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Generation of a murine SWATH-MS 
spectral library to quantify more 
than 11,000 proteins
Chuan-Qi Zhong1 ✉, Jianfeng Wu1, Xingfeng Qiu2, Xi Chen3,4, Changchuan Xie1 & 
Jiahuai Han1 ✉

Targeted SWATH-MS data analysis is critically dependent on the spectral library. Comprehensive 
spectral libraries of human or several other organisms have been published, but the extensive spectral 
library for mouse, a widely used model organism is not available. Here, we present a large murine 
spectral library covering more than 11,000 proteins and 240,000 proteotypic peptides, which included 
proteins derived from 9 murine tissue samples and one murine L929 cell line. This resource supports 
the quantification of 67% of all murine proteins annotated by UniProtKB/Swiss-Prot. Furthermore, 
we applied the spectral library to SWATH-MS data from murine tissue samples. Data are available via 
SWATHAtlas (PASS01441).

Background & Summary
Data-independent acquisition (DIA) mass spectrometry is an emerging approach for consistent and accurate 
protein quantification across multiple samples. Sequential Windowed Acquisition of All Theoretical Fragment 
Ion Mass Spectra (SWATH-MS) is one of the DIA methods that has been employed to produce highly repro-
ducible and complete quantitative results1–3. This property of SWATH-MS enables the general application of 
SWATH-based quantitative proteomics in biological research and clinical biomarker studies4–6.

SWATH-MS data analysis can be accomplished by two strategies, spectral library-based targeted analysis 
approach and library-free analysis method. A spectral library is usually generated through data-dependent acqui-
sition (DDA) measurement of the peptides which are recorded by SWATH-MS. Library-free methods such as 
DIA-Umpire7, Group-DIA8, PECAN9, and MSPLIT-DIA10, though not requiring a spectral library, have been 
reported to be less sensitive than spectral library-based approach10–12. The depth and composition of the spec-
tral library typically determine the outputs of SWATH-MS. Although a sample-specific spectral library can be 
generated, large previously established spectral libraries can offer more identifications and reduce the amount 
of samples and MS measurement time. The comprehensive spectral libraries for organisms such as human13, 
drosophila14, and zebrafish15 have been published.

Because of its close genetic and physiological similarities to humans, the mouse has been the premier mam-
malian model system for genetic and biomedical research. Additionally, murine cell lines are extensively utilized 
in molecular mechanism research16. Considering the widespread use of mice in these research, a comprehensive 
mouse SWATH-MS spectral library would be beneficial to the studies by quantitatively comparing the protein 
contents across multiple murine samples.

The mouse genome encodes about 22,480 protein-coding genes, among which 17,094 mouse protein-coding 
genes have human orthologues. Although a murine spectral library has been generated in a published study17, the 
proteome coverage of the spectral library is relatively low (6,652 of 20,002 in PANTHER database) and the detail 
of the spectral library regarding the numbers of proteotypic peptides and the number of peptides per protein are 
unclear. What’s more, the published library does not contain DDA files from murine cell lines. Although cell lines 
were originally derived from a given tissue, the gene expression profiles change during the establishment of the 
cell line and during cell culture in vitro. The inclusion of the DDA data from the murine cell line in the murine 
spectral library should increase proteome coverage.
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Here we present a large-scale murine spectral library to support protein quantification by SWATH-MS. It was 
generated by combining the 437 DDA runs from peptide samples derived from the murine L929 cell line and 9 
murine tissues (257 runs for L929 and 180 runs for tissues). The murine L929 cell line DDA data were collected 
through protein fractionation followed by extensive peptide fractionation8, while tissue DDA data were acquired 
using high-pH peptide fractionation (Fig. 1 and Table 1). The murine spectral library consists of 243,043 prote-
otypic peptides which correspond to 11,340 proteins. We further show that the murine spectral library can be 
applied in tissue SWATH-MS data analysis and provide more identifications than the internal library which was 
built directly from SWATH-MS data.

Methods
Mouse tissue sample preparation.  Three C57BL/6 mice of postnatal 50 days were used for tissue dissec-
tion. All animal experimental protocols were approved by the Institutional Animal Care and Use Committee at 
Xiamen University. Tissues were snap-frozen in liquid nitrogen upon dissection. Tissues were homogenized in 
4% SDC/10 mM TCEP/40 mM CAA/100 mM Tris-HCl pH 8.5 on the Scientz-48 High Throughput Tissuelyser 
(Scientzbio, Ningbo, China). Protein supernatants were collected by centrifugation, and protein concentrations 
were assayed with Pierce 660 nm protein assay reagent (Thermo). Proteins were heated at 60 °C for 30 min to 
denature the proteins and carbamidomethylate thiols. 4% sodium deoxycholate (SDC) was diluted to 1% SDC, 
and trypsin (Sigma) was added into reactions at the ratio of 1:50. The digestions were performed at 37 °C over-
night. Subsequently, 1% trifluoroacetic acid (TFA) was added and SDC precipitations were removed by cen-
trifugation. The peptides were desalted using in-house made SDB-RPS StageTips18. The StageTips were washed 

Fig. 1  Sample preparation and data analysis workflows used in the generation of the spectral library. L929 cell 
lysates were first fractionated with size-exclusion chromatography and digested with trypsin. The resulting 
peptides were fractionated with HILIC (Hydrophilic Interaction Liquid Chromatography). The tissue samples 
were digested with trypsin and the peptides were fractionated with high-pH chromatography. The peptide 
fractions were dissolved in 0.1% formic acid containing iRT peptides, which were analyzed using shotgun 
MS. The DDA files were searched with X!Tandem and Comet, and results were combined with iProphet. The 
combined results were filtered with 1% protein FDR and made a consensus spectral library with Spectrast 
software.
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with 100 μl 1%TFA/ isopropanol (ISO) and subsequent 100 μl 0.2%TFA/H2O. The peptides were eluted with 80% 
acetonitrile/5% NH3.H2O. The buffers were evaporated using Speedvac at 45 °C.

Sample preparation for the murine L929 cell line.  The detailed method for murine cell line L929 sam-
ple preparation has been described8. Briefly, L929 cells were lysed with 2% SDS 100 mM Tris-HCl pH 8.5, and 
proteins were fractionated using size exclusion chromatography. 0.1 ml of the cell lysate containing 10 mg of total 
protein was loaded onto a Superdex 200 10/300 GL column (GE Healthcare Bio-Sciences AB, Uppsala) equil-
ibrated with TNS buffer composed of 0.1 M Tris-HCl, pH 8.0 buffer, 0.1 M NaCl and 0.2% SDS. Proteins were 
eluted with TNS buffer and fractions were collected according to elution profile. Total 8 fractions were collected.

The resulting protein fractions were digested using FASP protocol19. The tryptic peptides were fractionated 
with HILIC (hydrophilic interaction liquid chromatography) column. HILIC was performed using a 1260 HPLC 
system (Agilent) with a TSKgel Amide-80 HILIC column (2.0 × 150 mm, 5 μm; Tosoh Biosciences, Tokyo, Japan) 
at a flow rate of 150 μl/min. Two buffers were used for the gradient: buffer A, 90% ACN containing 0.005% TFA, 
and buffer B, 0.005% TFA. Peptides were resuspended in 200 μl of 70% ACN and then injected into the HILIC 
Amide-80 column via a 200 μl loop with a flow rate of 150 μl/min. The gradient used is as follows: 0% buffer B at 
time 0 min, 11% buffer B at 5 min, 29% buffer B at 20 min, 95% buffer B at 45 min, hold 95% buffer for 5 min, and 
finally 0% buffer B at 55 min. Fractions were collected according to elution profile and dried.

High-pH fractionation of peptides.  High-pH fractionation was performed on an Agilent Infinity 1260 
system. About 200 μg peptides were injected for each organ. The peptides were separated at 25 °C on a TechMate 
C18 reversed-phase column with a diameter of 0.5 mm, length of 150 mm particle, size of 3 μm, and pore size of 
12 nm. A 60 min gradient was delivered as followed: 5–25% Buffer B (Buffer B: 10 mM ammonium formate, 40% 
acetonitrile, 12.5% ammonia solution; Buffer A: 20 mM ammonium formate, pH 10) in 20 min, then increased to 
45% in 40 min and to 90% in 1 min. The resulting 60 fractions were pooled to 20 fractions. The pooling procedure 
was performed as followed: fraction x was pooled with fractions x + 10 and x + 20. The pooled fractions were 
desalted with SDB-RPS StageTips and evaporated using vacuum centrifugation.

Data-Dependent acquisition of peptide samples.  Peptides were dissolved in 0.1% formic acid con-
taining iRT peptides (Hangzhou Go Top Peptide Biotech Co., Ltd., China). MS analysis was performed on a 
TripleTOF 5600 (Sciex) mass spectrometer coupled to NanoLC Ultra 2D Plus (Eksigent) HPLC system. Peptides 
were first bound to a 300SB-C18 trap column (ZORBAX, Agilent). The analytical column was a 35 cm × 75 μm 
in-house pulled emitter-integrated column packed with Magic C18 AQ 3-μm 200- Å resin. The peptide separa-
tion was performed using a linear 60 min gradient from 2–35% buffer B (buffer A 0.1% (V/V) formic acid, 5% 
DMSO in H2O, buffer B 0.1% (V/V) formic acid, 5% DMSO in acetonitrile). In one cycle, one MS1 scan was 
followed by 20 MS2 scans. MS1 scan collected 350–1250 m/z for 250 ms and MS2 scan collected 100–1,800 m/z 
for 50 ms. Exclusion time for precursor ions selection is 20 s. Ions were fragmented for MS2 experiment in the 
collision cell using a collision energy according to the equation of a doubly charged peptide, ramped ± 15 V from 
the calculated collision energy.

SWATH-MS analysis of tissue samples.  The peptides derived from tissue samples were dissolved in 
0.1% FA containing iRT peptides. The setting of nano liquid chromatography was the same as described in DDA 
analysis except for 180-min gradient. Mass spectrometer was operated in SWATH mode, and MS1 scan records 
a 350–1250 m/z range for 250 ms and a 100–1800 m/z range was recorded for 33.3 ms in the high-sensitivity 
mode MS2 scan. One MS1 scan was followed by 100 MS2 scans, which covered a precursor m/z range from 400–
1200. The variable windows of SWATH-MS were “399.5–409.9, 408.9–418.9, 417.9–427.4, 426.4–436, 435–443.6, 
442.6–450.8, 449.8–458, 457–464.8, 463.8–471.1, 470.1–476.9, 475.9–482.8, 481.8–488.6, 487.6–494, 493–499, 
498–504.4, 503.4–509.3, 508.3–514.3, 513.3–519.2, 518.2–524.2, 523.2–529.1, 528.1–534.1, 533.1–539, 538–
543.5, 542.5–548.5, 547.5–553, 552–558, 557–562.5, 561.5–567, 566–571.5, 570.5–576, 575–580.5, 579.5–585, 
584–589.5, 588.5–594, 593–598, 597–602.5, 601.5–607, 606–611.1, 610.1–615.6, 614.6–620.1, 619.1–624.6, 623.6–
628.6, 627.6–633.1, 632.1–637.6, 636.6–642.1, 641.1–646.6, 645.6–651.1, 650.1–655.6, 654.6–660.1, 659.1–665.1, 

Sample
Protein 
fractionation

Peptide 
fractionation

MS 
samples

L929 cell line Size exclusion 
chromatography HILIC 257

Pancreas NA High-pH RP-HPLC 20

Lung NA High-pH RP-HPLC 20

Heart NA High-pH RP-HPLC 20

Brain NA High-pH RP-HPLC 20

Small intestine NA High-pH RP-HPLC 20

Gallbladder NA High-pH RP-HPLC 20

Large intestine NA High-pH RP-HPLC 20

Kidney NA High-pH RP-HPLC 20

Bladder NA High-pH RP-HPLC 20

Table 1.  DDA runs in each datasets.
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664.1–669.6, 668.6–674.5, 673.5–679, 678–684, 683–688.5, 687.5–693.4, 692.4–698.4, 697.4–703.3, 702.3–708.7, 
707.7–713.7, 712.7–719.1, 718.1–724.5, 723.5–729.9, 728.9–735.3, 734.3–740.7, 739.7–746.5, 745.5–751.9, 750.9–
757.8, 756.8–763.6, 762.6–769.5, 768.5–775.3, 774.3–781.2, 780.2–787, 786–793.3, 792.3–800.1, 799.1–806.4, 
805.4–813.1, 812.1–820.3, 819.3–827.5, 826.5–835.2, 834.2–843.3, 842.3–851.4, 850.4–859.9, 858.9–868.9, 867.9–
878.4, 877.4–888.3, 887.3–899.1, 898.1–910.3, 909.3–922.9, 921.9–936, 935–949.5, 948.5–963.4, 962.4–978.7, 
977.7–994.9, 993.9–1015.6, 1014.6–1042.2, 1041.2–1070.1, 1069.1–1100.7, 1099.7–1140.7, 1139.7–1196.5”.

Bioinformatics analysis.  Building the murine spectral library.  The DDA raw files (wiff) were converted to 
centroided mzML files using qtofpeakpicker20 tool in Proteowizard software (V.3.0.447)21. The mzML files were 
searched with X!Tandem22 (Version 2013.06.15.1, native and k-score23) and Comet24 (Version 2017.01) which 
has been integrated into TPP (Trans-Proteomic Pipeline, Version 5.0)25 against an UniprotKB/Swiss-Prot murine 
protein database (downloaded at 20190627) which contains 34,279 entries including reversed sequence decoys, 
contaminant proteins (contaminant protein sequences are obtained from maxquant software) and iRT peptide 
sequences. The search engines parameters were set as followed. The parent and product ions mass tolerance is 50 
ppm and 0.1 Da respectively. Carbamidomethyl (C) was set as a fixed modification and oxidation (M) as a varia-
ble modification. The pep.xml search results were validated and scored using PeptideProphet26 with parameters 
–OARPd -dDECOY and combined by iProphet27 with parameters DECOY = DECOY. Mayu (version 1.07)28 was 
used for protein FDR control. The iProphet probability 0.996973 was selected, which corresponded to protein 
FDR 0.009765. The peptide ions passing the 1% protein FDR were input into SpectraST29 for library building 
with CID-QTOF setting. The retention time of peptides in sptxt file was replaced with iRT time using spectrast-
2spectrast_irt.py script (https://github.com/msproteomicstools/msproteomicstools), and the peptides used for 
retention time normalization were endogenous peptides (CiRT30) or spiked-in iRT peptides31. The sptxt file was 
made consensus non-redundant spectral library with the iRT retention time using spectraST.

Building the internal spectral library.  SWATH-MS files were converted to centroided mzXML files using qtof-
peakpicker tool as described above. Centroided mzXML files were analyzed with DIA-Umpire. DIA-Umpire was 
run with default setting except for BoostComplementaryIon = false. mgf files were converted to mzML files using 
msconvert (Proteowizard V.3.0.447). mzML files were subjected to database searches and spectral library gener-
ation as described in DDA files above.

Targeted analysis of SWATH-MS data using OpenSWATH-PyProphet-TRIC workflow.  The workflow was per-
formed as previously described4. SWATH-MS files were converted to 32-bit profile mzXML files using msconvert 
(Proteowizard V.3.0.447). The consensus sptxt files were converted to tsv using spectrast2tsv.py script (avail-
able at https://github.com/msproteomicstools/msproteomicstools) which then converted to TraML file with 
TargetedFileConverter tool which was integrated into OpenMS software (Version 2.2.0)32. In OpenSWATH anal-
ysis, ciRT peptide30 and iRT peptides31 were used for retention time normalization. The XIC extraction window 
was 20 min. An extended version of PyProphet33,34 (PyProphet-cli v0.19) was employed for FDR estimation. For 
each tissue dataset, 1% protein FDR at the global level was applied. The filtered results were input into TRIC 
software for cross-run alignment. The parameters in TRIC35 were set as followed: –method LocalMST –rea-
lign_method lowess_cython –max_rt_diff 60 –mst:useRTCorrection True –mst:Stdev_multiplier 3.0 –target_fdr 
0.01–max_fdr_quality 0.05.

Protein quantification.  Protein quantification was conducted as previously described4. The TRIC results were 
used for protein inference and quantification. Peptide intensities were obtained directly from TRIC output results. 
All identified peptides from the specific protein were ranked by the average intensity in all runs. Subsequently, 
the top three intense peptides of the specific protein were selected and the sum of these three peptide intensities 
represented the protein intensity in each run. Where <3 peptides were detected, the available peak groups were 
summed.

Data Records
The raw mass spectrometry DDA files for library generation and SWATH-MS files, the search results (pepXML), 
the consensus spectral library are deposited on the PeptideAtlas with identifier PASS01441 and can be accessed at 
http://www.peptideatlas.org/PASS/PASS01441 36.

Technical Validation
False discovery rate control at protein level.  False discovery rate (FDR) is the metric for global confidence 
assessment of a large-scale proteomics dataset. For the purpose of spectral library generation, the dataset composed 
of a large number of runs should be strictly filtered. We used MAYU software to filter the dataset at 1% protein FDR. 
It is difficult to know the true positive hits for a mass spectrometry dataset. To estimate the expected number of true 
positive and false positive protein identifications, MAYU employs a hypergeometric model that takes the number of 
target and decoy protein identifications and the total number of protein entries in the dataset as input. As shown in 
Fig. 2a, true positive proteins have reached saturation at 1% protein FDR. On the contrary, the true positive peptides 
kept increasing at this cutoff (Fig. 2b). This suggested that the higher number of false positive protein identification 
would be accepted if 1% peptide FDR were applied, which is consistent with published results37. We applied 1% 
protein FDR to the whole dataset to retain only high-quality protein identifications.

Properties of the murine spectral library.  To demonstrate the proteome coverage of the murine spectral 
library, we compared the proteins included in the murine spectral library with those in UniProtKB/Swiss-Prot 
(version 2019_08) and those with evidence on protein-level. 78.3% (9,864 of 12,592) of proteins with protein-level 
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evidence were included in our library, and 1,476 additional proteins with protein-level evidence were provided by 
the murine library (Fig. 2c). Among these 1,476 proteins, 27.2% (401 of 1,476) of them have one distinct peptide. 
These single-hit peptides have high-quality MS2 spectra (Supplementary Fig. 1). 41.1% (607 of 1,476) of them are 
identified by 2–5 unique peptides, while 17.2% (254 of 1,476) of them contain 6–10 peptides. 15.9% (234 of 1,476) 
of proteins are identified by more than 10 unique peptides. About 12% (1,376 of 11,383) proteins were exclusively 
provided by L929 DDA files, while 29.8% (3,397 of 11,383) provided by tissue DDA files (Fig. 2d). In comparison 
with the UniProtKB/Swiss-Prot, the murine library contains 66.6% (11,340 of 17,019) of all proteins, which is the 
largest proteome coverage among all published spectral libraries13,15,17,38 (Fig. 2e). Table 2 provides an overview 
of the contents of the murine spectral library. Compared to the human spectral library13, almost two times of 
proteotypic peptides were included in the murine spectral library. To show the coverage of a single protein, we 
calculated the number of proteotypic peptides per protein. About 52% of the proteins in the library contain >10 
proteotypic peptides per protein, and 91% of them contain at least two proteotypic peptides per protein (Fig. 2f).

Fig. 2  Characteristics of the murine spectral library. (a) True positive (black) and all protein identifications 
(red) as a function of protein FDR. The vertical dashed line was protein FDR of 0.01 determined by MAYU 
software. (b) True positive (black) and all peptide identifications (red) as a function of protein FDR. The 
vertical dashed line was protein FDR of 0.01 determined by MAYU software. (c) Overlap of murine proteins in 
UniProtKB/Swiss-Prot, a subset annotated with protein-level evidence and the murine spectral library.  
(d) Coverage of the proteome for SWATH-MS spectral libraries of different species. The numbers of proteome 
coverage were directly taken from the cited publication13,15,17,38. (e) The number of proteotypic peptides per 
protein in the murine spectral library.
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Applicability of the murine spectral library for SWATH-MS analysis.  To show the usage of the 
murine spectral library in analyzing SWATH-MS data, we acquired seven mouse tissue samples (brain, gall-
bladder, large intestine, liver, lung, stomach, urinary bladder) in technical triplicate using SWATH-MS. With the 
murine library, OpenSWATH was employed for targeted analysis of SWATH-MS data. PyProphet was utilized 
to control protein FDR, and TRIC was used to retrieve the missing value in the quantitative results. We ana-
lyzed SWATH-MS data from seven mouse tissue samples separately, and 1% global protein FDR was applied 
in all analyses. To evaluate the performance of the murine library, we also used DIA-Umpire to analyze these 
SWATH-MS data. The mgf files from DIA-Umpire were used to build the internal libraries, which were subjected 
to OpenSWATH-PyProphet-TRIC workflow analysis. In total, about 2000–3000 proteins and 10,000–20,000 pep-
tides were quantified in each tissue dataset using the murine library (Fig. 3a,b). We examined the overlapping 
proteins by the two libraries. Generally, at least 75% of proteins identified by two libraries overlapped (Fig. 3c). 
Although the number of raw files used for generation of the murine library (437 runs) is significantly higher 
than that of internal libraries (3 runs), the minor increases of peptide and protein identifications by the murine 
library compared to internal libraries are observed. The limited performance of the comprehensive probably 
resulted from the relatively low sequence coverage of proteins in the library13, which will be improved in the 
future version.

To evaluate the quality of the murine library-based analysis, we quantitatively compared protein abundance 
across the different runs in each dataset. Pearson’s correlation coefficients were 0.82–0.92 between any two dif-
ferent runs (Fig. 3d). The correlation for replicates of lung is lower than that for other tissues. This phenomenon 
is probably attributed to the interferences from the tissue (Supplementary Fig. 2). To further determine quanti-
tative reproducibility, we computed the coefficient of variation (CV) in each tissue dataset. For all tissue data-
set, the median CVs of log2-transformed protein abundance were below 10% (Fig. 3e). Collectively, the murine 
library-based targeted analysis of SWATH-MS exhibited excellent reproducibility in the entire experiment.

With the quantitative protein intensities in each tissue, we examine the relationship between the abundance 
of proteins and functions of a specific tissue. The normalized abundances of top ten proteins in each tissue were 
shown in Fig. 3f. Actlb2 (ACTBL_MOUSE) is the most abundant protein among almost all tissues. In brain, 
MBP (MBP_MOUSE) is the most abundant protein, which is a major component of myelin membrane in the 
central nervous system39. Alpha-globin (HBA_MOUSE) were involved in oxygen transport from the lung to 
the various peripheral tissues. Consistently, Alpha-globin is the most abundant protein in lung. Three histone 
proteins (H2AJ_MOUSE, H2B3A_MOUSE and H4_MOUSE) showed up in the top ten proteins of gallbladder, 
while nearly no histone protein was detected in the top ten proteins in other tissues. Liver is an organ where 
excess ammonia is removed through the urea cycle in the mitochondria of cells. Accordingly, three enzymes 
(CPSM_MOUSE, ASSY_MOUSE and ARGI1_MOUSE) that play the key roles in urea cycle occurred in the top 
ten proteins of liver. These results demonstrate that the murine spectral library can be used for a comprehensive 
exploration of SWATH-MS data derived from murine samples.

Usage Notes
Generating alternative SWATH spectral libraries from the full spectral library.  In this study, 
we generated a 100-VW SWATH-MS assay library from the murine spectral library. However, the murine 
SWATH-MS assay library with any other window configuration can be easily be performed based on the murine 
full spectral library using the spectrast2tsv.py script.

Control of false-discovery rate (FDR).  It is crucial for controlling FDR when analyzing large-scale of 
SWATH-MS data using a comprehensive spectral library34. Therefore, the appropriate workflow including FDR 
controlling at protein level should be employed when analyzing SWATH-MS data using the spectral libraries 
especially for very large ones. OpenSWATH-PyProphet-TRIC workflow and the commercial Spectronaut soft-
ware40 meet this requirement.

Limitations of the murine spectral library.  The current spectral library presented here is constructed 
from 9 murine tissues and one cell line, and the proteins that specifically expressed in other murine tissues may 
not be included in the murine spectral library. Another concern is about the portability of the spectral library to 
other platforms such as Orbitrap and Timspro TOF. In this study, DDA runs were collected on the TripleTOF 5600 
instrument, which is primarily used for the purpose of analyzing SWATH-MS data. The human spectral library 
built with DDA runs on TripletOF 5600 has been used for targeted analysis of DIA data acquired on Orbitrap 
platform41–43. However, the analysis results based on the TripleTOF-generated library may be sub-optimal due to 
the differential fragmentation patterns from distinct MS platforms. The murine spectral library can be applied to 
DIA data acquired on different platforms, but careful examination of analysis results is required.

Proteotypic Proteotypic and shared

Proteins 11,340 15,408

Peptides 2,43,043 2,57,137

Precursors 2,71,396 2,87,114

Transitions 16,28,376 17,22,684

Table 2.  Contents in the murine spectral library.
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Fig. 3  Analyzing tissue SWATH-MS data using the murine spectral library. (a) The numbers of quantified 
proteins at 1% global protein FDR in three technical replicates in seven tissue datasets. The mouse library 
and the internal libraries were used to analyze SWATH-MS data. (b) The numbers of quantified peptides at 
1% global protein FDR in three technical replicates in seven tissue datasets. (c) Pearson correlation of protein 
intensities identified in two samples. (d) CV of log2-transformed intensities of quantified proteins in three 
replicates using L929 library. (e) The proteins with the top ten highest abundances in each tissue. The protein 
intensity was normalized with the sum of all protein intensities, and top ten proteins were shown. The tissue-
function related proteins were labelled in red (protein entry names are from UniProt/SwissProt database).
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Code availability
The software in this study has been described34,35,44. The workflows to analyze SWATH-MS data have been 
published45 and are described on http://www.openswath.org.

Received: 21 October 2019; Accepted: 6 March 2020;
Published: xx xx xxxx

References
	 1.	 Gillet, L. C. et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for 

consistent and accurate proteome analysis. Mol. Cell Proteom. 11, O111.016717 (2012).
	 2.	 Ludwig, C. et al. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol. Syst. Biol. 14, e8126 

(2018).
	 3.	 Collins, B. C. et al. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass 

spectrometry. Nat. Commun. 8, 291 (2017).
	 4.	 Wu, X. et al. Quantification of Dynamic Protein Interactions and Phosphorylation in LPS Signaling Pathway by SWATH-MS. Mol. 

Cell Proteom. 18, 1054–1069 (2019).
	 5.	 Huttenhain, R. et al. A Targeted Mass Spectrometry Strategy for Developing Proteomic Biomarkers: A Case Study of Epithelial 

Ovarian Cancer. Mol. Cell Proteom. 18, 1836–1850 (2019).
	 6.	 Sajic, T. et al. Similarities and Differences of Blood N-Glycoproteins in Five Solid Carcinomas at Localized Clinical Stage Analyzed 

by SWATH-MS. Cell Rep. 23, 2819–2831 e2815 (2018).
	 7.	 Tsou, C. C. et al. DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat Methods 

12, 258–264, 257 p following 264 (2015).
	 8.	 Li, Y. et al. Group-DIA: analyzing multiple data-independent acquisition mass spectrometry data files. Nat. Methods 12, 1105–1106 

(2015).
	 9.	 Ting, Y. S. et al. PECAN: library-free peptide detection for data-independent acquisition tandem mass spectrometry data. Nat. 

Methods 14, 903–908 (2017).
	10.	 Wang, J. et al. MSPLIT-DIA: sensitive peptide identification for data-independent acquisition. Nat. Methods 12, 1106–1108 (2015).
	11.	 Navarro, P. et al. A multicenter study benchmarks software tools for label-free proteome quantification. Nat. Biotechnol. 34, 

1130–1136 (2016).
	12.	 Zhong, C. Q. et al. Systematic Assessment of the Effect of Internal Library in Targeted Analysis of SWATH-MS. J. Proteome Res. 19, 

477–492 (2020).
	13.	 Rosenberger, G. et al. A repository of assays to quantify 10,000 human proteins by SWATH-MS. Sci. Data 1, 140031 (2014).
	14.	 Fabre, B. et al. Spectral Libraries for SWATH-MS Assays for Drosophila melanogaster and Solanum lycopersicum. Proteomics 17, 

1700216 (2017).
	15.	 Blattmann, P. et al. Generation of a zebrafish SWATH-MS spectral library to quantify 10,000 proteins. Sci. Data 6, 190011 (2019).
	16.	 Wilding, J. L. & Bodmer, W. F. Cancer cell lines for drug discovery and development. Cancer Res. 74, 2377–2384 (2014).
	17.	 Malmstrom, E. et al. Large-scale inference of protein tissue origin in gram-positive sepsis plasma using quantitative targeted 

proteomics. Nat. Commun. 7, 10261 (2016).
	18.	 Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for 

proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).
	19.	 Wisniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 

6, 359–362 (2009).
	20.	 Schubert, O. T. et al. Building high-quality assay libraries for targeted analysis of SWATH MS data. Nat. Protoc. 10, 426–441 (2015).
	21.	 Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012).
	22.	 Craig, R. & Beavis, R. C. A method for reducing the time required to match protein sequences with tandem mass spectra. Rapid 

Commun. Mass. Spectrom. 17, 2310–2316 (2003).
	23.	 MacLean, B., Eng, J. K., Beavis, R. C. & McIntosh, M. General framework for developing and evaluating database scoring algorithms 

using the TANDEM search engine. Bioinformatics 22, 2830–2832 (2006).
	24.	 Eng, J. K., Jahan, T. A. & Hoopmann, M. R. Comet: an open-source MS/MS sequence database search tool. Proteomics 13, 22–24 

(2013).
	25.	 Keller, A., Eng, J., Zhang, N., Li, X. J. & Aebersold, R. A uniform proteomics MS/MS analysis platform utilizing open XML file 

formats. Mol. Syst. Biol. 1, 2005.0017 (2005).
	26.	 Ma, K., Vitek, O. & Nesvizhskii, A. I. A statistical model-building perspective to identification of MS/MS spectra with 

PeptideProphet. BMC Bioinforma. 13(Suppl 16), S1 (2012).
	27.	 Shteynberg, D. et al. iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification 

rates and error estimates. Mol. Cell Proteom. 10, M111.007690 (2011).
	28.	 Reiter, L. et al. Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry. 

Mol. Cell Proteom. 8, 2405–2417 (2009).
	29.	 Lam, H. et al. Building consensus spectral libraries for peptide identification in proteomics. Nat. Methods 5, 873–875 (2008).
	30.	 Parker, S. J. et al. Identification of a Set of Conserved Eukaryotic Internal Retention Time Standards for Data-independent 

Acquisition Mass Spectrometry. Mol. Cell Proteom. 14, 2800–2813 (2015).
	31.	 Escher, C. et al. Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics 12, 1111–1121 

(2012).
	32.	 Rost, H. L. et al. OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat. Methods 13, 741–748 

(2016).
	33.	 Reiter, L. et al. mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nat. Methods 8, 

430–435 (2011).
	34.	 Rosenberger, G. et al. Statistical control of peptide and protein error rates in large-scale targeted data-independent acquisition 

analyses. Nat. Methods 14, 921–927 (2017).
	35.	 Rost, H. L. et al. TRIC: an automated alignment strategy for reproducible protein quantification in targeted proteomics. Nat. 

Methods 13, 777–783 (2016).
	36.	 Zhong, C.-Q. et al. murine SWATH-MS spectral library. PeptideAtlas, http://www.peptideatlas.org/PASS/PASS01441 (2019).
	37.	 Claassen, M. Inference and validation of protein identifications. Mol. Cell Proteom. 11, 1097–1104 (2012).
	38.	 Palmowski, P. et al. The Generation of a Comprehensive Spectral Library for the Analysis of the Guinea Pig Proteome by SWATH-

MS. Proteomics 19, e1900156 (2019).
	39.	 Campagnoni, A. T. & Skoff, R. P. The pathobiology of myelin mutants reveal novel biological functions of the MBP and PLP genes. 

Brain Pathol. 11, 74–91 (2001).
	40.	 Bruderer, R. et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to 

acetaminophen-treated three-dimensional liver microtissues. Mol. Cell Proteom. 14, 1400–1410 (2015).

https://doi.org/10.1038/s41597-020-0449-z
http://www.openswath.org
http://www.peptideatlas.org/PASS/PASS01441�


9Scientific Data |           (2020) 7:104  | https://doi.org/10.1038/s41597-020-0449-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

	41.	 Mehnert, M., Li, W., Wu, C., Salovska, B. & Liu, Y. Combining Rapid Data Independent Acquisition and CRISPR Gene Deletion for 
Studying Potential Protein Functions: A Case of HMGN1. Proteomics 19, e1800438 (2019).

	42.	 Muntel, J. et al. Advancing Urinary Protein Biomarker Discovery by Data-Independent Acquisition on a Quadrupole-Orbitrap Mass 
Spectrometer. J. Proteome Res. 14, 4752–4762 (2015).

	43.	 Muntel, J. et al. Surpassing 10 000 identified and quantified proteins in a single run by optimizing current LC-MS instrumentation 
and data analysis strategy. Mol Omics 15(5), 348–360 (2019).

	44.	 Rost, H. L. et al. OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat. Biotechnol. 32, 
219–223 (2014).

	45.	 Rost, H. L., Aebersold, R. & Schubert, O. T. Automated SWATH Data Analysis Using Targeted Extraction of Ion Chromatograms. 
Methods Mol. Biol. 1550, 289–307 (2017).

Acknowledgements
This work was supported by the National Natural Science Foundation of China (81788101), National Basic 
Research Program of China (973 Program 2015CB553800), the National Natural Science Foundation of 
China (31420103910 and 81630042), the 111 Project (B12001), the National Science Foundation of China for 
Fostering Talents in Basic Research (J1310027) and the Fundamental Research Funds for the Central Universities 
(20720190087). We thank Dr. Zhuobin Xu and Dr. Yuwei Yu for help in using the high-performance computer.

Author contributions
C.-Q.Z. and J.H. conceived the project. J.W. and X.Q. raised the mice and dissected the organs. C.-Q.Z. extracted 
the proteins and processed the samples, analyzed the proteomic data and built the spectral library. X.C. performed 
high-PH peptide fractionation. C.X. helped to maintain mass spectrometry. C.-Q.Z. and J.H. supervised the work 
and wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41597-020-0449-z.
Correspondence and requests for materials should be addressed to C.-Q.Z. or J.H.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ 
applies to the metadata files associated with this article.
 
© The Author(s) 2020

https://doi.org/10.1038/s41597-020-0449-z
https://doi.org/10.1038/s41597-020-0449-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

	Generation of a murine SWATH-MS spectral library to quantify more than 11,000 proteins

	Background & Summary

	Methods

	Mouse tissue sample preparation. 
	Sample preparation for the murine L929 cell line. 
	High-pH fractionation of peptides. 
	Data-Dependent acquisition of peptide samples. 
	SWATH-MS analysis of tissue samples. 
	Bioinformatics analysis. 
	Building the murine spectral library. 
	Building the internal spectral library. 
	Targeted analysis of SWATH-MS data using OpenSWATH-PyProphet-TRIC workflow. 
	Protein quantification. 


	Data Records

	Technical Validation

	False discovery rate control at protein level. 
	Properties of the murine spectral library. 
	Applicability of the murine spectral library for SWATH-MS analysis. 

	Usage Notes

	Generating alternative SWATH spectral libraries from the full spectral library. 
	Control of false-discovery rate (FDR). 
	Limitations of the murine spectral library. 

	Acknowledgements

	Fig. 1 Sample preparation and data analysis workflows used in the generation of the spectral library.
	Fig. 2 Characteristics of the murine spectral library.
	Fig. 3 Analyzing tissue SWATH-MS data using the murine spectral library.
	Table 1 DDA runs in each datasets.
	Table 2 Contents in the murine spectral library.




