood46 (CC97) ATCC, cat. No. 10832
S. aureus Mu50 (CC5) [33]
S. aureus P68 (CC25) Udo Bläsi, Vienna
S. aureus NRS184 (CC22) NARSA strain collection
S. aureus JH1 (CC5) [34]
S. pyogenes MGAS315 [35]
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Cell Culture and Lentiviral Transduction
THP1 (TIB-202, ATCC) and SupT1 (CRL-1942, ATCC) cells 

were cultured in RPMI (Lonza) supplemented with 5% fetal bovine 
serum (Biowest), 1% GlutaMAX (Gibco), 100 U/mL penicillin, 
and 100 μg/mL streptomycin (Gibco) at 37  ° C with 5% CO2. CHO 
cells (CCL-61, ATCC) were cultured in DMEM (Lonza), using the 
same supplements and conditions.

A TrueORF sequence-validated cDNA clone of human CD207 
(OriGene Technologies) was amplified by PCR using Phusion poly-
merase (Thermo Fisher) and dedicated primers with or without 
SNPs N288D and K313I and containing a C-terminal FLAG tag 
(IDT) [12] (Table 2). The PCR amplicons were cloned in a BIC-PGK-
Zeo-T2a-mAmetrine;EF1A [13] construct by Gibson assembly (New 
England Bioscience) according to the manufacturer’s instructions. 
The vectors encoding langerin wildtype, SNP variants, or empty vec-
tor (EV) controls were introduced into THP1, SupT1, and CHO cells 
by lentiviral transduction, as described previously [13]. Cellular ex-
pression of langerin was verified by antibody staining with anti-
CD207 (DCGM4, Beckman Coulter) and anti-FLAG (F9291, Sigma) 
and measured by flow cytometry. For staining of total langerin ex-
pression levels, cells were first fixed in 2% formaldehyde and per-
meabilized using PBS + 0.1% saponin (Sigma) + 0.5% BSA.

Binding of S. aureus to Langerin Expression Cells
Cells expressing langerin wildtype, N288D, K313I, or double 

SNP variant, or EV controls were harvested: suspension THP1 and 
SupT1 cells were washed in PBS and resuspended in TSM + 0.1% 
BSA; adherent CHO cells were detached by incubation in PBS + 5 
mM EDTA for 15 min, washed in PBS, and resuspended in TSM + 
0.1% BSA. Cells were incubated with GFP-expressing S. aureus 
Newman Δspa Δsbi at bacteria-to-cell ratios ranging from 0 to 6 in 
TSM + 0.1% BSA for 30 min at 4  ° C. Cells were washed in TSM + 
0.1% BSA once, fixed in 1% formaldehyde, and measured by flow 
cytometry.

Internalization of S. aureus by THP1-Langerin Cells
S. aureus USA300 ΔtarM was grown as described. To label the 

bacteria with pHrodo iFL Red STP Ester (Thermo Fisher), 5 × 108 
bacteria were resuspended in 750 µL and incubated for 1 h at room 
temperature with 100 µM pHrodo in 100 mM sodium bicarbonate, 
pH 8.4, as described previously [14, 15]. Bacteria were washed re-
peatedly and resuspended at 1 × 108 CFU/mL in RPMI 0.1% BSA. 
THP1-EV, THP1-langerin wildtype, and THP1-langerin double 
SNP variant were incubated with pHrodo-labeled S. aureus at a 
bacteria-to-cell ratio of 12.5 at 37  ° C with 5% CO2. Incubation of 
bacteria in citrate buffer (pH 4) was used to verify pHrodo labeling. 
Fluorescence was measured every 15 min for 1 h by Clariostar 
(BMG Labtech) using the Alexa Fluor 555 filter set. Afterwards, the 
cells and bacteria were transferred to Lab-Tek II borosilicate cov-
erglass chambers (Nunc), counterstained with 10 µg/mL sWGA-
FITC (Vector Labs), and imaged by confocal laser scanning mi-
croscopy (SP5, Leica).

To measure internalization by bacterial depletion from the cel-
lular membrane, S. aureus USA300 ΔtarM was grown as described 
and labeled with 0.5 mg/mL FITC (Sigma Aldrich) in PBS for 30 
min at 4  ° C, washed repeatedly, and resuspended at 1 × 108 CFU/
mL in RPMI 0.1% BSA. Suspension THP1 cells expressing lan-
gerin wildtype, SNP variants, or EV controls were incubated with 
FITC-labeled S. aureus at a bacteria-to-cell ratio of 12.5 at 4  ° C. 
Afterwards, cells were washed three times in RPMI + 0.1% BSA to 
wash away unbound bacteria and the samples were split. Half of 
the sample was kept at 4  ° C, while the other half was incubated at 
37  ° C with 5% CO2 to allow phagocytosis of adhered bacteria. The 
samples at 37  ° C were transferred to ice after 30 min and cooled to 
stop the reaction. Extracellular membrane-bound bacteria in all 
samples were stained using 1 µg/mL biotin-conjugated chicken 
IgY anti-protein A (CPA-65B, Immunology Consultants Labora-
tory) and streptavidin-Alexa Fluor 647 (Jackson Immunoresearch) 
and measured by flow cytometry. We assessed the internalized 
fraction of bacteria by measuring the loss of Alexa Fluor 647 signal 

Table 2. Primers used in this study

Primer name Sequence (5′–3′)

hLangerin Fw GAGCTAGCAGTATTAATTAACCACCATGACTGTGGAGAAGGAG

hLangerin-FLAG Rv ACGTTTCTTTTCATTTGTAAGCGACCCTATGTCCCATCAGAACCGGACTAC
AAAGACGATGACGACAAGTGAGCATGCATCCTAACCGGTAC

N288D Fw CCAGGTGAGCCCAACGATGCTGGGAACAATGAACACTG

N288D Rv CATTGTTCCCAGCATcGTTGGGCTCACCTGGAATCCAG

K313I Rv GTACCGGTTAGGATGCATGCTCACGGTTCTGATGGGACATAGGGTCGCTT
ACAAATGAAAAGAAACGTTATGTCACATGGGGCATCATTCCAG

pUC19 288D Fw ATTCCGGGCGAACCGAACAATGCCGGTAACAATGAAC

pUC19 288D Rv GTTCATTGTTACCGGCATTGTTCGGTTCGCCCGGAAT

pUC19 313I Fw GCATGGAATGATGCTCCGTGCGACATCACGTTTCTGTTCA

pUC19 313I Rv AAATGAACAGAAACGTGATGTCGCACGGAGCATCATTCCATGCCTG
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after internalization of bacteria at 37  ° C in the FITC-positive frac-
tion of cells, as described by Rodriguez et al. [16]:

Finternalized = (AF647FITC+, 4  ° C – AF647FITC+, 37  ° C)/AF647FITC+, 4  ° C

Flow Cytometry
Flow cytometry was performed on FACSVerse (BD Bioscienc-

es). Per sample, 10,000 events within the set gate were collected. 
Data were analyzed using FlowJo 10 (FlowJo, LLC).

Statistical Analysis
Statistical analyses were performed using GraphPad Prism 7.04 

(GraphPad Software). Langerin concentration curves were tested 
by two-way ANOVA with Tukey’s multiple comparisons test, bac-
terial binding to cell lines by one-way ANOVA with Dunnett’s 
multiple comparisons test, pHrodo signal by repeated measures 
two-way ANOVA with Dunnett’s multiple comparisons test, and 
bacterial internalization by ANOVA with Tukey’s multiple com-
parisons test. Correlations between bacterial binding and langerin 
membrane expression were analyzed by linear regression. Only 
statistically significant differences are indicated (p ≤ 0.05).

Data Availability
The data that support these findings are available from the cor-

responding author upon request.

Results

Introduction of N288D in Recombinant Human 
Langerin Abrogates Interaction with S. aureus
Feinberg et al. [9] showed that the ligand specificity of 

langerin K313I and the double SNP variant was altered 
compared to wildtype langerin, and hypothesized that 
this might affect interaction with Gram-positive patho-
gens. Since we recently elucidated the molecular interac-
tion between langerin and S. aureus [12], we investigated 
whether this interaction would be affected by these com-
mon SNPs. We expressed and purified recombinant fluo-
rescently labeled constructs of the extracellular domain of 
human langerin, containing SNPs N288D and K313I in-
dividually as well as together. Binding of recombinant 
langerin K313I to S. aureus USA300 wildtype was identi-
cal to the binding observed for recombinant wildtype lan-
gerin (Fig. 1a). In contrast, introduction of SNP N288D 
and especially the double SNP variant severely attenuated 
interaction with S. aureus (Fig. 1a). These results are gen-
erally consistent with the predictions by Feinberg et al. 
[9], except for the full loss of interaction of the double 
SNP variant in our experiments. Complete loss of binding 
could also result from problems with, e.g., protein mis-
folding or degradation. However, all langerin constructs 
had been purified in an identical manner using affinity 
purification on a mannan column, indicating that they 

are functional. In addition, the langerin double SNP vari-
ant was still able to interact with another Gram-positive 
pathogen, Streptococcus pyogenes (Fig. 1b). Therefore, the 
loss of S. aureus interaction with the recombinant lan-
gerin double SNP variant likely represents a specific S. 
aureus ligand binding defect.

We have previously demonstrated enhanced binding 
of langerin to tarM-deficient S. aureus [12]. Therefore, we 
examined whether this enhancement was also present in 
the interaction between the langerin SNP variants and S. 
aureus USA300 ΔtarM (Fig. 1a). Indeed, binding of the 
single langerin SNP variants N288D and K313I to S. au-
reus USA300 ΔtarM were both enhanced, whereas the 
double SNP variant was still unable to interact.

To test whether the observed binding pattern of lan-
gerin SNP variants relative to wildtype langerin was con-
served, we tested binding of all four langerin constructs 
to a selection of 10 S. aureus strains from eight different 
clonal complexes (Fig. 1c). The binding levels of wildtype 
langerin were similar to previous observations [12]. How-
ever, binding of wildtype langerin and the K313I SNP 
variant were identical in all 10 strains. In addition, in all 
cases, the langerin N288D and double SNP variants dis-
played loss of interaction with S. aureus.

Langerin Surface Expression Is Affected by SNP 
N288D and Correlates with S. aureus Binding 
Capacity
We next introduced FLAG-tagged wildtype langerin 

or SNP variants in THP1 cells to assess how N288D and 
K313I affected interaction with S. aureus in a cellular 
model. Total expression levels of langerin were similar in 
the different langerin variants as assessed by staining sa-
ponin-permeabilized cells with an anti-FLAG antibody 
(Fig. 2a, left). However, staining of langerin on the plasma 
membrane, using non-permeabilized cells, revealed strik-
ing differences in langerin surface expression between 
langerin variants (Fig. 2a, right). Introduction of N288D, 
either individually or in conjunction with K313I, caused 
a significant increase in langerin expression on the plas-
ma membrane. As langerin is well-described to recycle 
continuously between intracellular and membrane com-
partments [5, 6, 17, 18], increased membrane availability 
of the N288D and double SNP variants of langerin is like-
ly caused by altered recycling behavior of langerin upon 
SNP introduction. The altered membrane expression af-
fected the interaction of langerin with S. aureus that we 
have described previously [12]; cell lines expressing lan-
gerin N288D or the double SNP variant, but not K313I on 
its own, showed higher binding of S. aureus compared to 
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cells expressing wildtype langerin (Fig. 2b). Linear regres-
sion analysis of langerin surface expression and the ca-
pacity to bind S. aureus revealed a high positive correla-
tion (R2 = 0.94), indicating that the bacterial binding ca-
pacity is highly dependent on the level of langerin 
expressed on the membrane (Fig. 2c).

To exclude that this effect was caused by unique be-
havior of langerin in THP1 cells, we repeated this experi-
ment in two additional cell lines, suspension SupT1 cells 
and adherent CHO cells. In both cases, similar results 
were obtained, with high and moderate correlations be-
tween langerin membrane expression and S. aureus bind-

ing capacity, respectively (R2 = 0.90 in SupT1; R2 = 0.60 
in CHO). We therefore conclude that S. aureus binding is 
highly dependent on the amount of langerin expressed on 
the membrane, irrespective of the introduced SNPs. Sur-
prisingly, the SNPs did not directly influence the bacte-
rial recognition but only did so indirectly, by altering lan-
gerin surface expression.

The Naturally Occurring Double SNP Variant in 
Langerin Is Defective in S. aureus Internalization
Langerin is a recycling receptor that internalizes li-

gands and transports them to intracellular compartments 
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Fig.  1. Introduction of N288D in recombinant human langerin 
abrogates interaction with S. aureus. a, b Binding of FITC-labeled 
recombinant langerin wildtype (WT) and SNP variants to S. au-
reus USA300 WT or ΔtarM (a) and S. pyogenes (b). c Binding of 
FITC-labeled recombinant langerin WT and SNP variants (12.5 
µg/mL) to a panel of S. aureus strains from eight lineages (clonal 
complexes indicated in parentheses). Binding was assessed as the 

geometric mean fluorescence intensity. Data represent means ± 
standard error of the mean (SEM) of three independent experi-
ments. Statistical differences in a are relative to the binding levels 
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langerin WT to USA300 WT or ΔtarM, at all concentrations from 
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for further processing [5, 6]. As cells expressing the natu-
rally occurring langerin double SNP variant bound more 
S. aureus as a consequence of altered membrane expres-
sion, we determined how this affected ligand internaliza-
tion. FITC-labeled S. aureus were incubated with THP1-
langerin cells at 4  ° C to allow bacterial binding. We used 
the stable USA300 ΔtarM mutant for this, as this strain 
behaved similarly to the wildtype strain for interaction 
with langerin SNP variants, but displays uniform and in-
variable WTA glycosylation with β-1,4-GlcNAc. Next, 

the samples were split and either kept at 4  ° C or trans-
ferred to 37  ° C to allow cellular uptake. Afterwards, all 
samples were stained using an anti-protein A antibody, 
which allows discrimination between adhered (stained) 
or internalized (non-stained) S. aureus in the split sam-
ples of 4 and 37  ° C, respectively [16]. Using this method, 
we observed that THP1 cells expressing wildtype or K313I 
langerin internalized approximately 75% of adhered bac-
teria (Fig. 3a). In contrast, the N288D and double SNP 
variants internalized only half of that amount (Fig. 3a).

Total
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correlates with S. aureus binding capacity. a Expression levels of 
langerin in permeabilized (left) or non-permeabilized (right) 
THP1 cells expressing langerin wildtype (WT) and SNP variants 
or empty vector (EV) control cells. b Binding of GFP-expressing 
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FLAG antibody and assessed as the geometric mean fluorescence 
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shown. c Correlation between langerin surface expression and 
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Wildtype langerin is trafficked to early and late endo-
somal compartments, which are increasingly acidified [4, 
5, 7]. To test whether the relatively low numbers of S. au-
reus internalized by cells expressing the langerin double 
SNP variant were still trafficked to these acidified com-
partments, we labeled S. aureus with the pH-sensitive dye 
pHrodo, which fluoresces at low pH. With this experi-
mental setup, we observed a clear time-dependent in-
crease in fluorescence after incubation of pHrodo-labeled 
S. aureus with THP1 cells expressing wildtype langerin 
but not EV control cells (Fig. 3b). This was complement-
ed by confocal microscopy, confirming that pHrodo-flu-

orescent S. aureus was only observed in THP1 cells ex-
pressing wildtype langerin (Fig. 3c). Therefore, wildtype 
langerin expressed on THP1 cells is fully functional and 
internalized S. aureus end up in acidified endosomal 
compartments. In contrast, there was no increase in 
pHrodo signal in THP1 cells expressing the langerin dou-
ble SNP variant, similar to EV controls (Fig. 3b, c). Over-
all, these data indicate that the naturally-occurring dou-
ble SNP langerin variant displays increased surface ex-
pression, which enables increased binding of S. aureus. 
However, subsequent uptake and intracellular routing 
are highly inefficient.
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Fig. 3. The naturally occurring double SNP variant in langerin is 
defective in S. aureus internalization. a Fraction of S. aureus 
USA300 ΔtarM that is internalized by THP1-langerin wildtype 
(WT), N288D, K313I, N288D/K313I, or empty vector (EV) con-
trols. Means ± SEM of five independent experiments are shown. b, 
c Internalization of pHrodo-labeled S. aureus USA300 ΔtarM by 

THP1-langerin WT, N288D/K313I, or EV control at a bacteria-to-
cell ratio of 12.5. Internalization was assessed by mean fluores-
cence intensity using flow cytometry (b) and confocal microscopy 
(c). Data are shown as means ± SEM of three independent experi-
ments. * p < 0.05; ** p < 0.01; *** p < 0.001.
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Discussion

Previous studies hypothesized that the interaction be-
tween the human pattern-recognition receptor langerin 
and microorganisms could be affected by two co-inherit-
ing polymorphisms in the carbohydrate recognition do-
main of langerin [1, 8, 9]. We demonstrate here that these 
SNPs indeed result in compromised uptake of S. aureus 
by langerin-expressing cells.

Using recombinant soluble constructs of langerin with 
and without these variants and S. aureus as a relevant 
GlcNAc-expressing human pathogen, we did not observe 
enhanced S. aureus binding by langerin K313I. This was 
surprising, since results from glycan array analysis indi-
cated that SNP K313I enhanced detection of terminal 
GlcNAc residues [9]. In contrast, the langerin N288D 
SNP variant showed significant loss of S. aureus binding, 
which corresponds to observations by Feinberg et al. [9] 
that this SNP has reduced affinity for all langerin ligands. 
Surprisingly, the additional introduction of SNP K313I 
completely abrogated interaction with S. aureus, which 
counters the predictions based on glycan array analysis 
that K313I would partially compensate for the N288D af-
finity reduction [9]. There are two differences between 
our study and the study by Feinberg et al. [9] that are rel-
evant to mention here. Firstly, the arrays used by Feinberg 
et al. [9] only contained mammalian glycan structures 
and could therefore only indicate general binding speci-
ficities for families of glycans, such as terminal sulfated or 
terminal GlcNAcylated structures. Binding to bacterial 
structures was not assessed [9]. Secondly, Feinberg et al. 
[9] used the monomeric carbohydrate recognition do-
main of langerin for this analysis, while we used trimeric 
constructs that resembles the receptor configuration as 
expressed by cells. Monomeric and trimeric langerin con-
structs are known to have different ligand binding prop-
erties, which could therefore have contributed to the dis-
crepancies between our results [9, 19].

As a complementary approach to recombinant pro-
teins, we introduced the langerin SNP variants in THP1 
cells to test langerin-dependent S. aureus binding in a more 
biologically relevant model system. Expression of langerin 
N288D, with or without SNP K313I, on THP1 cells caused 
a notable increase of langerin expression on the plasma 
membrane. This is likely a specific effect caused by the al-
teration of the carbohydrate recognition domain of lan-
gerin and not an artifact caused by THP1 cells or the trans-
duction method, as we reproduced this observation in two 
additional cell lines. A similar observation was reported 
previously for the single langerin N288D variant expressed 

on fibroblasts, which also displayed increased surface ex-
pression [8]. The enhanced membrane localization is po-
tentially caused by diminished endosomal recycling of the 
langerin N288D variant. Due to increased surface expres-
sion of this receptor variant compared to wildtype langer-
in, more S. aureus bacteria adhered to the cells. In contrast, 
S. aureus internalization was significantly compromised in 
cells expressing the langerin N288D variant.

Our three main observations initially appear conflict-
ing: on the one hand, we observed loss of binding of the 
recombinant langerin N288D and double SNP variant to 
S. aureus as well as compromised uptake by cells express-
ing these variants, while on the other hand, these same 
cells displayed higher bacterial binding. The discrepancy 
between the loss of binding of the recombinant N288D 
langerin variants (Fig. 1a) and increased bacterial binding 
by cells expressing these variants (Fig. 2b, c) can be ex-
plained by increased avidity in the cell-based model. 
When expressed on the cell, multiple receptors can clus-
ter and engage the same bacterial particle, while such 
clustering is not possible for the soluble recombinant lan-
gerin constructs. The inability of cells expressing langerin 
containing SNP N288D to internalize S. aureus, while still 
being able to efficiently bind bacteria, is possibly the re-
sult of different affinity/avidity requirements for binding 
and phagocytosis. In the generally accepted “zipper” 
model of phagocytosis and endocytosis, successive zip-
per-like receptor-ligand interactions drive phagocytosis 
and endocytosis by increasingly enclosing the engulfed 
object [20, 21]. This process relies on sufficient affinity 
between the receptor and its ligand [22, 23]. Possibly, the 
affinity of N288D-containing langerin variants for S. au-
reus are still sufficient for binding of the bacteria but in-
sufficient to trigger proper engulfment, as a result of the 
destabilized Ca2+ coordination that this variant displays 
[4]. So far, we have shown decreased internalization of S. 
aureus by the langerin N288D and double SNP variants, 
but it will be important to extrapolate this to other li-
gands, either expressed by other microorganisms or ex-
pressed in purified form.

A limitation of the use of cell lines overexpressing the 
langerin SNP variants is that the processes of engulfment 
and antigen processing might be different from how these 
processes occur in primary LCs. However, previous stud-
ies have demonstrated that the introduction of langerin 
in other cellular models results in the formation of Birbeck 
granules [5, 17, 24], the hallmark organelles of LCs. Al-
though this suggests that the langerin-dependent pro-
cesses of engulfment and antigen processing could func-
tion similarly in overexpression models, the effect of the 
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investigated langerin SNPs in isolated LCs or in vivo is an 
important next step.

In this study, we have exclusively investigated homo-
zygous langerin SNP variants. Although 0.3–4.8% of the 
world’s population is homozygous for these variants, the 
majority of people will be heterozygous. Importantly, lan-
gerin is expressed as a trimeric receptor. Assuming equal 
expression of both alleles, heterozygotes will express a 
range of trimeric langerin receptors, from wildtype ho-
motrimers (1/8 of all trimers) to heterotrimers with one 
or two wildtype monomers (3/8 each) to SNP variant ho-
motrimers (1/8) [9]. Prediction of the phenotype of these 
heterozygous alleles is difficult. However, based on the 
loss of function of the langerin double SNP variant, a 
dose-dependent effect is one of the possibilities. In this 
case, langerin trimers would become less functional with 
incorporation of more SNP variant monomers, yielding 
trimers with a range of functionalities. Another possibil-
ity is a dominant-negative effect of the SNP variant over 
the wildtype form. Indeed, this situation occurred in an 
individual that was heterozygous for a particular de novo 
mutation in langerin (W264R). This healthy individual 
had fully disrupted langerin function and lacked Birbeck 
granule formation, leading to the conclusion that the 
W264R mutation had a dominant negative effect [25, 26]. 
Yet, experimental data on heterozygously expressed lan-
gerin SNP variants is currently lacking and will be neces-
sary to reveal the effect that these SNPs have in heterozy-
gous individuals.

The effects of the langerin double SNP variant on hu-
man health and disease is currently unclear. In case of S. 
aureus, we have previously shown that human LCs play a 
central role in the orchestration of the immune response 
against S. aureus in a langerin-dependent manner [12]. 
Reduced internalization by langerin and consequently di-
minished antigen presentation or skewed immune activa-
tion by LCs could therefore have a major impact on the 
health of skin and mucosa. This is further supported by 
the increased minor allele frequency of the double SNP 
variant in the African population (21.8%) compared to 
the European population (6.2%) and the observation that 
people of African descent have a lower risk for S. aureus 
colonization (26.8 vs. 32.9%) [27] but higher incidence of 
invasive S. aureus disease than European-descended pop-
ulations (66.5 vs. 27.7 per 100,000 individuals) (online 
suppl. Fig. S1) [28, 29]. This suggests a link between the 
genetic background of the host and the immune response 
against S. aureus, which may be partially mediated by 
variation in langerin. Possibly, LCs expressing variant 
langerin are attenuated in their skin barrier gatekeeper 

function, thereby allowing S. aureus to penetrate to deep-
er tissues and cause invasive disease.

Finally, we have identified S. pyogenes as a new interac-
tion partner of langerin, which was not affected by double 
SNP variant. Similar to S. aureus, S. pyogenes is a human 
commensal and a frequent cause of skin infections [30]. 
Interestingly, the interaction between LCs and S. pyo-
genes has been reported previously, although the molecu-
lar interaction was not clarified [31]. Possibly, langerin is 
one of the LC receptors involved in this interaction and 
warrants further investigation.

In conclusion, we have shown that, contrary to predic-
tions based on glycan array data, the co-inheriting lan-
gerin SNPs N288D and K313I cause loss of interaction 
between langerin and the human pathogen S. aureus. In 
addition, the SNPs affected the cellular localization of 
langerin and compromised uptake of S. aureus. This 
demonstrates that binding profiles from glycan array data 
cannot always be directly translated to a biological situa-
tion. This complicates predictions of the phenotypic ef-
fects of genetic variation in recycling pattern-recognition 
receptors and is therefore an important factor to consider 
in similar studies.
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