Skip to main content
. 2020 Mar 26;10:5527. doi: 10.1038/s41598-020-62263-w

Table 4.

Comparison of discriminative power and compactness for various regularizing methods.

Met hods Discriminability Interpretability Mean squared error
AD vs MCI MCI vs.CN AD vs. CN AD+MCI vs CN Sparsity Overlap Brain M NPT tasks X
C-NMF 0.8108 (0.029) 0.7557 (0.0303) 0.9055 (0.0247) 0.8045 (0.0259) 0.7459 (0.0059) 0.2441 (0.008) 0.0028 (0.0001) 0.0 (0.0)
C-NMF + SV M 0.8059 (0.0335) 0.7404 (0.0601) 0.9056 (0.0224) 0.7938 (0.0443) 0.7507 (0.0089) 0.2395 (0.0099) 0.0029 (0.0001) 0.0 (0.0)
C-NMF + l1norm 0.8035 (0.0338) 0.7981 (0.0493) 0.9001 (0.0283) 0.8287 (0.0406) 0.9189 (0.0066) 0.0611 (0.0065) 0.0055 (0.0002) 0.0003 (0.0)
C-NMF + l1norm +SVM 0.7951 (0.0453) 0.8008 (0.0693) 0.9142 (0.0306) 0.8368 (0.0635) 0.9191 (0.0058) 0.0631 (0.0075) 0.0056 (0.0002) 0.0003 (0.0001)

We computed the average and standard deviation after 10 random resamplings of the train/test cohort.