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Abstract

Visual knowledge bases such as Visual Genome power numerous applications in computer vision, 

including visual question answering and captioning, but suffer from sparse, incomplete 

relationships. All scene graph models to date are limited to training on a small set of visual 

relationships that have thousands of training labels each. Hiring human annotators is expensive, 

and using textual knowledge base completion methods are incompatible with visual data. In this 

paper, we introduce a semi-supervised method that assigns probabilistic relationship labels to a 

large number of unlabeled images using few’ labeled examples. We analyze visual relationships to 

suggest two types of image-agnostic features that are used to generate noisy heuristics, whose 

outputs are aggregated using a factor graph-based generative model. With as few as 10 labeled 

examples per relationship, the generative model creates enough training data to train any existing 

state-of-the-art scene graph model. We demonstrate that our method outperforms all baseline 

approaches on scene graph prediction by 5.16 recall@ 100 for PREDCLS. In our limited label 

setting, we define a complexity metric for relationships that serves as an indicator (R2 = 0.778) for 

conditions under which our method succeeds over transfer learning, the de-facto approach for 

training with limited labels.

1. Introduction

In an effort to formalize a structured representation for images, Visual Genome [27] defined 

scene graphs, a formalization similar to those widely used to represent knowledge bases 

[13, 18, 56]. Scene graphs encode objects (e.g. person, bike) as nodes connected via 

pairwise relationships (e.g., riding) as edges. This formalization has led to state-of-the-art 

models in image captioning [3], image retrieval [25,42], visual question answering [24], 

relationship modeling [26] and image generation [23]. However, all existing scene graph 

models ignore more than 98% of relationship categories that do not have sufficient labeled 

instances (see Figure 2) and instead focus on modeling the few relationships that have 

thousands of labels [31, 49, 54].

Hiring more human workers is an ineffective solution to labeling relationships because 

image annotation is so tedious that seemingly obvious labels are left unannotated. To 

complement human annotators, traditional text-based knowledge completion tasks have 

leveraged numerous semi-supervised or distant supervision approaches [6, 7, 17, 34], These 
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methods find syntactical or lexical patterns from a small labeled set to extract missing 

relationships from a large unlabeled set. In text, pattern-based methods are successful, as 

relationships in text are usually document-agnostic (e.g. <Tokyo - is capital of – Japan>). 

Visual relationships are often incidental: they depend on the contents of the particular image 

they appear in. Therefore, methods that rely on external knowledge or on patterns over 

concepts (e.g. most instances of dog next to frisbee are playing with it) do not generalize 

well. The inability to utilize the progress in text-based methods necessitates specialized 

methods for visual knowledge.

In this paper, we automatically generate missing relationships labels using a small, labeled 

dataset and use these generated labels to train downstream scene graph models (see Figure 

1). We begin by exploring how to define image-agnostic features for relationships so they 

follow patterns across images. For example, eat usually consists of one object consuming 

another object smaller than itself, whereas look often consists of common objects: phone, 

laptop, or window (see Figure 3). These rules are not dependent on raw pixel values; they 

can be derived from image-agnostic features like object categories and relative spatial 

positions between objects in a relationship. While such rules are simple, their capacity to 

provide supervision for unannotated relationships has been unexplored. While image-

agnostic features can characterize some visual relationships very well, they might fail to 

capture complex relationships with high variance. To quantify the efficacy of our image-

agnostic features, we define “subtypes” that measure spatial and categorical complexity 

(Section 3).

Based on our analysis, we propose a semi-supervised approach that leverages image-

agnostic features to label missing relationships using as few as 10 labeled instances of each 

relationship. We learn simple heuristics over these features and assign probabilistic labels to 

the unlabeled images using a generative model [39,46]. We evaluate our method’s labeling 

efficacy using the completely-labeled VRD dataset [31] and find that it achieves an FI score 

of 57.66, which is 11.84 points higher than other standard semi-supervised methods like 

label propagation [57]. To demonstrate the utility of our generated labels, we train a state-of-

the-art scene graph model [54] (see Figure 6) and modify its loss function to support 

probabilistic labels. Our approach achieves 47.53 recall@ 1001 for predicate classification 

on Visual Genome, improving over the same model trained using only labeled instances by 

40.97 points. For scene graph detection, our approach achieves within 8.65 recall@ 100 of 

the same model trained on the original Visual Genome dataset with 108 × more labeled data. 

We end by comparing our approach to transfer learning, the de-facto choice for learning 

from limited labels. We find that our approach improves by 5.16 recall@ 100 for predicate 

classification, especially for relationships with high complexity, as it generalizes well to 

unlabeled subtypes.

Our contributions are three-fold. (1) We introduce the first method to complete visual 

knowledge bases by finding missing visual relationships (Section 5.1). (2) We show the 

utility of our generated labels in training existing scene graph prediction models (Section 

5.2). (3) We introduce a metric to characterize the complexity of visual relationships and 

1Recall@K is a standard measure for scene graph prediction [31].
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show it is a strong indicator (R2 = 0.778) for our semi-supervised method’s improvements 

over transfer learning (Section 5.3).

2. Related work

Textual knowledge bases were originally hand-curated by experts to structure facts [4,5,44] 

(e.g. <Tokyo - capital of – Japan>). To scale dataset curation efforts, recent approaches mine 

knowledge from the web [9] or hire non-expert annotators to manually curate knowledge [5, 

47]. In semi-supervised solutions, a small amount of labeled text is used to extract and 

exploit patterns in unlabeled sentences [2, 21, 33–35, 37]. Unfortunately, such approaches 

cannot be directly applied to visual relationships; textual relations can often be captured by 

external knowledge or patterns, while visual relationships are often local to an image.

Visual relationships have been studied as spatial priors [14, 16], co-occurrences [51], 

language statistics [28, 31, 53], and within entity contexts [29]. Scene graph prediction 

models have dealt with the difficulty of learning from incomplete knowledge, as recent 

methods utilize statistical motifs [54] or object-relationship dependencies [30, 49, 50, 55]. 

All these methods limit their inference to the top 50 most frequently occurring predicate 

categories and ignore those without enough labeled examples (Figure 2).

The de-facto solution for limited label problems is transfer learning [15, 52], which 

requires that the source domain used for pre-training follows a similar distribution as the 

target domain. In our setting, the source domain is a dataset of frequently-labeled 

relationships with thousands of examples [30, 49, 50, 55], and the target domain is a set of 

limited label relationships. Despite similar objects in source and target domains, we find that 

transfer learning has difficulty generalizing to new relationships. Our method does not rely 

on availability of a larger, labeled set of relationships; instead, we use a small labeled set to 

annotate the unlabeled set of images.

To address the issue of gathering enough training labels for machine learning models, data 
programming has emerged as a popular paradigm. This approach learns to model imperfect 

labeling sources in order to assign training labels to unlabeled data. Imperfect labeling 

sources can come from crowdsourcing [10], user-defined heuristics [8, 43], multi-instance 

learning [22, 40], and distant supervision [12, 32]. Often, these imperfect labeling sources 

take advantage of domain expertise from the user. In our case, imperfect labeling sources are 

automatically generated heuristics, which we aggregate to assign a final probabilistic label to 

every pair of object proposals.

3. Analyzing visual relationships

We define the formal terminology used in the rest of the paper and introduce the image-

agnostic features that our semi-supervised method relies on. Then, we seek quantitative 

insights into how visual relationships can be described by the properties between its objects. 

We ask (1) what image-agnostic features can characterize visual relationships? and (2) given 

limited labels, how well do our chosen features characterize the complexity of relationships? 

With these in mind, we motivate our model design to generate heuristics that do not overfit 

to the small amount of labeled data and assign accurate labels to the larger, unlabeled set.
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3.1 Terminology

A scene graph is a multi-graph G that consists of objects o as nodes and relationships r as 

edges. Each object oi = bi, ci  consists of a bounding box bi and its category ci ∈ ℂ where ℂ
is the set of all possible object categories (e.g. dog, frisbee). Relationships are denoted 

<subject predicate - object> or <o - p - o’>. p ∈ ℙ is a predicate, such as ride and eat. We 

assume that we have a small labeled set o, p, o′ ∈ Dp  of annotated relationships for each 

predicate p. Usually, these datasets are on the order of a 10 examples or fewer. For our semi-

supervised approach, we also assume that there exists a large set of images DU without any 

labeled relationships.

3.2 Defining image-agnostic features

It has become common in computer vision to utilize pretrained convolutional neural 

networks to extract features that represent objects and visual relationships [31, 49, 50]. 

Models trained with these features have proven robust in the presence of enough training 

labels but tend to overfit when presented with limited data (Section 5). Consequently, an 

open question arises: what other features can we utilize to label relationships with limited 

data? Previous literature has combined deep learning features with extra information 

extracted from categorical object labels and relative spatial object locations [25, 31]. We 

define categorical features, < o, –, o’ >, as a concatenation of one-hot vectors of the subject 

o and object o’. We define spatial features as:

x − x′
w , y − y′

ℎ , (y + ℎ) − y′ + ℎ′
ℎ ,

(x + w) − x′ + w′
w , ℎ′

ℎ , w′
w , w′ℎ′

wℎ , w′ + ℎ′
w + ℎ

where b = [y, x, h, w] and b’ = [y’, x’, h’, w’] are the top-left bounding box coordinates and 

their widths and heights.

To explore how well spatial and categorical features can describe different visual 

relationships, we train a simple decision tree model for each relationship. We plot the 

importances for the top 4 spatial and categorical features in Figure 3. Relationships like fly 

place high importance on the difference in y-coordinate between the subject and object, 

capturing a characteristic spatial pattern, look, on the other hand, depends on the category of 

the objects (e.g. phone, laptop, window) and not on any spatial orientations.

3.3 Complexity of relationships

To understand the efficacy of image-agnostic features, we’d like to measure how well they 

can characterize the complexity of particular visual relationships. As seen in Figure 4, a 

visual relationship can be defined by a number of image-agnostic features (e.g. a person can 

ride a bike, or a dog can ride a surfboard). To systematically define this notion of 

complexity, we identify subtypes for each visual relationship. Each subtype captures one 

way that a relationship manifests in the dataset. For example, in Figure 4, ride contains one 

categorical subtype with <person - ride - bike> and another with <dog - ride - surfboard>. 

Similarly, a person might carry an object in different relative spatial orientations (e.g. on her 
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head, to her side). As shown in Figure 5, visual relationships might have significantly 

different degrees of spatial and categorical complexity, and therefore a different number of 

subtypes for each. To compute spatial subtypes, we perform mean shift clustering [11] over 

the spatial features extracted from all the relationships in Visual Genome. To compute the 

categorical subtypes, we count the number of unique object categories associated with a 

relationship.

With access to 10 or fewer labeled instances for these visual relationships, it is impossible to 

capture all the subtypes for given relationship and therefore difficult to learn a good 

representation for the relationship as a whole. Consequently, we turn to the rules extracted 

from image-agnostic features and use them to assign labels to the unlabeled data in order to 

capture a larger proportion of subtypes in each visual relationship. We posit that this will be 

advantageous over methods that only use the small labeled set to train a scene graph 

prediction model, especially for relationships with high complexity, or a large number of 

subtypes. In Section 5.3, we find a correlation between our definition of complexity and the 

performance of our method.

4. Approach

We aim to automatically generate labels for missing visual relationships that can be then 

used to train any downstream scene graph prediction model. We assume that in the long-tail 

of infrequent relationships, we have a small labeled set o, p, o′ ∈ Dp  of annotated 

relationships for each predicate p (often, on the order of a 10 examples or less). As discussed 

in Section 3, we want to leverage image-agnostic features to learn rules that annotate 

unlabeled relationships.

Our approach assigns probabilistic labels to a set DU of un-annotated images in three steps: 

(1) we extract image-agnostic features from the objects in the labeled Dp and from the object 

proposals extracted using an existing object detector [19] on unlabeled DU (2) we generate 

heuristics over the image-agnostic features, and finally (3) we use a factor-graph based 

generative model to aggregate and assign probabilistic labels to the unlabeled object pairs in 

DU. These probabilistic labels, along with Dp, are used to train any scene graph prediction 

model. We describe our approach in Algorithm 1 and show the end-to-end pipeline in Figure 

6.

Algorithm 1 Semi-supervised Alg. to Label Relationships

  1: INPUT: o, p, o′ ∈ Dp ∀p ∈ ℙ − A small dataset of object pairs (o, o’) with multi-class labels for 

predicates.

  2: INPUT: o, o′ ∈ DU − A A large unlabeled dataset of images with objects but no relationship labels.

  3: INPUT: f (·,·) — A function that extracts features from a pair of objects.

  4: INPUT: DT(·) — A decision tree.

  5: INPUT: G (·) — A generative model that assigns probabilistic labels given multiple labels for each datapoint

  6: INPUT: train(·) — Function used to train a scene graph detection model.
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  7: Extract features and labels, 
Xp, Y p: = f o, o′ , p for o, p, o′ ∈ Dp , XU : = (f o, o′ for o, o′ ∈ DU

  8: Generate heuristics by fitting J decision trees DTfit Xp

  9: Assign labels to o, o′ ∈ DU, Λ = DTpredict XU  for J decision trees.

10: Learn generative model G(Λ) and assign probabilistic labels Y U : = G(Λ)

11: Train scene graph model, SGM := train Dp + DU, Y p + Y U
12: OUTPUT: SGM(·)

Feature extraction:

Our approach uses the image-agnostic features defined in Section 3, which rely on object 

bounding box and category labels. The features are extracted from ground truth objects in 

Dp or from object detection outputs in DU by running existing object detection models [19].

Heuristic generation:

We fit decision trees over the labeled relationships’ spatial and categorical features to 

capture image-agnostic rules that define a relationship. These image-agnostic rules are 

threshold-based conditions that are automatically defined by the decision tree. To limit the 

complexity of these heuristics and thereby prevent overfitting, we use shallow decision trees 

[38] with different restrictions on depth over each feature set to produce J different decision 

trees. We then predict labels for the unlabeled set using these heuristics, producing a 

Λ ∈ ℝJ × DU  matrix of predictions for the unlabeled relationships.

Moreover, we only use these heuristics when they have high confidence about their label; we 

modify Λ by converting any predicted label with confidence less than a threshold 

(empirically chosen to be 2 × random) to an abstain, or no label assignment. An example of 

a heuristic is shown in Figure 6: if the subject is above the object, it assigns a positive label 

for the predicate carry.

Generative model:

These heuristics, individually, are noisy and may not assign labels to all object pairs in DU. 

As a result, we aggregate the labels from all J heuristics. To do so, we leverage a factor 

graph-based generative model popular in text-based weak supervision techniques [1, 39, 41, 

45, 48]. This model learns the accuracies of each heuristic to combine their individual labels; 

the model’s output is a probabilistic label for each object pair.

The generative model G uses the following distribution family to relate the latent variable 

Y ∈ ℝ DU , the true class, and the labels from the heuristics, Λ:

πϕ(Λ, Y ) = 1
Zϕ

exp ϕTΛY
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where Zϕ is a partition function to ensure π is normalized. The parameter ϕ ∈ ℝJ encodes 

the average accuracy of each heuristic and is estimated by maximizing the marginal 

likelihood of the observed heuristic Λ. The generative model assigns probabilistic labels by 

computing πϕ Y |Λ o, o′  for each object pair o, o′  in DU

Training scene graph model:

Finally, these probabilistic labels are used to train any scene graph prediction model. While 

scene graph models are usually trained using a cross-entropy loss [31, 49, 54], we modify 

this loss function to take into account errors in the training annotations. We adopt a noise-

aware empirical risk minimizer that is often seen in logistic regression as our loss function:

Lθ = EY π log 1 + exp −θTV TY

where θ is the learned parameters, π is the distribution learned by the generative model, Y is 

the true label, and V are features extracted by any scene graph prediction model.

5. Experiments

To test our semi-supervised approach for completing visual knowledge bases by annotating 

missing relationships, we perform a series of experiments and evaluate our framework in 

several stages. We start by discussing the datasets, baselines, and evaluation metrics used. 

(1) Our first experiment tests our generative model’s ability to find missing relationships in 

the completely-annotated VRD dataset [31]. (2) Our second experiment demonstrates the 

utility of our generated labels by using them to train a state-of-the-art scene graph model 

[54]. We compare our labels to those from the large Visual Genome dataset [27]. (3) Finally, 

to show that our semi-supervised method’s performance compared to strong baselines in 

limited label settings, we compare extensively to transfer learning; we focus on a subset of 

relationships with limited labels, allow the transfer learning model to pretrain on frequent 

relationships, and demonstrate that our semi-supervised method outperforms transfer 

learning, which has seen more data. Furthermore, we quantify when our method outperforms 

transfer learning using our metric for measuring relationship complexity (Section 3.3).

Eliminating synonyms and supersets.

Typically, past scene graph approaches have used 50 predicates from Visual Genome to 

study visual relationships. Unfortunately, these 50 treat synonyms like laying on and lying 

on as separate classes. To make matters worse, some predicates can be considered a superset 

of others (i.e. above is a superset of riding). Our method, as well as the baselines, is unable 

to differentiate between synonyms and supersets. For the experiments in this section, we 

eliminate all supersets and merge all synonyms, resulting in 20 unique predicates. In the 

Supplementary Material we include a list of these predicates and report our method’s 

performance on all 50 predicates.
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Dataset.

We use two standard datasets, VRD [31] and Visual Genome [27], to evaluate on tasks 

related to visual relationships or scene graphs. Each scene graph contains objects localized 

as bounding boxes in the image along with pairwise relationships connecting them, 

categorized as action (e.g., carry), possessive (e.g., wear), spatial (e.g., above), or 

comparative (e.g., taller than) descriptors. Visual Genome is a large visual knowledge base 

containing 108K images. Due to its scale, each scene graph is left with incomplete labels, 

making it difficult to measure the precision of our semi-supervised algorithm. VRD is a 

smaller but completely annotated dataset. To show the performance of our semi-supervised 

method, we measure our method’s generated labels on the VRD dataset (Section 5.1). Later, 

we show that the training labels produced can be used to train a large scale scene graph 

prediction model, evaluated on Visual Genome (Section 5.2).

Evaluation metrics.

We measure precision and recall of our generated labels on the VRD dataset’s test set 

(Section 5.1). To evaluate a scene graph model trained on our labels, we use three standard 

evaluation modes for scene graph prediction [31 ]: (i) scene graph detection (SGDET) which 

expects input images and predicts bounding box locations, object categories, and predicate 

labels, (ii) scene graph classification (SGCLS) which expects ground truth boxes and 

predicts object categories and predicate labels, and (iii) predicate classification (PREDCLS), 

which expects ground truth bounding boxes and object categories to predict predicate labels. 

We refer the reader to the paper that introduced these tasks for more details [31]. Finally, we 

explore how relationship complexity, measured using our definition of subtypes, is 

correlated with our model’s performance relative to transfer learning (Section 5.3).

Baselines.

We compare to alternative methods for generating training labels that can then be used to 

train downstream scene graph models, ORACLE is trained on all of Visual Genome, which 

amounts to 108× the quantity of labeled relationships in Dp; this serves as the upper bound 

for how well we expect to perform. DECISION TREE [38] fits a single decision tree over the 

image-agnostic features, learns from labeled examples in Dp, and assigns labels to DU LABEL 

PROPAGATION [57] employs a widely-used semi-supervised method and considers the 

distribution of image-agnostic features in DU before propagating labels from Dp to DU

We compare to a strong frequency baselines: (FREQ) uses the object counts as priors to make 

relationship predictions, and FREQ+OVERLAP increments such counts only if the bounding 

boxes of objects overlap. We include a TRANSFER LEARNING baseline, which is the de-facto 

choice for training models with limited data [15, 52], However, unlike all other methods, 

transfer learning requires a source dataset to pretrain. We treat the source domain as the 

remaining relationships from the top 50 in Visual Genome that do not overlap with our 

chosen relationships. We then fine tune with the limited labeled examples for the predicates 

in Dp. We note that TRANSFER LEARNING has an unfair advantage because there is overlap in 

objects between its source and target relationship sets. Our experiments will show that even 

with this advantage, our method performs better.
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Ablations.

We perform several ablation studies for the image-agnostic features and heuristic 

aggregation components of our model. (CATEG.) uses only categorical features, (SPAT.) uses 

only spatial features, (DEEP) uses only deep learning features extracted using ResNet50 [20] 

from the union of the object pair’s bounding boxes, (CATEG. + SPAT.) uses both categorical 

concatenated with spatial features, (CATEG. + SPAT. + DEEP) combines combines all three, and 

OURS (CATEG. + SPAT. + WORDVEC) includes word vectors as richer representations of the 

categorical features. (MAJORITY VOTE) uses the categorical and spatial features but 

replaces our generative model with a simple majority voting scheme to aggregate heuristic 

function outputs.

5.1 Labeling missing relationships

We evaluate our performance in annotating missing relationships in DU Before we use these 

labels to train scene graph prediction models, we report results comparing our method to 

baselines in Table 1. On the fully annotated VRD dataset [31], OURS (CATEG. + SPAT.) 

achieves 57.66 F1 given only 10 labeled examples, which is 17.41, 13.88, and 1.55 points 

better than Label Propagation, Decision Tree and Majority Vote, respectively.

Qualitative error analysis.—We visualize labels assigned by Ours in Figure 7 and find 

that they correspond to image-agnostic rules explored in Figure 3. In Figure 7(a), OURS 

predicts fly because it learns that fly typically involves objects that have a large difference in 

y-coordinate. In Figure 7(b), we correctly label look because phone is an important 

categorical feature. In some difficult cases, our semi-supervised model fails to generalize 

beyond the image-agnostic features. In Figure 7(c), we mislabel hang as sit by incorrectly 

relying on the categorical feature chair, which is one of sit’s important features. In Figure 

7(d), ride typically occurs directly above another object that is slightly larger and assumes 

<book - ride - shelf> instead of <book - sitting on - shelf>. In Figure 7(e), our model 

reasonably classifies <glasses cover - face>. However, sit exhibits the same semantic 

meaning as cover in this context, and our model incorrectly classifies the example.

5.2 Training Scene graph prediction models

We compare our method’s labels to those generated by the baselines described earlier by 

using them to train three scene graph specific tasks and report results in Table 2. We improve 

over all baselines, including our primary baseline, TRANSFER LEARNING, by 5.16 recall@100 

for PREDCLS.We also achieve within 8.65 recall@100 of ORACLE for SGDET. We generate 

higher quality training labels than DECISION TREE and LABEL PROPAGATION, leading to an 13.83 

and 22.12 recall@100 increase for PREDCLS.

Effect of labeled and unlabeled data.—In Figure 8 (left two graphs), we visualize how 

SGCLS and PREDCLS performance varies as we reduce the number of labeled examples from 

n = 250 to n = 100, 50, 25, 10. We observe greater advantages over TRANSFER LEARNING as n 

decreases, with an increase of 5.16 recall@100 PREDCLS when n = 10. This result matches 

our observations from Section 3 because a larger set of labeled examples gives TRANSFER 

LEARNING information about a larger proportion of subtypes for each relationship. in Figure 8 
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(right two graphs), we visualize our performance as the number of unlabeled data points 

increase, finding that we approach ORACLE performance with more unlabeled examples.

Ablations.—OURS (CATEG. + SPAT. + DEEP.) hurts performance by up to 7.51 recall@100 for 

PREDCLS because it overfits to image features while OURS (CATEG. + SPAT.) performs the best. We 

show improvements of 0.71 recall@100 for SGDET over OURS (MAJORITYVOTE), indicating that 

the generated heuristics indeed have different accuracies and should be weighted differently.

5.3 Transfer learning vs. semi-supervised learning

Inspired by the recent work comparing transfer learning and semi-supervised learning [36], 

we characterize when our method is preferred over transfer learning. Using the relationship 

complexity metric based on spatial and categorical subtypes of each predicate (Section 3), 

we show this trend in Figure 9. When the predicate has a high complexity (as measured by a 

high number of subtypes), OURS (CATEG. + SPAT.) outperforms TRANSFER LEARNING (Figure 9, 

left), with correlation co-efficient R2 = 0.778. We also evaluate how the number of subtypes 

in the unlabeled set (DU) affects the performance of our model (Figure 9, center). We find a 

strong correlation (R2 = 0.745); our method can effectively assign labels to unlabeled 

relationships with a large number of subtypes. We also compare the difference in 

performance to the proportion of subtypes captured in the labeled set (Figure 9, right). As 

we hypothesized earlier, TRANSFER LEARNING suffers in cases when the labeled set only 

captures a small portion of the relationship’s subtypes. This trend (R2 = 0.701) explains how 

OURS (CATEG. + SPAT.) performs better when given a small portion of labeled subtypes.

6. Conclusion

We introduce the first method that completes visual knowledge bases like Visual Genome by 

finding missing visual relationships. We define categorical and spatial features as image-

agnostic features and introduce a factor-graph based generative model that uses these 

features to assign probabilistic labels to unlabeled images. Our method outperforms 

baselines in F1 score when finding missing relationships in the complete VRD dataset. Our 

labels can also be used to train scene graph prediction models with minor modifications to 

their loss function to accept probabilistic labels. We outperform transfer learning and other 

baselines and come close to oracle performance of the same model trained on a fraction of 

labeled data. Finally, we introduce a metric to characterize the complexity of visual 

relationships and show it is a strong indicator of how our semi-supervised method performs 

compared to such baselines.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Our semi-supervised method automatically generates probabilistic relationship labels to train 

any scene graph model.
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Figure 2. 
Visual relationships have a long tail (left) of infrequent relationships. Current models [49,54] 

only focus on the top 50 relationships (middle) in the Visual Genome dataset, which all have 

thousands of labeled instances. This ignores more than 98% of the relationships with few 

labeled instances (right, top/table).
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Figure 3. 
Relationships, such as fly, eat, and sit can be characterized effectively by their categorical (s 

and o refer to subject and object, respectively) or spatial features. Some relationships like fly 

rely heavily only on a few features — kites are often seen high up in the sky.
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Figure 4. 
We define the number of subtypes of a relationship as a measure of its complexity. Subtypes 

can be categorical — one subtype of ride can be expressed as <person - ride - bike> while 

another is <dog - ride - surfboard>. Subtypes can also be spatial—carry has a subtype with a 

small object carried to the side and another with a large object carried overhead.
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Figure 5. 
A subset of visual relationships with different levels of complexity as defined by spatial and 

categorical subtypes. In Section 5.3, we show how this measure is a good indicator of our 

semi-supervised method’s effectiveness compared to baselines like transfer learning.
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Figure 6. 
For a relationship (e.g., carry), we use image-agnostic features to automatically create 

heuristics and then use a generative model to assign probabilistic labels to a large unlabeled 

set of images. These labels can then be used to train any scene graph prediction model.
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Figure 7. 
(a) Heuristics based on spatial features help predict <man - fly - kite>. (b) Our model learns 

that look is highly correlated with phone, (c) We overfit to the importance of chair as a 

categorical feature for sit, and fail to identify hang as the correct relationship, (d) We overfit 

to the spatial positioning associated with ride, where objects are typically longer and directly 

underneath the subject, (e) Given our image-agnostic features, we produce a reasonable label 

for <glass - cover - f ace>. However, our model is incorrect, as two typically different 

predicates (sit and cover) share a semantic meaning in the context of <glasses - ? - f ace>.
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Figure 8. 
A scene graph model [54] trained using our labels outperforms both using TRANSFER 

LEARNING labels and using only the BASELINE labeled examples consistently across 

scene graph classification and predicate classification for different amounts of available 

labeled relationship instances. We also compare to ORACLE, which is trained with 108× 

more labeled data.
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Figure 9. 
Our method’s improvement over transfer learning (in terms of R@100 for predicate 

classification) is correlated to the number of subtypes in the train set (left), the number of 

subtypes in the unlabeled set (middle), and the proportion of subtypes in the labeled set 

(right).
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Table 1.

We validate our approach for labeling missing relationships using only n = 10 labeled examples by evaluating 

our probabilistic labels from our semi-supervised approach over the fully-annotated VRD using macro metrics 

dataset [31],

Model (n = 10) Prec. Recall F1 Acc.

RANDOM 5.00 5.00 5.00 5.00

DECISION TREE 46.79 35.32 40.25 36.92

LABEL PROPAGATION 76.48 32.71 45.82 12.85

OURS (MAJORITY VOTE) 55.01 57.26 56.11 40.04

OURS (CATEG. + SPAT.) 54.83 60.79 57.66 50.31

Proc IEEE Int Conf Comput Vis. Author manuscript; available in PMC 2020 March 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 25

Ta
b

le
 2

.

R
es

ul
ts

 f
or

 s
ce

ne
 g

ra
ph

 p
re

di
ct

io
n 

ta
sk

s 
w

ith
 n

 =
 1

0 
la

be
le

d 
ex

am
pl

es
 p

er
 p

re
di

ca
te

, r
ep

or
te

d 
as

 r
ec

al
l @

K
. A

 s
ta

te
-o

f-
th

e-
ar

t s
ce

ne
 g

ra
ph

 m
od

el
 tr

ai
ne

d 

on
 la

be
ls

 f
ro

m
 o

ur
 m

et
ho

d 
ou

tp
er

fo
rm

s 
th

os
e 

tr
ai

ne
d 

w
ith

 la
be

ls
 g

en
er

at
ed

 b
y 

ot
he

r 
ba

se
lin

es
, l

ik
e 

tr
an

sf
er

 le
ar

ni
ng

.

Sc
en

e 
G

ra
ph

 D
et

ec
ti

on
Sc

en
e 

G
ra

ph
 C

la
ss

if
ic

at
io

n
P

re
di

ca
te

 C
la

ss
if

ic
at

io
n

M
od

el
R

@
20

R
@

50
R

@
10

0
R

@
20

R
@

50
R

@
10

0
R

@
20

R
@

50
R

@
10

0

B
as

el
in

es

B
A

SE
L

IN
E

 [
n 

=
 1

0]
0.

00
0.

00
0.

00
0.

04
0.

04
0.

04
3.

17
5.

30
6.

61

FR
E

Q
9.

01
11

.0
1

11
.6

4
11

.1
0

11
.0

8
10

.9
2

20
.9

8
20

.9
8

20
.8

0

FR
E

Q
+

O
V

E
R

L
A

P
10

.1
6

10
.8

4
10

.8
6

9.
90

9.
91

9.
91

20
.3

9
20

.9
0

22
.2

1

T
R

A
N

SF
E

R
 L

E
A

R
N

IN
G

11
.9

9
14

.4
0

16
.4

8
17

.1
0

17
.9

1
18

.1
6

39
.6

9
41

.6
5

42
.3

7

D
E

C
IS

IO
N

 T
R

E
E

 [
38

]
11

.1
1

12
.5

8
13

.2
3

14
.0

2
14

.5
1

14
.5

7
31

.7
5

33
.0

2
33

.3
5

L
A

B
E

L
 P

R
O

PA
G

A
T

IO
N

 [
57

]
6.

48
6.

74
6.

83
9.

67
9.

91
9.

97
24

.2
8

25
.1

7
25

.4
1

A
bl

at
io

ns

O
U

R
S 

(D
E

E
P)

2.
97

3.
20

3.
33

10
.4

4
10

.7
7

10
.8

4
23

.1
6

23
.9

3
24

.1
7

O
U

R
S 

(S
PA

T.
)

3.
26

3.
20

2.
91

10
.9

8
11

.2
8

11
.3

7
26

.2
3

27
.1

0
27

.2
6

O
U

R
S 

(C
A

T
E

G
.)

7.
57

7.
92

8.
04

20
.8

3
21

.4
4

21
.5

7
43

.4
9

44
.9

3
45

.5
0

O
U

R
S 

(C
A

T
E

G
. +

 S
PA

T.
 +

 D
E

E
P)

7.
33

7.
70

7.
79

17
.0

3
17

.3
5

17
.3

9
38

.9
0

39
.8

7
40

.0
2

O
U

R
S 

(C
A

T
E

G
. +

 S
PA

T.
 +

 W
O

R
D

V
E

C
)

8.
43

9.
04

9.
27

20
.3

9
20

.9
0

21
.2

1
45

.1
5

46
.8

2
47

.3
2

O
U

R
S 

(M
A

JO
R

IT
Y

 V
O

T
E

)
16

.8
6

18
.3

1
18

.5
7

18
.9

6
19

.5
7

19
.6

6
44

.1
8

45
.9

9
46

.6
3

O
U

R
S 

(C
A

T
E

G
. +

 S
PA

T.
)

17
.6

7
18

.6
9

19
.2

8
20

.9
1

21
.3

4
21

.4
4

45
.4

9
47

.0
4

47
.5

3

O
R

A
C

L
E

 [
n O

R
A

C
L

E
 =

 1
08

n]
24

.4
2

29
.6

7
30

.1
5

30
.1

5
30

.8
9

31
.0

9
69

.2
3

71
.4

0
72

.1
5

Proc IEEE Int Conf Comput Vis. Author manuscript; available in PMC 2020 March 26.


	Abstract
	Introduction
	Related work
	Analyzing visual relationships
	Terminology
	Defining image-agnostic features
	Complexity of relationships

	Approach
	Table T3
	Feature extraction:
	Heuristic generation:
	Generative model:
	Training scene graph model:

	Experiments
	Eliminating synonyms and supersets.
	Dataset.
	Evaluation metrics.
	Baselines.
	Ablations.
	Labeling missing relationships
	Qualitative error analysis.

	Training Scene graph prediction models
	Effect of labeled and unlabeled data.
	Ablations.

	Transfer learning vs. semi-supervised learning

	Conclusion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Figure 9.
	Table 1.
	Table 2.

