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Abstract

Automatic segmentation of vascular network is a critical step in quantitatively characterizing 

vessel remodeling in retinal images and other tissues. We proposed a deep learning architecture 

consists of 14 layers to extract blood vessels in fundoscopy images for the popular standard 

datasets DRIVE and STARE. Experimental results show that our CNN characterized by superior 

identifying for the foreground vessel regions. It produces results with sensitivity higher by 10% 

than other methods when trained by the same data set and more than 1% with cross training 

(trained on DRIVE, tested with STARE and vice versa ) . Further, our results have better accuracy 

> 0.95% compared to state of the art algorithms.

I. INTRODUCTION

Segmentation and quantification of the vascular tree in retinal images is substantial for 

diagnosing some serious diseases such as diabetic, glaucoma, macular degeneration and 

hypertension. Early diagnosis for those diseases can decrease the risk of blindness and 

vision loss. Manual segmentation is tedious, time and effort consuming as it needs 

experienced specialists to manually annotate the vessel. Recently, many automated 

algorithms and methods for thin structure segmentation have been proposed in the literature. 

These algorithms can fit in to two categories, either supervised or unsupervised. In 

supervised algorithms [1]–[9], a training set with the corresponding ground truth enables the 

classifier to learn the rules in how to discriminate between the foreground versus 

background. Whereas unsupervised algorithms [10]–[19] depends upon other techniques 

such as applying filters, tracking and model-based approaches without the need to labeled 

data. Challenges in those images such as contrast variation, illumination artifacts, irregular 

optic disk, curvy thin vessels and central reflux make vascular tree extraction as a vital and 

challenged problem to researchers. Recently deep learning networks provide the state of the 

art results in terms of segmentation and classification, however, the limited number of 

annotated data in biomedical application still considered as a bottleneck for these types of 

1 http://www.isi.uu.nl/Research/Databases/DRIVE/, 2004.

2 http://grantome.com/grant/NIH/R01-LM005759–07A1
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problems. Regardless of that, there are some papers in the literature [8], [9], [20] that give a 

promising results compared to traditional methods.

Rest of the paper is organized as follows. Section II describes our proposed CNN 

architecture and the details for training and testing, Section III describe the datasets and the 

evaluation methods, Section IV provides detailed experimental results on retinal imagery of 

DRIVE and STARE data sets, and finally conclusions in Section V.

II. CONVOLUTIONAL NEURAL NETWORK(CNN) FOR RETINAL IMAGES

Traditional hand-crafted features and matched filtered techniques may fail to obtain an 

accurate detection for the vascular tree especially for the tiny vessels located within high 

contrast variations. Deep learning has been very famous in solving problems. CNN 

composed of a set of hidden layers (convolution, ReLU and pooling) that accept the image 

as input and produce confidence map as output. Stochastic gradient descent (SGD) with 

back propagation mostly used to update the parameters. Convolution followed by ReLU and 

pooling enables the network to find a suitable set of features that efficiently characterize any 

dataset. Forward and back propagation for several epochs is enough to learn the high 

representation of the objects in the image.

A. Proposed CNN architecture

The proposed CNN architecture built on top of MatConvNet [21]. The linear structure of the 

vessels doesn’t require a very deep network since the higher representation of the vessels 

will ultimately vanished. Also, narrow network with small number of layers is not enough to 

capture and produce efficient feature maps to represent the vessels. This network has been 

designed after extensive trials for different configurations. We haven’t begun designing the 

network from scratch such as [8] in which they built a narrow network with just 3 hidden 

layers or [9] who has different configurations designed from scratch. We began our network 

trials with a model designed for mnist digits classification in MatConvNet since vessels have 

similar linear structures. Then we tuned the parameters and add layer by layer until we get 

best accuracy. Our network consists of 9 convolution layers, 3 ReLU, 2 pooling and one 

softmax layer to discriminate between classes. Figure 1 visualize the network. Our CNN 

accepts patches with size 32 × 32 as input, filters are convolved with the input image to 

produce feature maps, filter size begins with 5×5 and then dimension decreases to 3×3 in the 

last layers. The last two layers are fully connected layers to produce the probability map to 

identify the pixels or patches as vessels versus no vessels.

B. Training and testing using our CNN

Machine learning algorithms need to be trained first to learn the weights that identify the 

classes. Vessels have just two classes, foreground (vessel) and background (non-vessel). The 

network has been learned using sets of patches extracted from our input images. The 

extracted patches have dimension equal to 32×32 from the second channel. The green 

channel usually has most of the valuable information in terms of color and structure. Also 

using just one channel significantly increases the speed of the training process. After training 

the model with specific number of epochs with min-batch SGD, the weights will be 
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optimized to recognize the vessels. In testing phase, the network tested with totally different 

set of images by two procedures:

1. Testing with overlapping patches: Overlapping patches are extracted from the 

image to be tested on the network. The trained CNN will decide whether the 

patch is vessel or non-vessel. This procedure will produce a smooth linear 

structure since each patch correspond to one pixel in the output image, however, 

it is computationally expensive, It takes about 15 minutes to segment the whole 

image.

2. Testing the full image: The green channel of the full image becomes the input to 

the network, decrease in size layer by layer until the end of the model. 

Ultimately, up-sampling is used to return the image to its original size with FG 

vs BG pixel based classification. This approach is very fast and needs just one 

second to predict the whole image, whoever, it is less precise.

III. DATA SET AND EVALUATION METHODS

The experiments were performed on two publicly famous data sets: DRIVE and STARE. 

DRIVE1 stands for Digital Retinal Images for Vessel Extraction which consists of 20 images 

for training and different 20 for testing. STARE data set stands for STructured Analysis of 

the Retina2 consists of 20 images for both training and testing. We evaluated our results 

using the standard metrics that usually used for evaluation: Sensitivity(Se), Specificity(Sp) 

and Accuracy(Acc).

Sensitivity = TP
TP + FN , Specificity = TN

TN + FP ,

Accuracy = TP + TN
TP + FP + FN + TN

where TP stands for true positive, TN for true negative, FP for false positive and FN for false 

negative.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The experiments performed on retinal images for both DIRVE and STARE data sets. 

Weights were initialized randomly, updated iteratively by SGD and back propagation with 

min-batch equal to 100 for 24 epochs. Further, we trained the network with approximately 

equal number of positive and negative cases to prevent the classifier to be biased to one of 

the classes. In the training phase, patches are extracted from the input images with stride 

equal to 1 and 12 for foreground and background respectively, see figure 3 for better 

visualization. Any patch considered as a vessel if it passes through the center of the patch, 

see figure 2. In case of DRIVE data set, the training set is constructed using the 20 images 

available for training. The dimension for each image is 565×584 that form a training set 

consists of 1121951 patches. For the STARE data set, Leave one out cross validation has 

been used to train the network. In each experiment, 19 images are used for training and 1 for 

testing, the dimension of each image is 605×700 corresponds to 1304940 observations. 
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Table I summarizes the data base statistics used to train our model. Table II compares 

overlapping image patches versus full image segmentation with postprocessing (P) and 

thinning (T). Further, it compares testing the data of DRIVE using the trained model of 

STARE data set and vice versa to show how our model is robust toward capturing the vessels 

even with different data set. There are six experiments related to the two procedures 

discussed in II-B. In the first three experiments, overlapping patches from the images are 

considered as input. The first set of results indicated by (Overlap patch) are the predicted 

results without any post processing, the second set (Overlap patch + P) after morphological 

cleaning for spurious results using structural element equal to 100. The third experiment 

(Overlap patch + P + T) is with thinning. In the second set of experiments, we applied the 

learned filter coefficients on the full image as input, dimension decreases layer by layer to 

produce probability map with dimension 142×147 and 152×176 for DRIVE and STARE 

respectively. Up-sampling is used to return the image to it’s original size. From table II, the 

set of values with the highest accuracy considered as final results to compare with other 

algorithms in the literature. In tables III and IV, we observe that our algorithm characterized 

by its robust detection which outperform other state of the art methods. In the two data sets, 

sensitivity is 0.8789 and 0.8600 which is approximately 10% higher than other algorithms in 

the literature. additionally, our algorithm produces better accuracy in both data sets with 

comparable specificity. Also it is interesting to see that our CNN results has higher 

sensitivity and accuracy even with cross training which make the network to be considered 

as a promising architecture that can be used to segment other similar data sets.

V.  CONCLUSIONS

We proposed a CNN configuration that can extract the vascular tree in retinal images. Our 

network characterized by it’s robust detection toward capturing the small vessels. It 

produces significantly better segmentation results in sensitivity (> 0.86) and accuracy (> 
0.95) compared to the state of the art algorithms in the literature. Further, it is a robust 

network even with cross training as there is only (8%) difference in sensitivity compared to 

normal training. Our promising results can then be quantified to recognize the 

morphological attributes of blood vessels.
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Fig. 1. 
The proposed CNN configuration: numbers at the top represent the dimension of the patch, 

numbers at the bottom represent feature maps dimension, layers are either convolution, 

pooling or ReLU, filter size is (5×5) for the first 7 layers, (3×3) for the next 5 layers and the 

last two layers are fully connected, output is either F (foreground) or G (background).
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Fig. 2. 
Examples of positive cases (left), and negative cases (right), the patch considered foreground 

if the vessel pass across the center of the patch
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Fig. 3. 
Visualization of the trained patches, green dots represent positive cases, red dots represent 

negative cases: (a) image with id#01 in DRIVE dataset superimposed on the corresponding 

GT with overlapping foreground pixels equal to 24658 and background patches equal to 

27964 with stride equal to 12 instead of 77059 when stride equal 1, (b) image number id#82 

in the STARE data set superimposed on the GT with overlapping foreground pixels equal to 

33310 and background patches equal to 35710 with stride equal to 12 instead of 392804 

with overlapping patches
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Fig. 4. 
Our patch-based deep learning segmentation obtains robust results when applied directly to 

retinal images for DRIVE and STARE dataset, first row represents the raw images with ids 

(#01, #11, #14, #0005, #0162, #0255) , second row represents the ground truth and our 

robust prediction is shown in the third row. red are missing (false negative) and blue are 

extra regions (false positive) compared to ground truth
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TABLE I.

EXPERIMENT STATISTICS

Data set DRIVE STARE

Dimention 565×584 605×700

Training scheme train 20, test 20 Leave one out

Total no of patches 1,121,951 1,304,940

FG BG FG BG

Patches no. 569,615 552,336 625,808 679,132

Stride 1 12 1 12

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2020 March 26.
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TABLE II.

PERFORMANCE RESULTS USING THE PROPOSED CNN, COMPARING OVERLAPPING IMAGE 

PATCHES VERSUS FULL IMAGE SEGMENTATION WITH POSTPROCESSING (P) AND THINNING 

(T) TO REFINE VESSEL BOUNDARIES, FOR BOTH DRIVE AND STARE.

{Dataset} Training DRIVE Testing 
DRIVE

Training DRIVE Testing 
STARE

Training STARE Testing 
STARE

Training STARE Testing 
DRIVE

Evaluation Se Sp Acc Se Sp Acc Se Sp Acc Se Sp Acc

Overlap 
patch

0.9128 0.9463 0.9432 0.9094 0.9325 0.9309 0.9824 0.9197 0.9246 0.8307 0.9598 0.9483

Overlap 
patch + P

0.8981 0.9563 0.9510 0.9056 0.9407 0.9382 0.9801 0.9377 0.9411 0.8098 0.9683 0.9542

Overlap 
patch + P + 
T

0.8789 0.9606 0.9533 0.7841 0.9749 0.9606 0.8600 0.9754 0.9667 0.7953 0.9708 0.9552

Full Image 0.7522 0.9446 0.9276 0.7539 0.9257 0.9136 0.8346 0.8999 0.8949 0.6559 0.9253 0.9016

Full Image 
+ P

0.7300 0.9499 0.9306 0.7273 0.9397 0.9247 0.8196 0.9221 0.9142 0.5927 0.9541 0.9224

Full Image 
+ P + T

0.6105 0.9719 0.9402 0.6167 0.9656 0.9401 0.6667 0.9319 0.9538 0.5806 0.9562 0.9233
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TABLE III.

COMPARISON WITH STATE OF THE ART METHODS ON DRIVE

No Methods Year Se Sp Acc

1 Zana [11] 2001 0.6971 N.A 0.9377

2 Jiang [12] 2003 N.A N.A 0.9212

3 Niemeijer [1] 2004 N.A N.A 0.9416

4 Staal [3] 2004 N.A N.A 0.9441

5 Mendonca [13] 2006 0.7344 0.9764 0.9452

6 Soares [2] 2006 0.7332 0.9782 0.9461

8 Al-Diri [14] 2009 0.7282 0.9551 N.A

9 Lam [15] 2010 N.A N.A 0.9472

10 Miri [16] 2011 0.7352 0.9795 0.9458

11 Fraz [17] 2011 0.7152 0.9759 0.9430

12 You [18] 2011 0.7410 0.9751 0.9434

13 Marin [5] 2011 0.7067 0.9801 0.9452

14 Fraz [6] 2012 0.7406 0.9807 0.9480

15 Cheng [7] 2014 0.7252 0.9798 0.9474

16 Azzopardi [19] 2015 0.7655 0.9704 0.9442

17 Li [8] 2016 0.7569 0.9816* 0.9527

18 Liskowski [9] 2016 0.7763 0.9768 0.9495

19 Zhang [10] 2016 0.7743 0.9725 0.9476

20 Ours 2018 0.8789* 0.9606 0.9533

21 Ours (Cross trained) 2018 0.7953 0.9708 0.9552*

*
. WITH BOLD DENOTE THE BEST VALUE, ONLY BOLD REFER TO THE SECOND BEST VALUE IN COMPARISON
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TABLE IV.

COMPARISON WITH STATE OF THE ART METHODS ON STARE.

No Methods Year Se Sp Acc

1 Hoover [22] 2000 0.6747 0.9565 0.9264

2 Jiang [12] 2003 N.A N.A 0.9009

3 Staal [3] 2004 N.A N.A 0.9516

4 Mendonca [13] 2006 0.6996 0.9730 0.9440

5 Soares [2] 2006 0.7207 0.9747 0.9479

6 Ricci [4] 2007 N.A N.A 0.9584

7 Al-Diri [14] 2009 0.7521 0.9681 N.A

8 Lam [15] 2010 N.A N.A 0.9567

9 Fraz [17] 2011 0.7311 0.9680 0.9442

10 You [18] 2011 0.7260 0.9756 0.9497

11 Fraz [6] 2012 0.7548 0.9763 0.9534

12 Azzopardi [19] 2015 0.7716 0.9701 0.9563

13 Li [8] 2016 0.7726 0.9844* 0.9628

14 Liskowski [9] 2016 0.7620 0.9789 0.9571

15 Zhang [10] 2016 0.7791 0.9758 0.9554

16 Ours 2018 0.8600* 0.9754 0.9667*

17 Ours (Cross trained) 2018 0.7841 0.9749 0.9606
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