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ARTICLE INFO ABSTRACT
Keywords: The presence of estrogens, androgens and glucocorticoids as well as their receptors and steroid converting en-
Estradiol zymes in adipose tissue has been established. Their contribution to diseases such as obesity, diabetes and hor-
Estrone mone-dependent cancers is an active area of research. Our objective was to develop a LC-MS/MS method to
Cortisol

quantify bioactive estrogens and glucocorticoids simultaneously in human adipose tissue. Estrogens and glu-

E:itif;?:aﬁon cocorticoids were extracted from adipose tissue samples using solid-phase extraction. Estrogens were derivatized
Adipose using 1-(2,4-dinitro-5-fluorophenyl)-4-methylpiperazine (PPZ) and methyl iodide to generate a permanently
charged molecule (MPPZ). Steroids were separated and quantified by LC-MS/MS. The limit of quantitation for
the steroids was between 15 and 100 pg per sample. Accuracy and precision were acceptable (< 20%). Using
this method, estradiol, estrone, cortisone and cortisol were quantified in adipose tissue from women with and
without breast cancer. This novel assay of estrogens and glucocorticoids by LC-MS/MS coupled with derivati-
zation allowed simultaneous quantification of a panel of steroids in human adipose tissue across the endogenous
range of concentrations encountered in health and disease.
1. Introduction steroids due to their lipophilicity. We and others have described several
steroid-converting enzymes localized in adipose tissue [1] and proposed
Adipose tissue is an active endocrine organ and a site of storage for their importance in modulating adipose tissue function e.g. adipocyte

Abbreviations: °C5-E1, 2,3,4-['°C;]-estrone; '3C5-E2, 2,3,4-['3C5]-17B-estradiol; DCM, Dichloromethane; E, Cortisone; E1, Estrone; E2, Estradiol; ESI, Electrospray
ionization; Et,0, Diethyl ether; EtOAc, Ethyl acetate; EtOH, Ethanol; D4-F, 9,11,12,12-[2H,]-cortisol; FA, Formic acid; GC-MS/MS, Gas chromatography-tandem
mass spectrometry; HPLC, High-performance liquid chromatography; IS, Internal standards; LC-MS/MS, Liquid chromatography-tandem mass spectrometry; LLE,
Liquid-liquid extraction; LOQ, Limit of quantitation; LOD, Limit of detection; MeOH, Methanol; MPPZ, 1-(2,4-dinitro-phenyl)-4,4-dimethylpiperazinium; MRM,
Multiple reaction monitoring; MTBE, Methyl t-butyl ether; OFN, Oxygen-free nitrogen; PPZ, 1-(2,4-dinitro-5-fluorophenyl)-4-methylpiperazine; RME, Relative mean
error; RSD, Relative standard deviation; SNR, Signal-to-noise ratio; SPE, Solid-phase extraction; UHPLC, Ultra-high-performance liquid chromatography

* Corresponding author at: 47, Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom.

E-mail address: ruth.andrew@ed.ac.uk (R. Andrew).

https://doi.org/10.1016/j.jsbmb.2019.105476

Received 21 March 2019; Received in revised form 30 August 2019; Accepted 18 September 2019

Available online 24 September 2019

0960-0760/ © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/BY/4.0/).


http://www.sciencedirect.com/science/journal/09600760
https://www.elsevier.com/locate/jsbmb
https://doi.org/10.1016/j.jsbmb.2019.105476
https://doi.org/10.1016/j.jsbmb.2019.105476
mailto:ruth.andrew@ed.ac.uk
https://doi.org/10.1016/j.jsbmb.2019.105476
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsbmb.2019.105476&domain=pdf

S. Laforest, et al.

Journal of Steroid Biochemistry and Molecular Biology 195 (2019) 105476

A Untranslated 1st exon Common exons Fig. 1. Pathways of glucocorticoid and es-
1 trogen metabolism and hypothesized cross-

( \[ \ regulation in adipose tissue. A) Alternative

splicing of the rate-limiting enzyme aromatase

11 2a 14 15 17 If 12 16 13 PIIL IV V VIV VI IX X (CYP19A1). Tissue-specific aromatase expres-

N Cortisol 14

{

—_—

~

Androstenedione Estrone e
@) ~
17B-HSD s

17B-HSDs BHSDs

7z

7’

OH OH

ngfb
—_—
O Testosterone HO Estradiol

hypertrophy and lipid storage. Glucocorticoid and estrogen concentra-
tions and their respective activation enzymes, 11f3-hydroxysteroid de-
hydrogenase 1 (113-HSD1) and aromatase are both increased in adi-
pose tissue in obesity, although little is known about their interactions
and cross-regulation [2]. Increases in estrogen concentrations in breast
adipose in obesity may be of importance for local tumor growth [1].
Glucocorticoids can increase androgen-to-estrogen conversion in adi-
pose tissue through activating the glucocorticoid response element on
exon 1.4 of the aromatase gene, a well-established mechanism [3]
(Fig. 1). Accordingly, aromatase and 11(3-HSD1 expression in sub-
cutaneous adipose tissue are positively associated [4]. However, evi-
dence from rodent studies suggests that high estrogen concentrations
inhibit the expression of 11(3-HSD1 [5-8]. These apparently conflicting
results warrant further study of adipose tissue steroid homeostasis by
measurement of the active steroids rather than inferring function from
transcript levels of the enzymes.

Accurate quantification of steroid hormones in adipose tissue is
difficult. Mass spectrometry is the gold standard analytical approach
[9], but adipose tissue presents significant challenges as a matrix. High
concentrations of lipidic compounds sharing similar physico-chemical
properties to those of steroids can cause substantial ion suppression and
interfere with the steroid signal. Removing interfering compounds may
help increase signal to noise of the peaks of the steroids of interest, but
one must also consider the concomitant signal loss that may occur
during processing. Of particular note, the use of different sample pre-
paration and analytical approaches for specific steroid hormones makes
it difficult to allow the direct comparison among studies [2,10-13].

In the context of research, curation of large biobanks of human
adipose samples is difficult and collection of sufficient clinical material
(e.g. more than 1 g) per patient in various disease states is challenging,
especially in fat depots of interest (visceral, breast). Immunoassays,
such as radioimmunoassays and enzyme-linked immunosorbent assays,

sion in normal adipose tissue is conferred by
promoter 1.4 which possesses a glucocorticoid
response element. B) Androstenedione and
testosterone are converted into estrogens by
the action of aromatase. Androstenedione and
testosterone as well as estrone and estradiol are
interconverted by the action of several 17(3-
HSDs. Cortisone is converted into active cor-
tisol by the action of 113-HSD type 1 (re-
ductase) which predominates over 113-HSD
type 2 in adipose tissue. Higher concentrations
of estrogens may inhibit the activity of 11f-
HSD type 1. Expression of enzymes in black
o squares are increased in the adipose tissue as a
function of adiposity.
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have the advantage of high sensitivity and so do not use large amounts
of samples, but they can be limited by specificity [9,14]. Liquid chro-
matography-tandem mass spectrometry (LC-MS/MS) is an attractive
alternative as the analytical technique for development of an extraction
and quantification protocol for steroids in adipose tissue, as it is already
the gold standard for analysis of steroid panels in plasma [15,16]. It
typically offers shorter run times per sample compared to gas chro-
matography-tandem mass spectrometry (GC-MS/MS). Assays based on
LC-MS/MS had previously been used for quantifying glucocorticoids in
adipose tissue in our laboratory [17], but were not optimized for es-
trogens.

Our aim was to develop a new LC-MS/MS method to detect and
quantify estrogens (17p-estradiol (E2) and estrone (E1)) as well as
glucocorticoids (cortisol, cortisone) in adipose tissue. Considering the
limited amount of tissue available, derivatization of estrogens was
deemed necessary as E2 and E1 are present in 10-100-fold lower con-
centrations than glucocorticoids, in plasma and adipose tissue
[2,10-13,15-17], and have a poor ionization profile. We adapted a
validated, highly efficient derivatization approach for estrogens in
serum developed by Nishio et al. [18] for use in adipose, drawing from
modifications we had made to the method to quantify a wider panel of
estrogen in plasma [19].

2. Materials and methods
2.1. Standards and solvents

El, E2, and 17a-estradiol (17a-E2) were obtained from Steraloids,
Inc (Newport, USA). Cortisone, cortisol, iodomethane (=99%) and in-
ternal standards (IS), 2,3,4-[13C3]-17[5-estradiol and 2,3,4-['3Cs]-es-
trone (*3C3-E2, 13C5-E1 respectively) were from Sigma-Aldrich, Inc. (St.
Louis, USA). 9,11,12,12-[?H,]-cortisol (D4-F) was from Cambridge



S. Laforest, et al.

Isotopes Laboratory (England, UK). 1-(2,4-dinitro-5-fluorophenyl)-4-
methylpiperazine (PPZ) was from TCI chemicals (Chuo-ku, Tokyo,
Japan). HPLC grade glass distilled solvents (methyl t-butyl ether, MTBE;
acetone; ethyl acetate (EtOAc); water) were from Fisher Scientific UK
Limited (Leicestershire, UK). AR grade ethanol (EtOH) and HPLC grade
glass distilled solvents (acetonitrile; acetic acid; diethyl ether (Et;0);
dichloromethane (DCM); hexane; methanol (MeOH)) and LCMS grade
solvents and chemicals (acetonitrile; formic acid (FA); water) were from
VWR (England, UK).

2.2. Adipose tissue samples

Adipose tissue samples for method development and validation
originated from breast adipose tissue obtained from women undergoing
reduction mammoplasty. Aliquots (~200 mg) were stored at —80 °C.
The study protocol was approved by the Research Ethics Committees of
Laval University Medical Center (DR-002-136). All patients signed a
written, informed consent prior to surgery.

2.3. Standard solutions

Glucocorticoids, estrogens and IS (1 mg) were dissolved in MeOH
(1 mL) and stored at -80 °C. Working solutions (0.0001-1000 pg/mL)
were prepared by serial dilution on the day of use.

2.4. Extraction method

All glass tubes and vials (borosilicate glass tubes, Fisherbrand; glass
tubes, Corning; glass vials, Scientific Laboratory Supplies) containing
adipose tissue were preconditioned with the corresponding solution
required at this step (1 mL) and MeOH (1 mL) followed by vortexing
(1 min) and drying (15 min, 60 °C). Adipose tissue (~200 mg) enriched
with IS (5 ng of 13C4-E2, 13C5-E1 and D4-F) were homogenized (Model
Pro 200, ProScientific, Inc, Monroe, CT, USA) in EtOH:EtOAc (1 mL;
1:1) and immediately frozen on dry ice and stored at —80 °C overnight.
Blank and standard solutions were prepared concomitantly in
EtOH:EtOAc. The following morning, samples were thawed on wet ice
and sonicated (8 X 15s bursts with 1-minute gaps; Ultrasonic cleaner,
Branson Ultrasonic Inc, Danbury, CT, USA). Samples were subjected to
centrifugation (3200g, 45min, 4°C; Heraeus Megafuge 16R,
ThermoFisher Scientific, Germany). The supernatant was transferred
into a new glass tube and reduced to dryness under oxygen-free ni-
trogen (OFN, 60 °C). Samples were resuspended in aqueous MeOH (30%
v/v, 5mL). Solid-phase extraction was carried out after conditioning
the C18 Sep-Pak columns (12cc, 2g; Waters, Wilmslow, UK; MeOH
(2 x 10 mL), followed by water (2 X 10 mL)). The adipose extract was
loaded, and the column washed with water (10 mL) followed by aqu-
eous MeOH (5%, 10 mL). Steroids were eluted using MeOH:CH3;CN
(1:1, 10 mL) into clean glass vials. The eluate was dried under OFN
before derivatization of the estrogens.

2.5. Generation of MPPZ derivatives

MPPZ derivatives were prepared as previously reported [19].
Briefly, acetone (70pL), sodium bicarbonate (10uL, 1 M), and PPZ
(10pL in acetone, 1 mg/mL) were added to the standard/extracted
sample and incubated (1 h, 60 °C). The sample was reduced to dryness
under OFN, followed by addition of iodomethane (100 pL) to the re-
sidue (2h, 40 °C) [19]. After reduction to dryness under OFN, samples
were then dissolved in LC-MS grade water:acetonitrile (70 uL; 70:30). A
schematic representation of the generation of MPPZ derivatives of E1
and E2 is shown in Fig. 2 [18,19].

2.6. Instrumentation

Cortisone, cortisol, E1 and E2 were quantified by LC-MS/MS, using
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a UHPLC Shimadzu Nexera 2 system (Kyoto, Japan) coupled to a Sciex
QTRAP® 6500+ (SCIEX, Warrington, UK) equipped with a Turbospray
interface and operated with Analyst software v1.6.3. MS conditions are
described in Table 1, with ion spray voltage (5500 V) and source tem-
perature (500 °C) and GS1 (414kPa) and GS2 (276 kPa). The com-
pound-dependent parameters are also described in Table 1. Optimal
MS/MS precursor-product transitions and voltages were used, assigned
following direct infusion of individual solutions, as previously de-
scribed [19,20].

2.7. Chromatographic conditions

Standards of glucocorticoids and MPPZ estrogens were injected in-
dividually to confirm chromatographic resolution using an ACE 2 Excel
C18-PFP (150 x 2.1 mm, 2um, ACT Technologies, Aberdeen, UK)
column.

At a constant flow rate of 0.5 mL/min, the chromatography condi-
tions began with 90:10 water with 0.1% FA (solution A) and acetoni-
trile with 0.1% FA (solution B) which was maintained for 1 min. This
was followed by an 11-min linear gradient to 50% B, which was
maintained for 2min, before returning to 10% B by 15min, again
maintaining for 3 min to re-equilibrate. The column and auto-sampler
temperatures were 40 °C and 15 °C, respectively. Injection volume was
30 L.

2.8. Assay validation

2.8.1. Apparent extraction efficiency

Different compositions, volumes and types of elution solvent were
tested, namely, DCM, MeOH and MeOH:acetonitrile (1:1). Recoveries of
steroids from adipose tissue and standard solutions were assessed by
comparison of signal intensities between samples pre- and post-spiked
with IS (5ng; before homogenization and after solid-phase extraction
respectively).

2.8.2. Assessment of matrix effects

Ion suppression was assessed by comparing signal intensity of IS
post-spiked into extracted adipose tissue samples with that of aqueous
steroid solutions following derivatization. To reduce ion suppression
without compromising recovery, washes with MeOH (0-30%) were
assessed. A hexane wash was also tested.

2.8.3. Specificity

Extracted ion chromatograms were carefully examined according to
the retention times of IS for interferences by other endogenous com-
pounds in adipose tissue extracts, which could introduce inaccuracies in
quantitation.

2.8.4. Linearity

Blank samples and aliquots containing estrogens (5, 7.5, 10, 15, 25,
50, 100, 200, 500, 1000 pg/sample), glucocorticoids (50, 75, 100, 150,
250, 500, 1000, 2000, 5000, 10000 pg/sample) and combined IS (5 ng)
were analyzed by LC-MS/MS. Calibration curves were plotted as the
peak area ratio (standard/IS) versus amount of analytes (glucocorti-
coids or estrogens). Calibration lines of best fit were acceptable if the
regression coefficient, r, was > 0.99. Weightings of 1, 1/x and 1/x>
were compared and 1/x weighting selected to reduce errors at low
amounts of analyte.

2.8.5. Accuracy and precision

The precision and accuracy were assessed using standard solutions
prepared on the same and different days. The precision was calculated
as the Relative Standard Deviation (RSD) (standard deviation/
mean X 100), and % accuracy was the Relative Mean Error (RME)
((mean measured value — theoretical value)/theoretical value x 100);
precision was accepted with RSDs 20% and RME 100 + 20% [21].
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Fig. 2. Formation of estrogen derivatives.

Table 1

Mass spectrometric conditions for analysis of analytes and internal standards by positive ion electrospray ionization.

Molecular Weight g/mol MRM transition for monitoring

Declustering potential (V) Collision energy (V) Cell exit potential (V)

Precursor ion (m/z)

Product ion (m/z)

Analytes

Cortisone 360.5 361.1 163.1
Cortisol 362.5 363.1 121.2
Estrone-MPPZ 549.6 549.1 502.3
Estradiol-MPPZ 551.7 551.1 504.3
Internal standards

D4-Cortisol 366.5 367.3 121.0
13¢G;-Estrone-MPPZ 552.6 552.3 505.3
13Cy-Estradiol- MPPZ ~ 554.6 554.3 507.3

81 31 26
76 31 8

100 59 20
100 129 8

166 41 54
100 39 15
100 35 15

Key: MPPZ, 1-(2,4-dinitro-phenyl)-4,4-dimethylpiperazinium; MRM, Multiple reaction monitoring; V, Volts.

2.8.6. Limit of detection and quantitation

The signal-to-noise ratio (SNR) was calculated from peak areas of
steroids and adjacent background noise (over the same time window as
the peak width). The limits of detection were assigned at a SNR = 3
[21].

Replicate aliquots (7.5, 15, 25, 50, 1000 pg/sample and 0.075, 0.15,
0.25, 0.5, 10 ng/sample) of estrogens and glucocorticoids, respectively
with IS were prepared as above and analyzed. The LOQ was calculated
as the amount affording precision and accuracy of ~20% or less [21].

2.9. Method application
The presence of glucocorticoids and estrogens was assessed, and

their amounts quantified in breast adipose tissue from healthy women
(n = 6) and breast cancer patients (n = 17) using the validated method.

3. Results and discussion

Analysis of steroids in small biopsy samples of adipose tissue from
clinical studies is desirable. Here we report a method allowing both
glucocorticoids and estrogens to be assessed in single adipose tissue
samples, applied here to breast tissue in the setting of cancer.
Challenges existed in combining these steroids in one assay due to
different dynamic ranges in concentration, as well as different chemical
properties between phenolic and non-aromatic steroids. The use of
MPPZ derivatization enabled detection of estrogens, without compro-
mising quantitation of glucocorticoids.

3.1. Extraction

Both liquid-liquid extraction (LLE) followed by solid-phase extrac-
tion (SPE) or SPE on its own have been used to recover estrogens and
glucocorticoids from adipose tissue samples in previous publications
[2,10-12,22]. SPE was our favoured approach here, as extraction
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Fig. 3. Mass chromatograms of glucocorticoids and MPPZ derivatives of estrogens following analysis of an unextracted solution of standards, 1000 pg/sample. Total
Ion Chromatograms and the corresponding extracted ion chromatograms showing resolution of cortisone, cortisol and derivatives of estrone and estradiol, by

retention time and mass transition.

column technologies have been developed to reduce ion suppression
particularly with complex matrices. Although analyte specific, LLE
presents drawbacks with reports of high variability across experi-
menters due to manual errors [23].

Alternative conditions were tested to improve recovery of the main
analytes of interest i.e. cortisone, cortisol, E1 and E2. Homogenization
solutions of either EtOAc, EtOH:EtOAc (1:1), Et,O:EtOAc (2:1) or water
were tested to solubilize the steroids. When water was used, this was
then followed by LLE comparing three different organic solvent solu-
tions used in previous publications with estrogen extraction protocols:
Et,O:EtOAc (2:1) [24], Et,0 [25] or MTBE [26]. Under these circum-
stances, poor recovery rates were achieved; < 15% for °C3-E2 and <
50% for '3C3-E1. Recovery for D,-F from the homogenate into EtOAc
was highest (60-70%) as previously reported [17,20]. Addition of EtOH
with EtOAc lowered the recovery for cortisol (D4-F) only slightly
(around 5%), but increased recovery of °C;-E2 and '3C5-El sig-
nificantly. The best recovery rate for both estrogens was achieved using
EtOH:EtOAc (1:1) (> 60%).

Following homogenization, shattering the tissue by dripping it
through acetic acid, and steps involving sonication and centrifugation
were also assessed to enhance extraction efficiency [17,20]. Sonication
and longer centrifugation time improved recovery by 5-10%, but
“acetic acid dripping” of tissue led to a loss of the estrogens [17,20].
Final sample clean-up by SPE was assessed comparing reversed phase
matrices with polymeric sorbent (Oasis HLB®). As previously reported,
reversed-phase C18 (BondElut® (2g, 12cc) and Sep-Pak® (2g, 12cc)
C18 columns) showed better recovery rate and lower matrix effect for
steroids isolated from adipose when compared to polymeric sorbents,
unlike from plasma [19,26,27]. In our hands, recovery was not different
across the two reversed-phase C18 columns tested, although sample
preparation was quicker with Sep-Pak® compared to BondElut®, due to
a faster flow.

To decrease ion suppression by cleaning the sample further, a
variety of washing steps with Sep-Pak® columns were tested, aiming to
maintain recovery. Washes tested included, water (2 x 10 mL); water
(1 x 10mL) followed by aqueous 5%, 10%, 20% or 30% MeOH
(1 x 10mL); water (1 x 10mL) followed by aqueous 5% MeOH
(1 x 10 mL) and hexane (1 x 10 mL); and finally, water (1 x 10 mL)

followed by hexane (1 x 10 mL). Use of aqueous MeOH washes, in the
range 10% to 30%, before elution (as performed when recovering es-
trogens from plasma using Oasis MCX cartridges [19]) led to significant
loss of analytes with the Sep-Pak® columns. A 5% MeOH wash did not
affect recovery but improved signal (by diminution of ion suppression)
significantly. Washing with the more lipophilic solvent, hexane, led to a
loss of analytes.

Concomitantly, elution solutions (MeOH; CH3;CN; MeOH:CH3;CN
(1:1); DCM) and volumes (5-10 mL) were tested. DCM is recommended
in elution using supported liquid extraction of estrogens [28], but it did
not completely elute estrogens from the reversed phase C18 columns.
The same was true for acetonitrile used alone. MeOH is the manu-
facturer’s choice of elution solvent for Sep-Pak® columns, however a
mixed phase of MeOH:CH3CN (1:1) led to reduced matrix effect and
improved recovery for estrogens compared to MeOH alone. MeOH
alone yielded better recovery of cortisol, as previously published
[17,20], and using MeOH:CH3CN (1:1) led to a further loss of ~5% but
this was deemed acceptable for the combined assay, given that gluco-
corticoids were more abundant. Of note, measurements of recovery
were increased when collection tubes were preconditioned with the
elution solvent (K. Soma, personal communication, 2018).

3.2. Chromatographic conditions

Chromatographic conditions were based on those developed by
Denver and collaborators [19] for the analysis of estrogens in plasma.
Using the same gradient and column, we could not separate cortisol and
cortisone, which was necessary as cortisol may suffer isobaric inter-
ference from natural isotopologues of cortisone. Following changes to
the gradient, the two glucocorticoids were separated, without affecting
the separation of derivatized estrone and estradiol (Fig. 3). The gradient
was achieved more rapidly and maintained for a shorter period than
Denver et al. [19], who also analyzed estrogen metabolites. Increasing
the column temperature to 40 °C increased the resolution of the glu-
cocorticoids. Of note, initially we observed a shift in the retention time,
tracked by the isotopically labelled IS, between extracts of standards
and those of adipose tissue, but this drift was eliminated by addition of
high organic washes (95% CH3CN) after four-five adipose tissue
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samples and was most likely to be due to build-up of lipid residues in
the column. However, we cannot rule out that this is also due to build-
up of the derivatizing agents as we were faced with similar issues with
plasma samples [19]. To further improve robustness, centrifugation
(3000 g, 5min) of the derivatized sample prior to injection was also
introduced. Under these circumstances, the retention time was main-
tained between 0.24 and 1.18% (1.2-305s) during a batch size of 30
with 23 adipose samples. It would be valuable to assess robustness after
larger numbers of biological samples, but batch sizes of 40 are currently
the maximum achievable per single run.

3.3. Specificity

Baseline chromatographic separation of both glucocorticoids and
derivatives of estrogens was achieved using aqueous standards (Fig. 3).
Stable isotope-labelled E2, E1 and cortisol were selected from previous
applications [19,20]. Isotopically labelled IS can both introduce and
suffer from isobaric interferences, but this was pre-empted in the design
of the chromatographic method. We also confirmed that inactive 17a-
E2 does not elute at the same time as active 1733-E2. The use of three
stable isotope standards allowed for confidence in identification in the
biological matrix. When applied to adipose tissue samples, the chro-
matographic regions close to the retention time of the analytes were
free from any interferences which may disrupt peak shape (Fig. 4). Of
note, some interferences higher than SNR = 3 were observed before
adding high organic washes between adipose samples. Peaks were
symmetrical for all analytes and IS without any indication of closely
eluting compounds. Qualifier transitions of m/z 363.1—91.1 (cortisol),
m/z 361.1—77.0 (cortisone), m/z 551.1—-58.1 (E2) and m/z 549.1—
72.0 (E1) may be added should further reassurance of specificity be
required.

3.4. Linearity

Linear standard curves of cortisone, cortisol, E1-MPPZ and E2-MPPZ
were generated (Fig. 5). A mean r-value > 0.99 was achieved for
analytes with a weighting of 1/x (Table 2). The linear ranges were si-
milar to those used in other methods quantifying those steroids in
human adipose tissue, albeit not in combination [2,13].

CORTISONE CORTISOL
A A ‘1 “.‘
S\
§1045 - o - 2.4e5 o o
é = 4t 23
(9
D
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3.5. Accuracy and precision

The values for intra-assay precision and accuracy (Table 3) were
acceptable (< 20% RSD for precision and < =+ 20% accuracy) at low
and high points of the calibration curve. Cortisone showed less preci-
sion and accuracy than cortisol, most likely attributable to the use of
cortisol IS (D4-F) for cortisone and not labelled cortisone IS. Dg-corti-
sone is available commercially and could be introduced in the future.
The precision and accuracy of the upper cortisone points could be im-
proved by use of an unweighted standard curve.

3.6. Limits of detection and quantitation

The LODs for the four analytes of interest are shown in Table 2. We
report an LOQ of 15pg and 25pg on column for E1-MPPZ and E2-
MPPZ, respectively (Table 2). Adjusting for a generic mass of 200 mg of
adipose tissue, this equates to ~275 pmol/kg and ~ 459 pmol/kg. This
is a higher LOQ for E2 than the ones reported in negative ESI [11,12]
and in GC-MS/MS [13]. However, those other methods are not directly
comparable as they did not combine estrogen and glucocorticoid ex-
traction and thus could focus the instrumental conditions to a greater
degree. Due to the permanently charged moiety of the derivative pro-
duced, we used ESI in positive mode which has inherently more noise
than negative mode [11,12]. Positive ESI was necessary for the com-
bined approach as glucocorticoids would not readily ionize in negative
mode. Care was taken to ensure that cortisone and cortisol were un-
affected by the derivatization process as expected, because the nu-
cleophilic substitution with PPZ in the presence of a base requires an
activated phenolic hydroxyl group. Aliphatic hydroxyl groups in E2,
cortisone and cortisol do not react with analogues of Sanger’s reagent
such as PPZ [18]. In screening experiments, we did not see change in
amount of D4-F measured in derivatized vs underivatized adipose ex-
tracts or aqueous standard solutions or any detriment to its SNR. As
reported by Hennig et al., the use of only one extraction column may
also explain the lower sensitivity of our combined method [13].

Despite slightly higher LOQs, our method achieved higher recovery,
especially for E2, as well as reduced matrix effects, leading to quanti-
fiable E2 in breast adipose tissue, even in postmenopausal women.
Further reductions in ion suppression were difficult to achieve because
upon assessment of elution fractions (1 mL), we found that components
causing ion suppression occurred primarily in the same fraction that
contained the estrogens. In summary, it is unlikely that adding more

ESTRONE
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Fig. 4. Mass chromatograms of glucocorticoids and MPPZ derivatives of estrogens extracted from adipose tissue. Extracted ion chromatograms at (A) the lower and
(B) upper limit of quantitation and in adipose tissue (C) from control women and (D) women with breast cancer.
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Fig. 5. Calibration curves of glucocorticoids and MPPZ derivatives of estrogens following extraction. A) Cortisone, B) Cortisol, C) Estrone and D) Estradiol.
Regression lines (representing the range covered by the standard curve) were fitted with a 1/x weighting. Grey circles represent values of patient samples falling in

the linear range and black squares represent those values requiring extrapolation.

steps during sample preparation by SPE would remove those inter-
ferences, improve the signal and lower the LOQ, as they appear to
possess very similar characteristics to E1 and E2. However, other ap-
proaches such as supported liquid extraction may afford new oppor-
tunities [29].

Linear range and LOQ of cortisol and cortisone extracted from
adipose tissue are not commonly reported in publications [2]. This may
be due to the ease with which these more abundant steroids can be
detected in adipose tissue, but this information is valuable to compare
methodologies. Methlie et al. reported a LOQ of 200 pmol/kg and a
range from 200 pmol/kg to 200 nmol/kg [30]. Our LOQ values for
cortisone and cortisol, 75pg and 100pg, represent ~1040 and
~1380 pmol/kg which are ~ 5-fold of those reported values. However,
our values fall into their interquartile range and largely in the upper
range of the calibration curve. Interestingly, they performed LLE in-
stead of SPE and reported a recovery higher than 95%, although they

Table 2
Limits of Detection, Quantitation and Linearity of Response.

pre-spiked after homogenization of the tissue, compared to other glu-
cocorticoids-only extraction methods with recoveries of ~70% [17,20]
in which the pre-spiking occurred before homogenization.

3.7. Method application

The method was applied to samples from healthy women under-
going reduction mastectomy and breast cancer patients undergoing
partial mastectomy. We were able to detect and quantify estrogens in
more than 90% of our samples using around 200 mg of adipose tissue.
Cortisol was detected in all breast adipose tissue samples and cortisone
in most. Of note, cortisone was undetected in 5 samples, 4 of which
were from women without breast cancer, although the number of
samples is too small to draw firm conclusions and not the purpose of
this report. A few samples generated data higher than the ULOQ, sug-
gesting that validation of a higher point would be advisable moving

Metabolite 1S Recovery of IS (%) LOD (pg/sample)

LLOQ (pg/sample)

RT RSD (%) Endogenous (IS) RT Delta (s)

ULOQ (pg/sample) R

E1 13C5-E1 82 10 15
E2 13¢,5-E2 62 10 25
Cortisone D4F NT 50 75
Cortisol D4-F 47 17 100

1000 0.99 1.18 (1.18) 30
1000 0.99 1.03 (0.99) 24
10 000 0.99 0.24 1.2
10 000 0.99 0.25 (0.26) 1.2

Key: E1, Estrone; E2, Estradiol; IS, Internal standard; LOD, Limit of detection; LLOQ, Lower limit of quantitation; ULOQ, Upper level of quantitation; NT, Not tested;

RSD, Relative standard deviation; RT, Retention time.
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Table 3
Accuracy and precision of the method.
Metabolite ~ Target Mean Precision Accuracy
(pg/sample) (pg/sample) (RSD %) (RME %)
El 15 17 9.9 10.0
25 28 13.2 12.11
50 49 11.9 2.8
1000 1018 5.2 1.8
E2 25 29 12.8 17.4
50 47 11.2 2.8
1000 1075 3.4 5.8
Cortisol *75 67 6.0 11.1
#150 152 6.5 1.6
250 244 12.3 2.1
500 460 13.8 8.0
10,000 8962 9.0 10.3
Cortisone *75 61 11.3 19.2
#250 213 12.0 6.1
500 415 17.2 17.0
*10,000 8143 20.8 18.6

Key: E1, Estrone; E2, Estradiol; RSD %, Relative standard deviation (standard
deviation/mean X 100); RME %, Relative Mean Error ((mean measured value -
theoretical value)/theoretical value X 100); n = 6 replicates unless otherwise
specified: # n = 5 replicates; *n = 4 replicates.

forward. Data points higher than the ULOQ were observed from breast
adipose tissue from both control women and cancer patients.

Calculated amounts of cortisone and cortisol as well as estrone were
in the same range as previously reported in subcutaneous and visceral
adipose tissue [2] or in breast adipose tissue [2,13]. E2 levels were
higher than expected by 10-fold, but this is in comparison with a very
limited number of studies available in breast adipose tissue [2,13].
Interestingly, when E2 levels in breast adipose tissue are reported, le-
vels often fall below LOQ and LOD, which was not the case with our
assay. For example, Hennig and collaborators reported a LOD of 50 pg/
g for all estrogens but reported a median adipose tissue concentration of
40 pg/g for E2 [13].

4. Conclusion

In summary, concomitant detection and quantification of cortisone,
cortisol, E1 and E2 was achieved in breast adipose tissue. The combined
analysis of derivatized and underivatized steroids was possible due to
the specificity of the PPZ for the phenolic group of the estrogens and
allowed for quantification of those steroids with low ionization poten-
tial in positive ESI in a single biopsy. This profile could most likely be
extended by addition of estrogen metabolites such as the 4-hydro-
xyestrogens as well as underivatized androgens. This novel approach
will allow quantification of estrogens and glucocorticoids in breast
adipose tissue to elucidate the complex relationship of those steroids in
the breast cancer paradigm.
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