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Abstract

Background: Sholl analysis has been used to analyze neuronal morphometry and dendritic 

branching and complexity for many years. While the process has become semi-automated in 

recent years, existing software packages are still dependent on user tracing and hence are subject 

to observer bias, variability, and increased user times for analyses. Commercial software packages 

have the same issues as they also rely on user tracing. In addition, these packages are also 

expensive and require extensive user training.

New Method: To address these issues, we have developed a broadly applicable, no-cost ImageJ 

plugin, we call AutoSholl, to perform Sholl analysis on pre-processed and ‘thresholded’ images. 

This algorithm extends the already existing plugin in Fiji ImageJ for Sholl analysis by allowing for 

secondary analysis techniques, such as determining number and length of root, intermediate, and 

terminal dendrites; functions not currently supported in the existing Sholl Analysis plugin in Fiji 

ImageJ.
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Results: The algorithm allows for rapid Sholl analysis in both 2-dimensional and 3-dimensional 

data sets independent of user tracing.

Comparison with Existing Methods: We validated the performance of AutoSholl against 

pre-existing software packages using trained human observers and images of neurons. We found 

that our algorithm outputs similar results as available software (i.e., Bonfire), but allows for faster 

analysis times and unbiased quantification.

Conclusions: As such, AutoSholl allows inexperienced observers to output results like more 

trained observers efficiently, thereby increasing the consistency, speed, and reliability of Sholl 

analyses.
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Introduction

Sholl analysis is an analytical technique for the investigation of neuronal dendritic 

morphometry (Binley et al., 2014; Sholl, 1953). It involves tracing the morphology of a 

neuron, and then placing a series of concentric circles on the traced image to analyze the 

number of dendritic intersections at a given radius from the center of the neuronal cell body 

(Sholl, 1953). This serves as a surrogate measure for neuronal surface area and allows for 

quantification of dendritic arbor complexity (Binley et al., 2014; Sholl, 1953). While the 

process has become semi-automated in recent years, existing commercial software (i.e., 

Neurolucida) and open-source packages (i.e., Bonfire) still rely on user tracings of dendritic 

morphology (Langhammer et al., 2010; Yang et al., 2013). Moreover, these analysis 

software packages require specifying the cell soma center, in addition to identifying primary, 

secondary, and higher order dendrites during the tracing process (Langhammer et al., 2010; 

Yang et al., 2013). Such necessary involvement of users can make Sholl analyses subject to 

observer bias and variability, in addition to being very time consuming. Developing more 

automated software programs for Sholl analysis, and in general for imaging analysis, will 

allow for faster analyses with higher reproducibility and rigor.

Since previously published work has made it possible to trace 2-dimensional (2D) and 3-

dimensional (3D) structures (Arganda-Carreras et al., 2010; Dougherty and Kunzelmann, 

2007; Srinivasan et al., 2018), we built on these studies to automate Sholl analysis in 2D and 

3D neuronal image sets. These new features allow for Sholl analysis, independent of user 

tracing, and without the need to specify the somal center and dendrite order. While the 

standard distribution of Fiji ImageJ comes with a plugin, termed Sholl Analysis (Ferreira et 

al., 2014), this plugin is unable to perform secondary analyses such as dendritic root, 

intermediate, and terminal counts, thickness (diameter), and length that are found in 

software that employ user tracing. We validated our algorithm using neurons in 2D images 

(low-density neuronal cultures) in addition to 3D data sets. Together, these analyses show 

both the precision and efficiency of the algorithm, as compared to semi-automated analyses, 

utilizing multiple test models with varying dendritic branching morphologies.
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Materials and Methods

All experimental protocols were performed under approval from the Institutional Animal 

Care and Use Committees of Albany Medical College and complied with the National 

Institutes of Health “Guide for the Care and Use of Laboratory Animals”

Tissue dissociation and neuron culture

Timed pregnant mice with day 17.5 embryos were euthanized and cerebral cortices dissected 

as described previously (Tuz et al., 2013). Briefly, tissue was incubated in 100 μL of a 

0.25% trypsin-EDTA solution (Gibco 25209-056) at 37°C for 7 min. The trypsin solution 

was then removed and 100 μL of a trypsin inhibitor solution added (1 mg/mL soybean 

trypsin inhibitor, Sigma SLBR01181). The tissue was incubated with the trypsin inhibitor 

solution for 5 min at room temperature. The trypsin inhibitor solution was then removed and 

replaced with 500 μL of Neurobasal media supplemented with 2 mM glutamine, 40 μg/mL 

gentamicin, 1x B27 supplement, 0.5% glucose). Tissue was mechanically dissociated by 

triturating 20 times using a 1 mL micropipette. The samples were then allowed to settle and 

200 μL of cell suspension from the cortical preparation was added to 500 μL of Neurobasal 

media (supplemented as previously described). Suspensions were further mechanically 

dissociated 20 times using a 200 μL micropipette.

Four hours prior to plating cells, glass coverslips (18 mm diameter; ThermoFisher, Cat 

#18CIR-1.5) were coated with poly-D-lysine (Sigma-Aldrich, Cat #A-003-E; 1 h at 37°C), 

washed twice using sterile deionized water, and allowed to air dry in a culture hood. Cells 

(6000 cells) were added to each coverslip with 500 μL of fresh supplemented Neurobasal 

media. Following a 2 h incubation period, allowing for cell adherence, all media was 

removed and 500 μL of fresh supplemented Neurobasal media was added. Coverslips were 

then inverted above a confluent astrocyte layer (Kaech and Banker, 2006; Srivastava et al., 

2011). Cultures were maintained in a 37°C, 5% CO2 atmosphere incubator for 21 days in 

vitro (DIV). Cells were fixed at 21 DIV and processed for immunostaining and imaging.

Neuronal immunostaining and image acquisition

Low-density primary cultured neurons were fixed using 4% paraformaldehyde (PFA) made 

in phosphate-buffered saline (PBS) and sucrose (Kaech and Banker, 2006; Srivastava et al., 

2011). For immunocytochemistry analysis, nonspecific antigen sites were blocked with 1% 

bovine serum albumin (BSA; Sigma, Cat #A7030) in PBS at room temperature for 1 h. Cells 

were then incubated with an anti-MAP2 antibody (1:500; EMD-Millipore, AB5622) in 1% 

BSA overnight at 4°C. On the next day, cells were washed with PBS followed by the 

addition of an anti-rabbit Alexa Fluor 488 antibody (1:1000; Molecular Probes, Cat 

#A11055), and incubated for 1 h at room temperature. Cells were then washed with PBS and 

incubated with Hoescht 33342 (1:10000; ThermoFisher, Cat #H3570) for 1 min at room 

temperature. Cells were then mounted using Fluoromount (Southern Biotech, Cat #0100-01) 

and imaged with a Zeiss Imager.M2 microscope with a 40x objective (Zeiss Plan-Achromat 

40x/0.75). Neurons were chosen, with no specific criterion, to test the algorithm’s 

performance across a wide variety of conditions with variable noise. Images of neuronal 
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stacks (for 3D testing) were obtained from the Gold166_v1 release from the BigNeuron 

database (https://github.com/BigNeuron/Data/releases/tag/Gold166_v1))(Peng et al., 2015).

Explanation of the algorithm

The algorithm presented here requires two parts – skeletonization of a segmented neuron 

and determination of thickness. Skeletonization can be accomplished using an adapted 

version of the medial axis transform presented previously (Lee et al., 1994). Local thickness 

can be correlated to this skeletonized structure by defining the thickness of the structure of 

interest as the distance map of all non-overlapping circles via: ΩR = {p ∈ Ω|sph(p, Dmap(p)) 

⊄ sph(x, Dmap(x)), p ≠ x, x ∈ Ω} where Dmap is the distance map, and p is set as the center 

points of all non-overlapping circles. The radii of the circles defined here gives the local 

thickness (a more detailed description is presented in Hildebrand and Rüegsegger, 1997; 

Srinivasan et al., 2018).

The center was defined as the branch point with the maximal number of neighbors. For 

secondary analysis of the dendritic arbor, a root-intermediate-terminal method was used due 

to its ease of definition based on classification of branch points. Root or primary dendrites 

were defined as dendrites with one end point as the center, and the second end point as a 

branch point. Intermediate dendrites were defined as having both end points being branch 

points. Terminal dendrites were defined as having one end point as a branch point and the 

other end point as an end point.

Algorithm development

The algorithm was developed using the Integrated Design Environment Eclipse Neon v3.0 

(The Eclipse Foundation) with Java version 1.8.0.11. To determine inter-observer variability, 

image data sets were analyzed by two trained observers (Obs. A and B). To determine intra-

observer variability, one observer analyzed images on separate days (Obs. A1 and A2).

Code availability

The source code and compiled version of the AutoSholl algorithm are available on GitHub 

(https://github.com/ferlandlab). A ReadMe file is included with the source code and 

compiled algorithm.

Algorithm workflow

A flowchart of the algorithm workflow is provided (Fig. 1) – the image is converted to a 

binary black and white image before being inputted into AutoSholl for analysis (2D example 

output is presented in Table 1, 3D example output is presented in Table 2 – from a single 

human neuron within the Gold166_v1 release from the BigNeuron database (https://

github.com/BigNeuron/Data/releases/tag/Gold166_v1; Peng et al., 2015). We also processed 

the example ‘thresholded’ image of a Drosophila neuron provided in ImageJ (Schindelin et 

al., 2012; Ferreira et al., 2014) using AutoSholl to show the algorithm’s ability to effectively 

process very complex dendritic fields (Fig. 2; example output provided in Supplementary 

Table 1) as well as process simpler dendritic fields.
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Image Analysis

Observers performed Sholl analysis using the open-source algorithm Bonfire, which requires 

manual tracing, against AutoSholl. Two trained observers performed the analysis (Observer 

A (Obs. A) and Observer B (Obs. B)) as described above. The results were examined for 

significance using one-way ANOVA (Statistica). The average time of analysis per image, 

including pre-processing steps, was measured by each observer performing the analysis 

using Bonfire and using our AutoSholl algorithm. Analysis times were measured using a 

computer with an Intel Core i7-4500U, 1.80 GHz processor.

Results

The algorithm’s performance was validated against BonFire using 5 test neurons (Table 3). 

AutoSholl was found to output similar root (F3,16 = 0.48, p = 0.7007), intermediate (F3,16 = 

0.02, p = 0.9960), and terminal dendrite (F3,16 = 0.03, p = 0.9927) counts and lengths (F3,16 

= 0.17, p = 0.9151; F3,16 = 0.63, p = 0.6062; F3,16 = 0.42, p = 0.7411, respectively) as users 

performing the analysis using BonFire.

Similar results were obtained in testing 3D data sets for root dendrite count (F3,24 = 0.42, p 

= 0.7333) and length (F3,24 = 0.31, p = 0.8179), intermediate dendrite count (F3,24 = 0.08, p 

= 0.9702) and length (F3,24 = 0.36, p = 0.7824), and terminal dendrite count (F3,24 = 0.05, p 

= 0.9849) and length (F3,24 = 0.2, p = 0.8953).

AutoSholl was significantly faster in performance speed, as compared with users interfacing 

with BonFire, in both 2D neuronal data sets (F3,16 = 22.56, p < 0.01) and in the 3D neuronal 

data sets (F3,24 = 15.78, p < 0.01).

Discussion

Though multiple software packages exist for morphometric analyses, we have developed an 

easier to use analysis algorithm, designed for pre-processed image input, made available as 

an open-source ImageJ plugin. The current ImageJ Sholl Analysis plugin does not support 

secondary analyses, which our AutoSholl algorithm does (Schindelin et al., 2012; Ferreira et 

al., 2014). Other software packages such as NeuronJ or BonFire are only able to handle 2D 

data sets (Langhammer et al., 2010), while commercial software packages such as 

Neurolucida are limited, since they are not open source projects and require extensive user 

training prior to use (Dickstein et al., 2001). Since most Sholl analyses are currently 

conducted in 2D image sets, our AutoSholl algorithm offers the possibility of performing 

these analyses in 3D image sets.

AutoSholl is an extension of BranchAnalysis2D/3D and thus is subject to the same errors 

described previously (Srinivasan et al., 2018). Briefly, both algorithms perform their 

comparisons at a pixel/voxel level considering the unit as a discrete quantity. As the pixel/

voxel is a continuous function, it is possible to compute morphometric measures at a sub-

pixel/sub-voxel level by profiling the curve intensity using different methods. Most 

commercial packages do not perform this analysis (Yang et al., 2013), but consideration of 

these measures would be important for future algorithm development as they could provide 
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biologically relevant information for image processing. Given that observers using our 

algorithm outputted similar results to already existing open-source software, the errors 

present within our algorithm are clearly not enough to bias the results with the sample 

images used, indicating AutoSholl is as precise as existing methodologies.

An interesting error to note, found within the algorithm, occurs when determining the center 

of a neuron. As a skeletonization algorithm was employed to convert the neuron image into a 

single pixel skeleton, the skeletonization algorithm used here has an error of 1 pixel/voxel. 

During the skeletonization process, this can lead to converting the soma into a structure not 

represented by a point, but two points. This typically occurs with very abnormally shaped 

neuronal soma (not the typically occurring triangular shape of pyramidal neurons or 

ellipsoid shapes seen in other neuron types). Such an error, leads to fewer primary dendrites, 

but more secondary dendrites. While this did not significantly bias our results using various 

types of neurons, including pyramidal and ellipsoid soma shapes, it may become an error 

when more precision is required. Future work could focus on introducing an error to the 

determination of the center point, thereby correcting for the error introduced by the 

skeletonization algorithm.

In the future, automating the thresholding process with AutoSholl will increase its potential 

functionality by removing any user interaction with input images further reducing user bias, 

while also significantly increasing the processing speed. Thus, AutoSholl provides 

advantages to trained and untrained observers performing Sholl analysis, since it is a fast, 

accurate, and reliable algorithm producing equivalent results as current software packages. 

Finally, this AutoSholl plugin would be an appropriate tool to extend the analyses performed 

in the original Sholl Analysis plugin in ImageJ (Ferreira et al., 2014).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• An open-source algorithm for analysis of morphometry and dendritic 

branching is presented

• Algorithm output performs similarly to output from human observers using 

existing analysis tools

• The algorithm is faster than human observers using other tools

• AutoSholl decreases investigator bias given that it is automated
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Figure 1. Schematic of algorithm workflow.
A simplified explanation of the algorithm workflow is presented. The user manually pre-

processes the input image into a ‘thresholded’ binary image. This binary image is then used 

as the input for AutoSholl, which then returns the results of the analysis (termed output). 

The output shows the original image (A) followed by the ‘thresholded’ binary image (B). 
The local thickness heat map (darker colors correspond to smaller thicknesses) (C) is 

overlaid onto the original image (D) for comparison. The optimal skeleton is presented (E) 
and is overlaid onto the original image (F). The tagged skeleton is shown with branch points 

labeled in purple and all dendrites in orange (G). Overlaid images are not part of the 

algorithm output, but are presented here to allow for visual confirmation of results. This 
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figure was enhanced with Photoshop for better visualization purposes by enhancing the color 

levels within the linear range.
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Figure 2. Algorithm outputs for a complex dendritic field.
The thresholding process was previously performed, since the input image is a Drosophila 

neuron sample, provided with the Sholl Analysis plugin found in the standard distribution of 

Fiji ImageJ (Schindelin et al., 2012; Ferreira et al., 2014). The output shows the 

‘thresholded’ binary image (A). The local thickness heat map (darker colors correspond to 

smaller thicknesses) (B) and optimal skeleton is presented (C) for the sample image. The 

tagged skeleton is shown with branch points labeled in purple and all dendrites in orange 

(D). This figure was enhanced with Photoshop for better visualization purposes by 

enhancing the color levels within the linear range.
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Table 1.
Example 2D neuronal Sholl output.

Classification of a dendrite as primary, intermediate, or terminal, independent of user tracing, is not currently 

supported in ImageJ. Analyses were performed on the input image presented in Figure 1. (V1x, V1y, V1z) and 

(V2x, V2y, V2z) are the (x, y, z) position of the starting and ending voxel of each branch, respectively. Branch 

length and thickness are in microns. Branch (Dendrite) Type: TER – terminal, INT – intermediate, PRI – 

primary.

Skeleton 
ID

Branch 
Length V1x V1y V1z V2x V2y V2z

Branch 
Type

Euclidean 
Distance

Running 
Avg. 

Length
Max 

Thickness
Avg. 

Thickness
Avg. 

Intensity

1 1 4.423 5.958 7.281 0 6.198 4.125 0 TER 3.165 4.197 7 2.434 255

2 1 3.63 7.302 8.312 0 7.146 5.188 0 TER 3.129 3.451 4 2.395 255

3 1 3.453 9.104 7.271 0 7.135 4.719 0 TER 3.223 3.306 9.22 3.849 255

4 1 2.558 1.542 3.51 0 3.677 3.885 0 TER 2.168 2.4 4 2.306 255

5 1 2.471 5.125 5.875 0 7 4.51 0 TER 2.319 2.352 18.682 2.858 255

6 1 2.174 7.073 2.302 0 6.719 4.208 0 TER 1.939 2.041 11.402 2.917 255

7 1 2.058 3.677 3.885 0 5.552 3.542 0 INT 1.906 1.922 5.831 3.904 255

8 1 1.871 4.771 2.031 0 5.552 3.542 0 TER 1.701 1.771 5.831 2.142 255

9 1 0.555 6.198 4.125 0 6.719 4.208 0 INT 0.527 0.499 11.402 8.084 255

10 1 0.533 3.385 4.292 0 3.677 3.885 0 TER 0.5 0.505 4 1.471 255

11 1 0.532 7.854 4.031 0 7.396 4.188 0 TER 0.484 0.497 2 1.225 255

12 1 0.527 7.688 4.417 0 7.208 4.385 0 TER 0.48 0.502 12 3.694 255

13 1 0.502 5.938 3.74 0 6.198 4.125 0 INT 0.465 0.456 7.071 6.12 255

14 1 0.467 5.552 3.542 0 5.938 3.74 0 INT 0.433 0.415 6.325 5.438 255

15 1 0.288 7.208 4.385 0 7.396 4.188 0 INT 0.273 0.273 12 5.982 255

16 1 0.287 6.927 4.052 0 6.833 4.292 0 TER 0.257 0.272 15.297 5.708 255

17 1 0.286 7.094 4.979 0 7.135 4.719 0 INT 0.264 0.242 9.22 4.288 255

18 1 0.285 5.979 3.49 0 5.938 3.74 0 TER 0.253 0.27 6.083 2.203 255

19 1 0.271 7 4.51 0 7.135 4.719 0 INT 0.248 0.241 18.682 12.058 255

20 1 0.242 6.833 4.292 0 7 4.458 0 PRI 0.236 0.229 25 21.332 255

21 1 0.239 7 4.458 0 7.208 4.385 0 PRI 0.221 0.201 23.537 16.295 255

22 1 0.23 7.094 4.979 0 7.146 5.188 0 INT 0.215 0.2 4.123 3.405 255

23 1 0.149 6.719 4.208 0 6.833 4.292 0 INT 0.142 0.105 15.297 14.318 255

24 1 0.107 7.24 5.219 0 7.146 5.188 0 TER 0.099 0.103 5 2.89 255

25 1 0.065 7.042 5.01 0 7.094 4.979 0 TER 0.061 0.066 4.123 2.198 255

26 1 0.061 7 4.458 0 7 4.51 0 PRI 0.052 0.036 23.537 21.235 255

27 1 0.056 7.406 4.135 0 7.396 4.188 0 TER 0.053 0.054 2 1.236 255
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Table 2.
Example 3D neuronal Sholl output.

Classification of a dendrite as primary, intermediate, or terminal, independent of user tracing, is not currently 

supported in ImageJ. Analyses were performed on a test 3D image (not shown). (V1x, V1y, V1z) and (V2x, 

V2y, V2z) are the (x, y, z) position of the starting and ending voxel of each branch, respectively. Branch length 

and thickness are in microns. Branch (Dendrite) Type: TER – terminal, INT – intermediate, PRI – primary.

Skeleton 
ID

Branch 
Length V1x V1y V1z V2x V2y V2z

Branch 
Type

Euclidean 
Distance

Running 
Avg. 

Length
Max 

Thickness
Avg. 

Thickness
Avg. 

Intensity

1 1 14.41344 214.08 261.44 28 225.28 255.04 11 INT 21.3401 13.0496 0.90496 0.58016 255

2 1 9.32544 202.56 271.04 35 209.92 267.2 30 INT 9.690986 8.14912 1.15392 0.64672 255

3 1 9.21568 189.44 283.2 13 195.2 277.12 32 INT 20.76401 8.35104 1.01184 0.6368 255

4 1 8.7632 167.04 302.4 66 173.44 297.6 78 TER 14.42221 8.21696 1.15392 0.62528 255

5 1 8.63072 183.68 288.32 27 189.44 283.2 31 INT 8.682857 6.5152 1.43104 0.88224 255

6 1 7.85792 231.36 250.56 2 236.8 246.08 32 INT 30.81662 6.50496 0.90496 0.49824 255

7 1 7.8032 178.88 293.12 8 183.68 288.32 31 INT 23.98083 6.81152 1.35776 0.88416 255

8 1 7.67072 209.92 267.2 21 214.08 261.44 21 INT 7.105153 5.98944 0.71552 0.50752 255

9 1 7.27296 281.6 214.4 36 287.68 211.52 36 PRI 6.727615 5.76128 0.64 0.41536 255

10 1 6.95296 197.44 274.56 46 202.56 271.04 37 PRI 10.9364 5.5104 1.01184 0.6528 255

11 1 6.5552 273.92 216.96 45 279.68 215.04 47 PRI 6.392496 5.6672 0.71552 0.47936 255

12 1 5.80544 174.72 296.64 3 178.88 293.12 9 INT 8.105307 5.05984 0.96 0.45472 255

13 1 5.78272 260.16 223.68 20 264.96 221.76 2 INT 18.72769 3.84768 0.64 0.41056 255

14 1 5.2752 255.68 226.24 38 259.2 223.36 46 PRI 9.202434 4.32896 0.64 0.44416 255

15 1 5.19456 243.52 235.84 44 247.36 233.92 47 PRI 5.237557 3.62752 0.64 0.50848 255

16 1 5.08768 225.28 255.04 40 228.8 252.16 48 PRI 9.202434 3.96832 0.96 0.68384 255

17 1 4.76768 228.8 252.16 44 230.08 249.28 36 PRI 8.598418 3.29312 0.96 0.55904 255

18 1 4.50272 266.24 220.8 38 269.76 218.88 49 PRI 11.70798 3.78944 0.64 0.4864 255

19 1 3.9952 240 241.28 40 242.56 238.72 41 PRI 3.755955 3.10688 0.64 0.51424 255

20 1 3.9952 242.56 238.72 1 243.52 235.84 25 INT 24.19124 3.03104 0.64 0.55328 255

21 1 3.6752 195.2 277.12 15 197.44 274.56 18 INT 4.535548 2.82944 0.96 0.56256 255

22 1 3.6752 251.84 229.44 1 254.4 227.2 11 INT 10.56273 2.76704 0.71552 0.6736 255

23 1 3.28384 236.8 246.08 15 238.72 243.52 24 INT 9.551963 1.35776 0.64 0.4176 255

24 1 2.95776 247.36 233.92 17 248 231.68 1 INT 16.16871 2.25632 0.64 0.4224 255

25 1 2.95776 270.72 219.2 34 273.28 218.24 9 INT 25.14906 1.6336 0.90496 0.5296 255

26 1 2.50496 292.48 209.28 73 290.24 209.92 64 TER 9.296623 2.2992 0.64 0.38464 255

27 1 2.45024 236.8 246.08 44 236.8 246.08 43 PRI 1 1.35776 0.45248 0.40832 255

28 1 2.39328 230.08 249.28 46 231.36 250.56 38 PRI 8.202244 1.35776 0.71552 0.45216 255

29 1 2.31776 260.48 221.76 52 260.16 223.68 72 TER 20.0945 2.19488 0.64 0.41056 255

30 1 2.26048 228.8 252.16 6 230.4 250.88 30 INT 24.08731 0.99776 0.96 0.69216 255

31 1 2.18496 241.6 243.52 72 239.68 242.88 58 TER 14.14553 2.0096 0.45248 0.34208 255

32 1 2.18496 279.68 215.04 28 281.6 214.4 32 INT 4.482856 1.01504 0.71552 0.45216 255
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Skeleton 
ID

Branch 
Length V1x V1y V1z V2x V2y V2z

Branch 
Type

Euclidean 
Distance

Running 
Avg. 

Length
Max 

Thickness
Avg. 

Thickness
Avg. 

Intensity

33 1 2.10432 183.68 286.4 71 183.68 288.32 65 TER 6.299714 2.15968 0.96 0.54624 255

34 1 1.99776 239.68 242.88 21 240 241.28 18 INT 3.415026 1.26272 0.64 0.46624 255

35 1 1.99776 250.24 230.4 20 251.84 229.44 33 INT 13.13323 1.42016 0.64 0.54624 255

36 1 1.86496 173.44 297.6 3 174.72 296.64 6 INT 3.4 0.97952 1.31936 1.07072 255

37 1 1.86496 254.4 227.2 34 255.68 226.24 19 INT 15.08509 0.99776 0.71552 0.57888 255

38 1 1.73248 211.52 266.88 66 209.92 267.2 46 TER 20.06645 1.78752 0.45248 0.38624 255

39 1 1.73248 288.96 210.56 11 290.24 209.92 8 INT 3.323853 1.29728 0.64 0.576 255

40 1 1.67776 264.96 221.76 7 266.24 220.8 29 INT 22.05811 0.90496 0.71552 0.6176 255

41 1 1.67776 249.28 231.68 33 250.24 230.4 35 INT 2.56125 0.45248 0.71552 0.65888 255

42 1 1.67552 230.08 249.28 31 230.4 250.88 20 INT 11.12036 0.64 0.71552 0.45216 255

44 1 1.54496 230.4 250.88 29 231.36 250.56 26 INT 3.16607 0.77248 0.45248 0.36416 255

45 1 1.54496 273.28 218.24 28 273.92 216.96 23 INT 5.200769 0.99776 0.90496 0.54624 255

46 1 1.488 232.64 251.2 74 231.36 250.56 73 TER 1.745852 1.39328 0.32 0.32 255

47 1 1.41248 260.48 224.96 60 260.16 223.68 66 TER 6.143354 1.41248 0.64 0.43328 255

48 1 1.35776 237.76 242.56 61 238.72 243.52 51 TER 10.09174 1.35776 0.64 0.43328 255

49 1 1.35776 264 220.8 57 264.96 221.76 44 TER 13.0707 1.35776 0.64 0.4 255

50 1 1.35776 279.36 214.08 59 279.68 215.04 65 TER 6.084735 1.35776 0.71552 0.45184 255

51 1 1.35552 229.12 250.88 77 228.8 252.16 56 TER 21.04141 1.35552 0.96 0.53344 255

52 1 1.28 248 231.68 2 249.28 231.68 26 INT 24.03411 0.32 0.64 0.47072 255

53 1 1.22496 196.16 277.76 43 195.2 277.12 45 TER 2.308939 1.22496 0.96 0.70944 255

54 1 1.22496 243.52 239.36 61 242.56 238.72 81 TER 20.03325 1.22496 0.64 0.42656 255

55 1 1.22496 238.72 243.52 18 239.68 242.88 5 INT 13.0511 0.90496 0.71552 0.61216 255

56 1 1.22496 172.48 296.96 62 173.44 297.6 50 TER 12.05534 1.0624 0.96 0.57888 255

57 1 1.22496 175.68 297.28 73 174.72 296.64 50 TER 23.02892 1.13024 0.96 0.53344 255

58 1 1.22496 182.72 287.68 70 183.68 288.32 76 TER 6.109926 1.0624 0.96 0.56 255

59 1 1.22496 188.8 282.24 61 189.44 283.2 46 TER 15.04431 1.0624 1.01184 0.57312 255

60 1 1.22496 203.2 272 57 202.56 271.04 81 TER 24.02772 1.0624 1.01184 0.75232 255

61 1 1.22496 252.48 230.4 65 251.84 229.44 69 TER 4.163076 1.13024 0.64 0.42656 255

62 1 1.22496 272.96 216.32 81 273.92 216.96 63 TER 18.03694 1.0624 0.32 0.32 255

63 1 1.168 288.64 212.16 74 287.68 211.52 49 TER 25.02661 1.168 0.32 0.32 255

64 1 1.09248 179.84 293.44 82 178.88 293.12 74 TER 8.063746 0.99776 0.45248 0.36416 255

65 1 1.09248 225.92 255.68 53 225.28 255.04 48 TER 5.08126 0.99776 0.90496 0.60352 255

66 1 1.09248 288.64 209.6 65 288.96 210.56 46 TER 19.02693 0.97728 0.64 0.4 255

67 1 1.09248 249.28 231.68 23 249.28 231.68 18 INT 5 0.77248 0.64 0.53344 255

68 1 1.09248 259.2 223.36 21 260.16 223.68 20 INT 1.422674 0.32 0.64 0.5776 255

69 1 1.09248 269.76 218.88 10 270.72 219.2 22 INT 12.04259 0.32 0.64 0.64 255

70 1 0.90496 265.6 220.16 47 266.24 220.8 67 TER 20.02047 0.90496 0.64 0.47072 255

71 1 0.90496 287.04 210.88 59 287.68 211.52 46 TER 13.03147 0.90496 0.32 0.32 255
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Skeleton 
ID

Branch 
Length V1x V1y V1z V2x V2y V2z

Branch 
Type

Euclidean 
Distance

Running 
Avg. 

Length
Max 

Thickness
Avg. 

Thickness
Avg. 

Intensity

72 1 0.77248 197.12 273.92 81 197.44 274.56 48 TER 33.00776 0.67776 0.64 0.42656 255

73 1 0.77248 213.76 260.8 49 214.08 261.44 84 TER 35.00731 0.67776 0.64 0.42656 255

74 1 0.77248 230.4 248.64 43 230.08 249.28 74 TER 31.00826 0.81024 0.71552 0.496 255

75 1 0.77248 249.92 229.76 49 250.24 230.4 66 TER 17.01505 0.67776 0.64 0.42656 255

76 1 0.77248 269.44 218.24 45 269.76 218.88 44 TER 1.229634 0.67776 0.64 0.42656 255

77 1 0.77248 271.04 219.84 68 270.72 219.2 69 TER 1.229634 0.77248 0.64 0.48 255

78 1 0.77248 273.6 218.88 65 273.28 218.24 49 TER 16.01599 0.67776 0.90496 0.72832 255

79 1 0.77248 281.92 215.04 44 281.6 214.4 81 TER 37.00692 0.77248 0.45248 0.38624 255

80 1 0.64 239.36 241.28 78 240 241.28 60 TER 18.01137 0.64 0.45248 0.36416 255

81 1 0.45248 255.36 225.92 71 255.68 226.24 70 TER 1.097634 0.45248 0.32 0.32 255

82 1 0.45248 258.88 223.04 73 259.2 223.36 56 TER 17.00602 0.45248 0.45248 0.38624 255

83 1 0.45248 289.92 209.6 78 290.24 209.92 72 TER 6.017042 0.45248 0.32 0.32 255

84 1 0.32 243.2 235.84 83 243.52 235.84 58 TER 25.00205 0.32 0.64 0.48 255

85 1 0.32 247.68 231.68 74 248 231.68 50 TER 24.00213 0.32 0.32 0.32 255
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Table 3.
AutoSholl outputs similar results as human observers, but requires less time.

Values represent mean ± SEM. Dendrite lengths are in microns. Image Count: n2D = 5, n3D = 7.

Observer A, Day 1 Observer A, Day 2 Observer B Algorithm

2D Data

Root Dendrite Count 3.4 ± 0.2191 3.2 ± 0.1788 3.6 ± 0.2191 3.4 ± 0.2191

Root Dendrite Length (μm) 34.1807 ± 12.9296 35.2384 ± 12.6224 33.1338 ± 12.3609 22.9979 ± 11.2710

Intermediate Dendrite Count 2 ± 1.3856 2.4 ± 1.5126 2.4 ± 1.7111 2 ± 1.5748

Intermediate Dendrite Length (μm) 4.0109 ± 2.3496 4.2164 ± 1.9798 9.0545 ± 2.5783 2.5870 ± 1.4982

Terminal Dendrite Count 7 ± 1.5811 7.25 ± 1.8268 7.5 ± 2.2913 8 ± 1.8708

Terminal Dendrite Length (μm) 30.7466 ± 6.1412 27.7633 ± 6.1114 35.4112 ± 4.3202 30.01749 ± 3.8029

Analysis Time (min) 22.4833 ± 2.4009 22.6433 ± 2.6852 23.8033 ± 2.1885 0.6233 ± 0.0498*

3D Data

Root Dendrite Count 8.4286 ± 1.0853 8.8571 ± 1.2194 8.4286 ± 1.1039 7.1429 ± 0.7403

Root Dendrite Length (μm) 6.4701 ± 0.8445 5.5941 ± 1.1697 5.2609 ± 1.0022 5.1681 ± 0.8709

Intermediate Dendrite Count 22.2857 ± 3.6181 21.2857 ± 4.4845 19.7143 ± 3.5669 20.1429 ± 3.3651

Intermediate Dendrite Length (μm) 4.0433 ± 0.5377 5.0214 ± 0.7517 4.5185 ± 0.5635 4.618 ± 0.6116

Terminal Dendrite Count 26.2857 ± 3.3728 24.7143 ± 2.9604 25.1429 ± 2.7362 24.7143 ± 3.3728

Terminal Dendrite Length (μm) 2.6478 ± 0.3114 2.7384 ± 0.3537 2.7363 ± 0.4445 2.3346 ± 0.4629

Analysis Time (min) 22.4264 ± 1.4904 24.7623 ± 1.7124 23.8888 ± 1.3271 12.2157 ± 0.6633*

*
indicates significant differences from observers (p < 0.01).
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