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Abstract

Deriving accurate structural maps for attenuation correction (AC) of whole-body PET remains 

challenging. Common problems include truncation, inter-scan motion, and erroneous 

transformation of structural voxel-intensities to PET μ-map values (e.g. modality artifacts, 

implanted devices, or contrast agents). This work presents a deep learning-based attenuation 

correction (DL-AC) method to generate attenuation corrected PET (AC PET) from non-

attenuation corrected PET (NAC PET) images for whole-body PET imaging, without the use of 

structural information. 3D patch-based cycle-consistent generative adversarial networks 

(CycleGAN) is introduced to include a NAC-PET-to-AC-PET mapping and an inverse mapping 

from AC PET to NAC PET, which constrains the NAC-PET-to-AC-PET mapping to be closer to a 

one-to-one mapping. Since NAC PET images share similar anatomical structures to the AC PET 

image but lack contrast information, residual blocks, which aim to learn the differences between 

NAC PET and AC PET, are used to construct generators of CycleGAN. After training, patches 

from NAC PET images were fed into NAC-PET-to-AC-PET mapping to generate DL-AC PET 

patches. DL-AC PET image was then reconstructed through patch fusion. We conducted a 

retrospective study on 55 datasets of whole-body PET/CT scans to evaluate the proposed method. 

In comparing DL-AC PET with original AC PET, average mean error (ME) and normalized mean 

square error (NMSE) of the whole-body were 0.62%±1.26% and 0.72%±0.34%. The average 

intensity changes measured on sequential PET images with AC and DL-AC on both normal tissues 

and lesions differ less than 3%. There was no significant difference of the intensity changes 

between AC and DL-AC PET, which demonstrate DL-AC PET images generated by the proposed 

DL-AC method can reach a same level to that of original AC PET images. The method 

demonstrates excellent quantification accuracy and reliability and is applicable to PET data 

collected on a single PET scanner or hybrid platform (PET/CT or PET/MRI).
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1. INTRODUCTION

Attenuation and scatter correction (referred throughout as “AC”) are essential components of 

positron emission tomography (PET) reconstruction that improves visual interpretation, and 

more importantly, enables absolute quantification. The prevailing AC method is to calculate 

attenuation factors and model scatter using information from a structural image obtained 

with either computed tomography (CT) or magnetic resonance imaging (MRI). CT-based 

AC (CTAC) methods are widely accepted given the simplicity of mapping Hounsfield units 

to 511 keV linear attenuation coefficients but limitations persist including propagation of 

CT-based artefacts and spatial inconsistencies such as PET-to-CT misalignment (Berker and 

Li, 2016). In addition, concerns remains regarding the potential hazards of radiation 

exposures, especially CT doses (Berrington de Gonzalez et al., 2016; Journy et al., 2014; 

Journy et al., 2017; Fahey et al., 2017) and excessive exposures on pediatric patients 

receiving sequential scans (Chawla et al., 2010; Cheuk et al., 2012), though the models used 

to estimate stochastic risks remain controversial (Fahey et al., 2011).

MRI is a non-ionizing alternative to CT and has superior soft tissue contrast (Lei et al., 
2019c), but presents even greater challenges for AC due to an absence of a direct conversion 

method between MRI voxel intensity and 511 keV linear attenuation coefficients 

(Mehranian et al., 2016; Hofmann et al., 2009). Addressing this problem necessitates 

substantial pre-processing such as segmentation (Zaidi et al., 2003; Hofmann et al., 2009; 

Fei et al., 2012; Catana et al., 2010; Keereman et al., 2010) and registration to atlas 

templates (Hofmann et al., 2008; Malone et al., 2011; Hofmann et al., 2011). Segmenting 

lung and cortical bone are difficult because the two only produce weak signals with 

conventional magnetic resonance (MR) sequences. Though ultrashort echo time (UTE) 

(Keereman et al., 2010) and zero echo time (ZTE) (Leynes et al., 2017) pulse sequences are 

investigated for bone visualization and segmentation, the performances were limited by high 

level of noise and image artefacts (Mehranian et al., 2016). Moreover, these sequences 

provide limited diagnostic value compared to other conventional sequences and are 

employed for the sole reason of AC, which prolong the overall acquisition duration. 

Registration-based AC methods are usually computational costly, especially when multiple 

registrations are required. The accuracy of this technique depends highly on the registration 

accuracy, while accurate registration is not always guaranteed due to organ morphology and 

variability across patients. Additional concerns regarding the reproducibility of MRI and 

potential misalignment with PET images persist (Olin et al., 2018). Image artefacts, such as 

truncation and distortion, can also propagate into the creation of the 511 keV attenuation 

map, adversely affecting PET quantification (Mehranian et al., 2016).

The development of deep learning (DL) has demonstrated tremendous potential in computer 

vision as well as medical imaging (Shen et al., 2017). Deep learning could help generate 

synthetic CT from MR images to predict AC maps (Yang et al., 2019; Spuhler et al., 2018; 

Lei et al., 2018b; Lei et al., 2018a; Dong et al., 2019). However, these methods still require 

structural images, and the accuracy is limited by image artefacts as well as inter-modality 

co-registration errors. To circumvent the need for structural information, we aimed to 

develop a deep learning-based method that learns the relationship between existing 

attenuation-corrected PET (AC PET) and non-attenuation-corrected PET (NAC PET) to 
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directly map a new NAC to AC PET. This approach provides a solution to the AC problem 

that can bypass confounds associated with collection and processing of structural image data 

as described above. To generate AC PET images without the use of structural data, a 

supervised 3D patch-based cycle-generative-adversarial-network (CycleGAN) architecture 

was employed for our deep learning-based AC (DL-AC) method to model the non-linear 

mapping from NAC PET to AC PET. Several residual blocks, which aim to learn the 

difference between NAC PET and AC PET, were integrated into the CycleGAN architecture. 

Leave-one-out cross-validation was performed on whole-body PET images while the 

algorithm’s reliability was further evaluated on an additional hold-out test dataset consisting 

of longitudinal PET scans.

2. MATERIALS AND METHODS

2.1 System Overview

Fig.1 and Fig.2 outlines the training and correction stage’s schematic workflow of the 

proposed deep learning AC (DL-AC) method, respectively. For a given pair of NAC PET 

and corresponding AC PET, 3D patches of NAC PET and AC PET were extracted from 

NAC PET and AC PET images as training pairs. The 3D patches were extracted by sliding a 

window (with voxel size of 72×72×32) from NAC PET or AC PET image with an overlap 

(with voxel size of 60×60×24) between each two neighboring patches. The AC PET patch 

was used as the deep learning-based target of the NAC PET patch. The goal of DL-AC is to 

learn the mapping from NAC PET to AC PET to directly generate DL-AC PET image that 

can reach the same image quality level of original AC PET image. Since the NAC PET 

image is contaminated with attenuation and scatter artifacts, training a NAC PET to AC PET 

mapping model is highly under-constrained, meaning artifacts may mislead the mapping. To 

cope with this issue, first, a CycleGAN architecture (Harms et al., 2019; Lei et al., 2019a) 

was applied into DL-AC to enforce the learned mapping from NAC PET to AC PET (NAC-

to-AC) to be closer to a one-to-one mapping via introducing an inverse AC PET to NAC 

PET (AC-to-NAC) mapping and using cycle consistent loss to supervise the two mappings. 

The two mappings were modeled by two generators. In addition, to increase the realism of 

the generated DL-AC PET image (synthetic AC), two discriminators were used to judge the 

realism of the synthetic image generated by the two generators. During correction stage, the 

patches of a new NAC PET image were fed into the trained NAC-to-AC generator to obtain 

DL-AC PET patches, and the final DL-AC PET image was reconstructed with patch fusion.

2.2 Image Acquisition

A retrospective sample of 25 whole-body PET patients was used for training and leave-one-

out cross-validation. Each patient has one whole-body PET/CT image dataset. Each dataset 

contains AC PET, NAC PET and CT that were acquired in one exam. Among the 25 

patients, the reasons for exam of 8 patients were lung cancer, 4 lymphoma, 4 head and neck 

cancer, 3 for skin cancer, 2 breast cancer and 4 for abdominal cancer. Fourteen out of the 25 

patients contain head in the PET/CT images. An additional cohort of 10 whole-body 

patients, each with three sequential whole-body PET scans separated by approximately one 

month (30 datasets total) were excluded from training as hold-out test to further evaluate the 

proposed method. All the 10 patients were lung cancer patients, and 1 out of the 10 patients 
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contains head in PET/CT images. All PET data were acquired on a Discovery 690 PET/CT 

scanner (General Electric, Waukesha, WI) using a clinical 18F-FDG whole-body protocol. 

Briefly, patients were intravenously administered between 370 (body mass index (BMI) < 

30) and 444 MBq (BMI >= 30) followed by a 60-minute uptake period. Emission data were 

collected at a bed duration of 1.5 min (BMI <= 18.5), 2 min (18.5<BMI<25) or 2.5 min 

(BMI>=25). AC PET Images were reconstructed as static images with a 3D order-subset 

expectation maximization algorithm (3 iterations and 24 subsets) with time-of-flight and all 

corrections (scatter, randoms, attenuation, normalization and dead time) (Iatrou et al., 2004). 

NAC PET did not include attenuation, scatter and time-of-flight correction. The final 

reconstructed matrix size was 192×192 with a pixel size is 3.65×3.65×3.27 mm3. The 

number of slices of PET ranges from 263 to 515.

2.3 Network Architecture

Fig. 3 shows the generator and discriminator network architectures used in the proposed 

method. As can be seen from Fig. 3, the network architecture of discriminator is a traditional 

FCN (Lei et al., 2019b), which include several convolution layers followed by max-pooling 

and a sigmoid layer to obtain binary output. The generator architecture (of both NAC-to-AC 

and AC-to-NAC) is an end-to-end U-Net including encoding and decoding paths. The 

encoding path is composed of two convolution layers followed by max-pooling to reduce the 

feature maps size. The decoding path is composed of two deconvolution layers to obtain the 

end-to-end mapping and a tanh layer to perform the regression. In order to combine the 

features extracted from encoding path and decoding path, a short connection was used to 

bypass the features extracted from previous hidden layer to current hidden layer. The short 

connection was implemented by six residual blocks, since the residual block could lead the 

feature maps extracted from deep hidden layer to learn the difference of source and target 

images’ distributions. This enforces the DL-AC focus on learning image differences between 

the NAC PET and AC PET, which would be mainly the attenuation and scatter artifact.

Convolutional neural networks (CNN) with residual blocks have achieved promising results 

in tasks where source and target images are largely similar, much like the relationship 

between NAC PET and AC PET images. Each residual block includes a residual connection 

and multiple hidden layers. Through the residual connection, an input bypasses the hidden 

layers of a residual block, thus these hidden layers are enforced to learn specific differences 

between input and output, which would be attenuation and scatter artifacts. As shown in 

generator architecture of Fig. 3, a residual block is implemented by two convolution layers 

within residual connection and an element-wise sum operator.

2.4 Cycle Consistent Loss

Generative adversarial network (GAN) relies on two sub-networks, a generator and a 

discriminator, which work in competition with each other. Given a NAC PET and an AC 

PET image, an initial mapping is learned to be able to generate a DL-AC (synthetic AC) 

PET image from a NAC PET image. The generator generates a DL-AC PET image that can 

fool the discriminator to misrecognize the image as an original AC PET image. Conversely, 

the discriminators’ training objective is to decrease the judgment error of the discriminator 

network, and enhance the ability to differentiate DL-AC PET from AC PET. As these 
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networks are pitted against each other, the capabilities of each improve, leading to more 

accurate DL-AC PET generation. CycleGAN doubles the process of GAN by enforcing an 

inverse mapping. This doubly constrains the model and can increase accuracy of output 

images. As shown in Fig.1, during training stage, the extracted patches of the NAC PET 

were fed into the generator (NAC-to-AC) to get the equal-sized DL-AC PET patches. The 

DL-AC PET was then fed into another generator (AC-to-NAC) to generate NAC PET, 

referred to as cycle NAC PET. To enforce forward-backward consistency, the extracted 

patches of the training AC PET are also fed into the two generators to produce a synthetic 

NAC PET and cycle AC PET.

To train the CycleGAN, the learnable parameters of generators and discriminators were 

optimized iteratively and in an alternative manner. The accuracy of both networks is directly 

dependent on the design of their corresponding loss functions. The generator loss consists of 

an adversarial loss and a cycle consistency loss. The goal of the adversarial loss is to 

improve the generator to produce the synthetic images that can fool the discriminators via 

minimizing adversarial losses, which relies on the output of the discriminators, i.e., the 

distribution of feeding synthetic AC image (generated from NAC-to-AC generator 

GNAC−AC )) into the discriminator of AC and the distribution of feeding synthetic NAC 

image (generated from AC-to-NAC generator GAC−NAC) into the discriminator of NAC. For 

clarity, we present only formulation for GNAC−AC.

Ladv GNAC−AC, DAC, INAC = SCE DAC GNAC−AC INAC , 1 (1)

where INAC denotes the NAC PET image and GNAC−AC(INAC) is the output of the NAC-to-

AC generator, i.e. the DL-AC (or synthetic AC). DAC is the AC discriminator which is 

designed to return a binary value indicating whether a distribution is real (from AC) or fake 

(from synthetic AC). The function SCE(∙ ,1) is the sigmoid cross entropy between the 

distribution output of discriminator and a unit.

The cycle consistent loss is computed as the combination of the mean squared error (MSE) 

and gradient difference error (GDE) between the original images and the cycle images. The 

MSE loss forces the generator to synthesis AC images with accurate voxel intensity to a 

level of ground truth AC images. The GDE loss forces the synthetic AC images’ gradient 

structure to a level of ground truth AC images.

Lcyc GNAC−AC, GAC−NAC, INAC, IAC =
MSE GAC−NAC GNAC−AC INAC , IAC + λ
⋅ GDE GAC−NAC GNAC−AC INAC , IAC

(2)

where λ is a parameter which control the balance of MSE and GDE loss for cycle 

consistency. GAC−NAC(GNAC−AC(INAC)) is the output of first feeding INAC into the generator 

GNAC−AC and then feeding the output into the generator GAC−NAC, namely the output of this 

term denotes the cycle NAC. The parameter λ was set to 10 in this work.

Finally, the optimization of generator is obtained by
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GNAC−AC, GAC−NAC = arg min
GNAC−AC, GAC−NAC

Ladv GNAC−AC, DAC, INAC + Ladv GAC−NAC, DNAC, IAC
Lcyc GNAC−AC, GAC−NAC, INAC, IAC + Lcyc GAC−NAC, GNAC−AC, IAC, INAC

.

(3)

The optimization of discriminator is obtained by

DAC, DNAC = arg min
DAC, DNAC

SCE DAC GNAC−AC INAC , 0 + SCE DAC IAC , 1

+ SCE DNAC GAC−NAC IAC , 0 + SCE DNAC INAC , 1 .
(4)

To supervise the generators and discriminators via the proposed loss functions, Adam 

gradient optimizer with learning rate of 2e-4 was used for optimization. The batch size was 

set to 20. The number of training iterations was set to 8.6e+4. The proposed algorithm was 

implemented by Python 3.7 and TensorFlow as in-house software on a NVIDIA Tesla V100 

GPU with 32GB of memory.

2.5 Validation and Evaluations

To evaluate the reliability of the proposed method on predicting the quantification changes 

over time, we calculate the mean error (ME), normalized mean square error (MNSE), peak 

signal to noise ratio (PSNR) and normalized cross correlations (NCC) metrics between DL-

AC PET and AC PET on the evaluation dataset. These metrics were calculated within 

whole-body volume and within contoured organs, such as brain, lung, heart, left and right 

kidney and liver. The calculation of these metrics is as follows:

ME =
∑i ∈ V IAC i − IDL−AC i

∑i ∈ V IAC i (5)

NMSE =
∑i ∈ V IAC i − IDL − AC i 2

∑i ∈ V IAC i 2 (6)

PSNR = 10log10
N ⋅ maxi ∈ V IAC i , IDL−AC i
∑i ∈ V IAC i − IDL − AC i 2 (7)

ME and NMSE are averaged over all the voxels, i, inside the contoured organs or whole-

body volume, V, with N the total number of voxels inside the volumes. IAC(i) and IDL−AC(i) 
are PET intensities after AC and the proposed DL-AC respectively. maxi∈(∙) is the max 

intensity inside the delineated volume.
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NCC =
∑i ∈ V C ⋅ IAC i − mean IAC i ⋅ IDL−AC i − mean IDL−AC i

std IAC ⋅ std IDL−AC
(8)

where mean(∙) and std(∙) calculates the mean and standard deviation (STD) intensity among 

selected voxels. The intensity profiles of AC PET and DL-AC PET which plot the intensities 

of voxels one by one along a line in the image volume, are also shown in one figure to 

qualitatively demonstrate their differences.

In order to quantify the lesion detectability, we calculated and compared the signal-noise-

ratio (SNR) and contrast-noise-ratio (CNR) of the lesion in both AC PET and DL-AC PET 

(Bao and Chatziioannou, 2010; Qi, 2001; Schaefferkoetter et al., 2017). The SNR is defined 

as

SNR = mean I i
std I i , (9)

where I(i) are the voxels in the lesion of AC PET or DL-AC PET. The CNR is defined as

CNR = mean I i − mean Ib i
std I i , (10)

where Ib (i) are the intensities of voxels in the 2mm margin around the lesion which are 

considered as background.

Leave-one-out cross-validation experiments were performed with 25 patients, each of which 

has one PET/CT image dataset. For each experiment, 24 sets of images were used for 

training and the remaining 1 set for validation. The experiment repeated 25 times to make 

each set used as test data exactly once. A separate hold-out test was also used to evaluate the 

proposed method, we trained the model by previous 25 patients and test the model by an 

additional 10 patients, each of which includes three sequential scans for a total of 30 

datasets. The change between two sequential PET scans is of clinical interest which may 

indicate the treatment outcomes or tumor growth. We calculated such change using both AC 

PET and DL-AC PET and compared the two results in order to demonstrate the reliability of 

the proposed method in quantifying the change between two sequential PET scans. Volumes 

of interest (VOIs) were manually delineated over structures of lung, heart, liver, bilateral 

kidneys and brain if patient dataset contains, based on CT, and lesions based on PET as 

indicated in patient’s clinical report. The whole-body, which is defined as the region within 

patient body, was also segmented based on CT as a VOI to quantify the general performance 

across the whole patient body. Statistic T-test was also performed to quantify the statistically 

difference between AC PET and DL-AC PET images in the sequential scan cohort.

In order to compare the proposed method with other state-of-art learning based method in 

PET AC, we implemented UNET(Van Hemmen et al., 2019) and GAN (Kurz et al., 2018) 

using the same datasets. The UNET method’s architecture is a deep convolutional encoder-

decoder network structure with 50% dropout, batch normalization, and max pooling (Van 

Hemmen et al., 2019). The GAN method’s architecture consists a generator architecture, 

which is U-shaped deep convolutional neural network (U-Net-like), to synthesize DL-AC 
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from NAC PET, and a discriminator architecture, which is a fully convolutional network, to 

judge the realism of synthesized DL-AC (Kurz et al., 2018). Compared with UNET and 

GAN, CycleGAN could enforce the mapping of NAC PET to AC PET to be closer to a one-

to-one mapping, although NAC PET to AC PET mapping is an ill-posed problem. 

Specifically, we trained both UNET and GAN using the 25 patients and tested on the 10 

patients with sequential scans as we did for CycleGAN. Same quality metrics and VOIs 

were also used in statistical analysis.

3. RESULTS

3.1 Leave-one-out cross-validation study

Fig.4 shows a comparison of images from the AC PET and the proposed DL-AC PET results 

on one patient as test dataset among the 25 patients in the leave-one-out cross-validation 

study. The images generated with the DL-AC method show excellent resemblance to the AC 

PET images. More explicit comparison is illustrated in Fig.5, where the profiles of the DL-

AC PET data agree well with those of AC PET. The joint histogram of voxels from the 

whole-body region is close to identity line indicating good intensity agreement between 

reference AC PET and our generated DL-AC PET. Fig.6 shows representative plans of brain, 

lesion in lung and kidneys of AC PET and DL-AC PET and their difference maps, in 

addition to those of liver shown in Fig. 4. Output of the validation metrics are listed in Table 

1. The ME on brain, lung, heart, kidneys, liver and lesion are all less than 4%, with NMSE 

less than 1.5%. The ME and NMSE on whole body are −0.01% ±2.91% and 1.21%±1.73%. 

The NCC is close to identity, demonstrating excellent intensity similarity between the AC 

PET and DL-AC PET. For comparison, the NCC between DL-AC PET and NAC PET is 

0.644±0.214 in whole body region. PSNR are all around or larger than 30dB.

3.2 Hold-out validation study

Fig.7 shows the side-by-side comparison of AC PET and DL-AC PET on one patient from a 

representative sequential PET scan and Fig.8 plots the cranial-caudal profile and whole-body 

joint histograms from the same data. Excellent agreement is observed in both PET image 

and profile comparisons. The joint histogram shows an intensity distribution that is close to 

the line of identity, indicating good agreement between reference AC PET and the DL-AC 

PET from proposed method. Table 2 lists the average quantification results across all scans. 

Because only one set of images included head in the scan, brain was excluded from the 

statistical analysis. As indicated in Table 2, the ME and NMSE generated with the proposed 

method are less than 3.5% on all contoured organs except lung. The NCCs are close to 

identity. For comparison, the NCC between DL-AC PET and NAC PET is 0.618±0.168 in 

whole body region. The PSNR are all larger than 30dB. Among the 30 datasets, the lesion 

SNRs on AC PET and DL-AC PET are 4.188±3.086 and 4.143±3.047, respectively, with p-

value = 0.393, and the lesion CNRs are 1.548±0.787 and 1.528±0.768, respectively, with p-

value = 0.350. Thus there is no statistical significance in lesion SNR or CNR between AC 

PET and DL-AC PET.

Each patient received three sequential PET scans, therefore we calculated the relative PET 

intensity changes of the second scan over the first scan, the third over the first and the third 
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over the second to evaluate the reliability of the proposed method. The results are 

summarized in Table 3. Note that the STD in some VOIs such as lesion is large because the 

intensity change between sequential scans varies a lot from patient to patient. Fig.9 

illustrates joint histogram of percentage changes calculated on the contoured organs and 

lesions with AC PET and DL-AC PET. The linear regressions are almost identical to the line 

of identity, which indicates excellent agreement of the intensity distributions captured on AC 

PET and DL-AC PET. The average difference of the percentage changes calculated with the 

two methods is less than 3% on all contoured volumes. The p-values using t-test (last 

column in Table 3) are all larger than 0.05, indicating no statistically significant difference 

between the two methods.

3.3 Comparison Study with state-of-the-art methods

Table 4 lists the average quantification results across all scans among the 10 patients of 30 

scans using UNET and GAN and is compared with those of CycleGAN, the proposed 

method, from Table 2. Both UNET and GAN show inferior performance in most metrics and 

VOIs and larger variation among patients. They also have much large bias found in lesion 

than the proposed method.

4. DISCUSSION

We present the feasibility of using a deep learning CycleGAN to perform DL-AC from NAC 

PET without the use of structural information. The method produces highly accurate tracer 

distribution estimations that are in high agreement with AC PET as evaluated with leave-

one-out cross-validation. In addition, the longitudinal evaluation dataset produced excellent 

agreement with the AC PET demonstrating the model’s high reliability. The proposed 

method provides an alternative to CT and MR-based AC and has the potential to 

substantially reduce CT dose from serial exams and eliminate the collection of structural 

information solely for AC. The proposed method has the potential to avoid the quantification 

bias caused by truncation artifacts of CT or MRI as well as CT- and MRI-PET co-

registration errors.

Traditional generative adversarial network (GAN) (Kurz et al., 2018) methods train two 

networks with a generator mapping from source images to target images, and evaluate the 

transformation with a discriminator. Due to the presence of noise in both input sources and 

output targets in the model training, it would be difficult to ensure the generator in GAN 

learns a meaningful mapping, and there is possibility for more than one mapping that yields 

the same output from a given input. CycleGAN adds more constraints to the generator by 

introducing an inverse transformation in a circular manner. This effectively prevent model 

collapse and helps the generator to find a unique meaningful mapping.

Though PET/MRI has been increasingly implemented in daily clinical applications, serious 

technical challenges remain in deriving accurate quantitative measurements. One major 

concern is the bias caused by current vendor implementations of MR-based AC methods and 

the resultant limitation in quantitative longitudinal therapy monitoring studies (Catana et al., 
2018). We evaluate the reliability of the proposed method on quantifying tracer update 

changes over sequential scans and found that tracer uptake changes calculated on DL-AC 
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PET matches the references well within 3% (“difference” rows in Table 3). The linear 

regression analysis also indicates excellent correlation between DL-AC PET and reference 

on longitudinal evaluation. These results demonstrate the capability and the potential of the 

proposed method for quantitative longitudinal therapy monitoring.

Performing attenuation correction with only NAC images is inherently challenging due to 

very limited availability of anatomical information of PET images. Regardless of those 

challenges, we are still able to obtain competitive performances comparing to state-of-the-art 

techniques. Hofmann et al. proposed a MR-based AC method combined atlas and pattern-

recognition, and applied this method on both brain (number of subjects N = 17) and whole 

body (N = 11) imaging (Hofmann et al., 2011; Hofmann et al., 2008). This AC method 

obtains a mean PET quantification error of 3.2%±2.5% SUV on brain imaging, and 7.7% ± 

8.4% SUV on whole body PET images with 14.0%±11.4% SUV in thorax region. Paulus et. 
al. proposed a model based MRI AC method for whole body (N = 20) PET/MRI (Paulus et 
al., 2015). The average PET quantification error is 2.7% and 4.9% on normal soft tissue and 

bone. The mean error for soft tissue lesions excluding lung cases is 5.2%±5.2%, and that for 

bone lesions is 2.9%±5.8%. The quantification errors are over 20% on lung lesions, with the 

maximum error over 50%. In our study, the mean PET quantification error obtained with the 

proposed DL-AC method is 0.62%±1.26%, with the highest on lung of −17.02%±11.98%.

Though similar idea of using only NAC PET to perform AC was proposed previously, their 

performances are usually limited without the help of deep learning. Nuyts et al. proposed a 

maximum-likelihood reconstruction method to compensate for the photon attention in the 

reconstruction process (Nuyts et al., 1999) and evaluated on one patient. The average PET 

quantification error obtained with this method was over 20% across the image volume. A 

more recent study on performing AC with NAC PET was performed by Chang et al. (Chang 

et al., 2012) using an iterative attenuation correction method. Their approach segmented 

tissue into three types, air, soft tissue and lung, and performed AC by assigning 

corresponding linear attenuation coefficients. Absolute observed differences were 6–10% on 

mean SUV and 3%±9% mean difference on max SUV with phantom studies. They also 

evaluated the max SUV uptakes with patient data (N = 11) and found the mean 

quantification errors are 3%±6% and 8%±7% on bone and soft tissue lesions. This AC 

method doesn’t provide bone segmentation, which could cause large quantification errors in 

brain imaging.

We performed both leave-one-out cross validation study with 25 sets of data and reliability 

study with 30 sets of data that were not used for model training. The low sample size of 

patients involved in training and testing limited this study as a proof-of-concept study. 

However, the training process is still valid since the number of training samples are 

thousands of that of patients. First, we used patch-based method to enlarge the training 

samples. For example, in our one training patient volume with size of 192×192×299 voxels, 

the training samples were obtained by extracting 3D patches (size of 72×72×32) with 

overlapping size of 60×60×24 between each two neighboring patches. Thus, the number of 

training samples for this training patient reached at 3400. In addition, data augmentation was 

also used to enlarge the training samples’ variability. Flipping, rotation and rigid warping 
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were used such that the size of training samples for each training patients was enlarged by 

18 times.

In Table 3, we used t-test to quantify the significance levels of the performance difference 

between our DL-AC PET and AC PET. T-test is a common method to compare the mean 

values between two groups with assumption of normal distribution. Wilcoxon test is usually 

an alternative to t-test when the assumption of normal distribution is in doubt. We 

recalculated the p-values in Table 3 using Wilcoxon test, which were 0.513, 0.618 and 0.612 

corresponding to the p-value column from up to bottom. All the p-values were larger than 

0.05 as t-test did. Thus, the conclusion that no statistically significant difference between the 

two methods remains unchanged.

The proposed self AC method demonstrated similar quantification performances on heart, 

kidney, liver and lesion with both ME and NMSE less than 3.1%. Lower quantification 

accuracy is observed on lung with reliability study. This may be due to the discrepancy 

between the data used for training and the 30 sets of data for reliability evaluation. Only 8 

out of 25 sets of training data are obtained from lung cancer patients, while all 10 patients 

for reliability study were lung cancer patients. This likely generated large discrepancies in 

the PET quantification of the lung region. By including more representative data in the 

training process, the issue can be mitigated. It is also worth noting that lung has shown a 

much higher error compared with other region of body in other AC studies as well 

(Hofmann et al., 2011; Paulus et al., 2015). A potential reason can be that the activity in lung 

is usually much lower than other selected organs, thus a similar amount of error may leads to 

much higher relative error in percentage.

The proposed method was implemented and evaluated with PET/CT data, and could also be 

applied on PET/MRI. Our method captures the nonlinear relationship between NAC PET 

and AC PET, and corrects for patient attenuation and scatter which depends on patient 

anatomy and administered radiotracer. When applying the proposed method on PET/MRI, 

the quantification performances could be affected by MR coil attenuation as well as 

differences in protocol and machine settings. With appropriate scanning protocols and 

machine calibration, their impact on the quantification accuracy could be minimized. In the 

future, we will implement the proposed method with PET/MRI data for further validation.

The proposed method needs CT- or MRI-based AC PET to serve as training targets. 

However, as long as the training stage is finished, the trained model would be used to 

generate DL-AC PET with input of NAC PET solely, which does not require CT or MRI. 

When the train model is used to predicting DL-AC PET on the same scanner that it got 

trained, the CT or MRI acquisition now can be skipped, which would have advantages in 

eliminating radiation dose from CT or long acquisition time from MRI. Meanwhile, the 

trained model is actually not necessarily to be used on the same scanner. It can be used to 

predict DL-AC PET on another PET scanner without CT or MR functionality, thus it can 

potentially enable a sole PET scanner to provide a comparable AC PET as a PET/CT or 

PET/MR. However, using training model on a different PET scanner has not been studied in 

this paper. It may affect the performance of the proposed method, which would be 

investigated in future study.
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In this study, we proposed a novel learning-based PET AC method. An intermediate number 

of patients with anatomical variations and pathology abnormalities is investigated to 

demonstrate the feasibility of the proposed method. In order to further implement the 

proposed method in clinic, the reliability of DL-AC PET can be validated by involving a 

larger population of patients with diverse demographics and pathological abnormalities. 

Different testing and training datasets from different scanners and institutes would be 

valuable to further evaluate the clinical utility of our method. Subjective scoring or blind 

assessment in the potentially underestimated region on DL-AC PET with known ground 

truth would be helpful to understand its clinical impact in diagnostic accuracy.

5. CONCLUSIONS

We proposed a deep-learning-based approach to create a fully corrected DL-PET dataset 

from NAC PET by effectively capturing the non-linear relationship between the NAC and 

AC PET. The CycleGAN deep learning approach adds additional constraints to model 

training to constrain the NAC PET to AC PET mapping to be closer to a one-to-one 

mapping. The residual networks enforce the network focus on learn the attenuation and 

scatter artifacts of NAC PET image. The method demonstrates excellent quantification 

accuracy and reliability and is applicable to PET data collected on a single PET scanner or 

hybrid platform (PET/CT or PET/MRI).
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Fig.1. 
Training schematic flow chart of the proposed method.
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Fig.2. 
Testing (correction) schematic flow chart of the proposed method.
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Fig.3. 
The network architectures of generators and discriminators used in CycleGAN.
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Fig.4. 
A representative coronal, sagittal and axial set of AC PET and DL-AC PET images from one 

patient. (a) CT images (b) NAC PET images and (c) AC PET images, (d) DL-AC PET 

images and (e) the subtraction of DL-AC PET from AC PET images. The green lines on (c) 

indicate the positions of the profiles displayed in Fig.5. The unit of color bar is Bq/ml for 

AC PET, DL-AC PET and their difference, and relative intensity proportional to counts/sec 

for NAC PET.
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Fig.5. 
Comparison of intensity profiles (left up: dashed line, right up: dotted line, left bottom: 

dash-dotted line in Fig. 4(c)) and (right bottom) a joint histogram of all voxels in the whole-

body region between AC PET and DL-AC PET.
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Fig.6. 
Representative brain, lesion in lung, and kidney planes of AC PET (left column) and DL-AC 

PET (middle column) images and their difference maps (right column). The red dotted boxes 

indicate the position of lesion. The unit of color bar is Bq/ml.
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Fig.7. 
PET images after (a) AC and (b) DL-AC on one patient received sequential PET scans. 

(1)-(3) represents the first, the second and the third scans. (c) represents the subtraction of 

(a) from (b). Color bar unit is Bq/ml. This yellow dotted line on (a1) indicates the position of 

profile displayed in Fig.8.
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Fig.8. 
Comparison of PET (left) image profiles and (right) joint histograms between AC PET and 

DL-AC PET on the three sequential PET scans. The red lines on right figures are lines of 

identity. Top to bottom: first scan, second scan and third scan.
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Fig.9. 
Linear regression analysis of PET quantification changes on both selected organs and lesions 

of (left) 2nd scan over 1st scan, (middle) 3rd scan over 1st scan and (right) 3rd scan over 2nd 

scan. The red dashed lines are linear regressions, with regression equation and R2 value 

displayed on the right bottom.
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Table 1

Model performance results of the leave-one-out cross validation study on 25 sets of whole-body PET images. 

Data are reported as mean ± STD.

VOI ME (%) NMSE (%) NCC PSNR (dB)

Brain 1.23±5.16 0.70±0.84 0.977±0.005 29.2±4.2

Lung −3.79±7.89 1.25±1.75 0.974±0.060 40.7±12.8

Heart 2.15±4.61 0.54±0.90 0.979±0.063 38.8±10.3

Lt kidney 1.37±7.01 1.17±2.37 0.989±0.023 36.5±8.9

Rt kidney 1.08±6.25 1.35±3.04 0.989±0.022 37.8±10.3

Liver 0.89±6.00 0.54±1.07 0.976±0.061 36.9±10.6

Lesion 2.34±3.65 0.29±0.36 0.978±0.030 34.0±7.8

Whole body −0.01 ±2.91 1.21±1.73 0.989±0.015 43.1±4.6
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Table 2

Model performance results of the sequential whole-body PET dataset (n=30). Data are reported as mean ± 

STD.

VOI ME(%) NMSE(%) NCC PSNR (dB)

Lung −17.02±11.98 3.61±3.60 0.992±0.007 37.3±7.0

Heart 2.11±2.51 0.26±0.37 0.997±0.003 35.3±5.5

Lt kidney 3.02±3.90 2.15±6.21 0.984±0.044 35.6±5.0

Rt kidney 2.88±3.79 2.91±7.27 0.978±0.052 35.7±5.1

Liver 2.93±2.45 0.20±0.19 0.994±0.008 34.9±5.7

Lesion 2.85±5.21 0.52±1.88 0.964±0.046 33.9±7.2

Whole body 0.62±1.26 0.72±0.34 0.992±0.004 44.3±3.5
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Table 3

Intensity changes (%) on sequential PET scans. “Difference” is the difference of intensity changes between 

AC PET and DL-AC PET. “p-value” is the average p-value among all VOIs in the t-test of intensity changes 

between AC-PET and DL-1AC PET. Data are reported as mean ± STD.

Scan Lung Heart Lt kidney Rt kidney Liver Lesion p-value

2nd scan over 1st scan AC PET −15.1±27.5 7.7±53.4 −6.8±22.9 −7.2±18.3 −12.3±18.1 50.2±83.7

DL-AC PET −17.4±31.4 7.4±51.8 −5.6±20.9 −6.3±17.8 −12.7±18.3 51.5±82.7 0.883

Difference −2.3±4.9 −0.3±2.0 1.3±4.0 1.0±3.5 −0.3±1.6 1.2±9.3

3rd scan over 1st scan AC PET −18.8±25.7 −7.4±33.7 −8.7±20.6 −9.7±20.4 −15.1±15.6 56.3±67.3

DL-AC PET −21.7±28.8 −7.5±33.1 −7.6±18.5 −8.4±19.1 −15.7±15.0 56.8±65.7 0.844

Difference −2.9±4.7 −0.2±1.2 1.1±4.1 1.3±4.4 −0.5±1.5 0.5±8.6

3rd scan over 2nd scan AC PET −0.1±25.7 0.6±47.7 1.4±25.5 0.0±28.6 −0.7±21.8 14.7±45.9

DL-AC PET 0.1±26.3 0.0±46.4 0.8±24.4 0.4±27.5 −1.0±21.0 15.0±47.8 0.727

Difference 0.1±3.6 −0.6±1.6 −0.5±1.7 0.3±2.0 −0.3±1.4 0.3±3.3
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Table 4

Model performance results of the sequential whole-body PET dataset (n=30) using UNET, GAN and proposed 

CycleGAN. Data are reported as mean ± STD.

VOI Method ME (%) NMSE (%) NCC PSNR (dB)

Lung

UNET 13.84±10.11 7.79±3.88 0.889±0.046 32.6±4.3

GAN 13.42±10.13 8.03±4.21 0.885±0.052 32.7±4.6

CycleGAN −17.02±11.98 3.61±3.60 0.992±0.007 37.3±7.0

Heart

UNET 1.30±5.22 1.42±0.59 0.931±0.051 26.0±2.3

GAN −0.85±3.96 1.34±0.50 0.931±0.053 26.0±2.5

CycleGAN 2.11±2.51 0.26±0.37 0.997±0.003 35.3±5.5

Lt kidney

UNET −0.16±9.40 3.83±4.17 0.930±0.060 27.0±3.8

GAN −0.68±8.30 3.55±3.93 0.934±0.049 27.3±3.8

CycleGAN 3.02±3.90 2.15±6.21 0.984±0.044 35.6±5.0

Rt kidney

UNET 1.10±6.85 4.36±5.31 0.950±0.029 27.7±2.3

GAN 1.51±6.22 4.26±5.26 0.950±0.028 27.7±2.4

CycleGAN 2.88±3.79 2.91±7.27 0.978±0.052 35.7±5.1

Liver

UNET −1.96±4.58 1.32±0.49 0.860±0.047 25.3±3.0

GAN −2.09±4.05 1.19±0.37 0.872±0.039 25.8±3.1

CycleGAN 2.93±2.45 0.20±0.19 0.994±0.008 34.9±5.7

Lesion

UNET 18.59±18.00 27.69±25.41 0.900±0.070 18.1±3.2

GAN 19.72±21.12 10.78±9.43 0.898±0.067 17.4±3.0

CycleGAN 2.85±5.21 0.52±1.88 0.964±0.046 33.9±7.2

Whole body

UNET 2.05±2.21 2.36±0.01 0.972±0.012 39.3±2.4

GAN 2.25±1.93 2.30±0.66 0.973±0.012 39.4±2.3

CycleGAN 0.62±1.26 0.72±0.34 0.992±0.004 44.3±3.5
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