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ABSTRACT: Adoptive transfer of immune cells is being actively pursued for cancer treatment. Natural killer (NK) cells, a class of
cytotoxic immune cells, generally lack inherent selectivities toward cancer. To bestow tumor-targeting abilities and enhance
anticancer efficacy, a new strategy is established to glycoengineer NK cells. Carbohydrate-based ligands for CD22, a marker for B cell
lymphoma, are introduced onto NK cells through either metabolic engineering or glyco-polymer insertion. Such NK cells exhibited
greatly enhanced cytotoxicities toward CD22+ lymphoma cells in a CD22-dependent manner. Importantly, both CD22+ lymphoma
cell lines and primary lymphoma cells from human cancer patients can be effectively killed by the engineered NK cells. Furthermore,
glycoengineered NK cells provided significant protection to tumor-bearing mice. Thus, NK cell glycoengineering is an exciting new
approach for cancer treatment complementing the current immune cell genetic engineering strategy.

■ INTRODUCTION

The chimeric antigen receptor T cells (CAR-T) are break-
through anticancer therapies with two types of CAR-T cells
approved by the FDA for cancer treatment.1,2 However,
despite great promise, CAR-T therapies have several
limitations.3 Because of the potential immune responses by
the host against the foreign major histocompatibility complex
(MHC) molecules expressed on the surface of nonautologous
T cells,4 the patient’s own T cells need to be extracted,
genetically engineered with a chimeric antigen receptor for
tumor recognition, expanded into a larger number, and
reinfused back to the patient. Such a process is time and
resource intensive, which is reflected by the high costs of CAR-
T therapy ($475,000).5 In addition, for patients who have been
heavily pretreated with chemotherapy and/or radiation, it can
be difficult to acquire sufficient numbers of autologous T cells
for CAR-T generation. CAR-T may not be produced in time
for patients with rapidly developing diseases.
Natural killer (NK) cells are another type of cytotoxic

immune cells that are capable of killing tumor cells, providing
an attractive alternative to T cell-based therapy.3 NK cells do
not express MHC class I molecules on the cell surface. As a

result, they can be potentially used as an off-the-shelf cellular
therapy with clinical evidence showing that adoptive transfer of
allogeneic NK cells is safe to patients.6−8 NK cells can be
prepared in a large scale and readily available to patients. On
the other hand, NK cells do not have inherent targeting
abilities toward cancer cells. To overcome this drawback, NK
cells have been genetically engineered with chimeric antigen
receptors (CAR-NK).3,9 However, NK cells are known to be
notoriously adverse to endogenous gene uptake, resulting in
low transgene expression.10 Therefore, new methods need to
be developed to enhance the abilities of NK cells to recognize
tumor cells.
We have begun to investigate strategies to engineer NK cells

and bestow de novo abilities for NK cells to recognize cancer,
such as B cell lymphoma. Each year, approximately 70 000
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people are diagnosed with B-cell lymphoma in the United
States alone. While the anti-CD20 antibody rituximab can be
effective,11,12 it does not provide a cure, especially for the
indolent lymphoma with annual deaths reaching 20 000.12−15

As native NK cells lack intrinsic affinities toward B cell
lymphoma, we envision that if NK cells can be engineered to
better recognize lymphoma cells, better therapeutic efficacy
may be achieved.
Herein, we report for the first time that glycoengineering of

NK cells with 9-O modified sialic acid-based CD22 ligands can
significantly improve their abilities to bind and kill CD22+

lymphoma cells. CD22, also known as siglec-2, is a B-cell-
restricted antigen, which can serve as a selective target for B
cell lymphoma.16−19 The natural ligand on the cell for CD22 is
the trisaccharide Neu5Acα2-6Galβ1-4GlcNAc that terminates
glycans on the cell surface.20−22 Ground-breaking stud-
ies17,21−23 by the Paulson and Nitschke groups showed that
the installation of a modified benzoate amide at the C-9
position of sialic acid in CD22 ligands can significantly
enhance the binding affinity toward CD22. Furthermore, these

compounds are highly selective toward CD22 with little cross-
reactivities to other siglecs, such as siglec 7, which is an
inhibitory receptor on NK cells.21 Glycan engineering of NK
cells with CD22 ligands is an exciting new strategy for
anticancer immunotherapy.

■ RESULTS AND DISCUSSION
Constructing NK Cells with CD22 Ligands through

Glycoengineering. As a proof-of-concept, we selected NK-
92 cells, which are a well-established NK cell line24−26 readily
expandable to reach clinically useful doses. Furthermore, NK-
92 cells have been tested in phase I clinical trials for cancer
treatment, exhibiting good safety profiles.27,28

We explored two glycoengineering approaches to introduce
CD22 ligands onto NK-92 cells. In the first method, we tested
the possibilities of cells to take up exogenous sialic acids and
metabolically incorporate the sialic acid into endogenous
glycoproteins on the surface of cells. While glycan metabolic
engineering has been applied to cells such as cancer,29,30 it is
unclear whether NK cells can uptake modified sialic acid (sia)

Figure 1. Modification of NK-92 with CD22 ligands through glycoengineering. Two methods have been developed. Method A is metabolic
glycoengineering using a sialic acid derivative, e.g., MPB-sia 1, which could be metabolized onto the surface of NK-92 cell through the sialic acid
biosynthetic pathway. Method B uses a glyco-polymer containing MPB-sia, which could insert into the NK-92 cell membrane presumably because
of its amphiphilicity. Both approaches could enhance the ability of targeting and binding of NK-92 cells toward CD22 positive cells resulting in
more effective lysis of target cancer cells.
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derivatives such as MPB-sia 1 and BPC-sia 2 as precursors and
transform them into CD22 ligands through the cellular
biosynthesis machinery (Figure 1, method A). In a
complementary approach, we synthesized an amphiphilic
polymer bearing multiple CD22 ligand trisaccharide 3
(Supplementary Figure 1). This glyco-polymer may directly
insert into NK-92 membrane, bestowing CD22 targeting
abilities to NK-92 cells (Figure 1, method B).
To test metabolic glycoengineering, NK-92 cells were

incubated with MPB-sia 1 or BPC-sia 2 supplemented medium
as well as that with equal amount of unmodified free sialic acid
as a control. Upon removing all free sialic acid or derivatives by
thorough washing, the cells were treated with an α2-3,6,8
neuraminidase that can cleave α2-3, α2-6, and α2-8 sialyl
linkages. The amounts of free sialic acid and derivatives
released were functionalized with 1,2-diamino-4,5-methylene-
dioxybenzene (DMB)31,32 and quantified by mass spectrom-
etry through comparison with standard compounds. As shown
in Table S1, while no MPB-sia 1 was detected in parent cells,
incubation of NK-92 cells with MPB-sia 1 led to the detection
of significant amounts of MPB-sia (5.2 × 106 molecules/cell)
from cells. DMB functionalized BPC-sia was also detected
from BPC-sia 2 treated cells. However, the amount of BPC-sia
was too small to be accurately quantified, suggesting MPB-sia 1
was more efficiently incorporated into cells.
In order to test the function of engineered CD22 ligands on

the cell surface, glycoengineered NK-92 cells were treated with
CD22 protein followed by a fluorescently labeled anti-CD22
monoclonal antibody (mAb, clone HIB22). The extent of
CD22 binding was quantified by flow cytometry analysis.
Native NK-92 cells had little binding with CD22 over the
background, similar to free sialic acid treated NK-92 cells.
While BPC-sia 2 enhanced CD22 binding to NK-92 cells,
MPB-sia 1 incubation led to the greatest improvement in
cellular binding by CD22 (Figure 2A,B). These results can be
explained by the higher affinity of MPB functionalized CD22
ligand with CD2221 and/or the more ready incorporation of
MPB-sia onto the cells (Table S1). The engineered cells were

then imaged by confocal microscopy. Native NK-92 cells or
NK-92 cells treated with free sialic acid (sNK-92) did not
present much PE fluorescence upon incubation with CD22
and PE-labeled anti-CD22 mAb (Figure 2C). In contrast,
apparent PE fluorescence was observed on the surface of MPB-
sia 1 treated cells (MsNK-92), with fluorescence intensities
distributed over the whole cell surface (Figure 2C). These
results suggest that NK-92 cells could be metabolically
glycoengineered with sialic acid derivatives such as MPB-sia
1 to install CD22 ligands on the cell surface.
CD22 ligands were metabolically engineered onto NK-92

cells by MPB-sia 1 in a dose- and time-dependent manner
(Supplementary Figure 2). Increasing the concentration of
MPB-sia 1 enhanced the levels of CD22 ligand expression on
the cell surface reaching a maximum at 4 mM of MPB-sia 1 at
24 h. Increasing the incubation time to 48 and 72 h led to
higher levels of CD22 binding to NK-92 cells. Cell viability
studies showed slight decreases of cell viability when
concentrations of MPB-sia 1 were over 4 mM (Supplementary
Figure 3). Thus, 2 mM MPB-sia 1 was selected for further
study. Next, the persistence of CD22 ligands on engineered
NK-92 cells was analyzed. Upon removal of MPB-sia 1 from
cell culture medium, 50% of CD22 binding remained on NK-
92 cells after 48 h (Supplementary Figure 4). As CD22 prefers
α2-6-sia linkages, the levels of α2-6-sia glycans on engineered
NK-92 cells were determined by staining with FITC-labeled
α2-6-sia binding plant lectin Sambucus nigra lectin (SNA)
(Supplementary Figure 5). There were no significant changes
of SNA staining before or after glycoengineering, suggesting
little influence on the overall amounts of α2-6-sia linkages by
MPB-sia 1 incubation.
As an alternative to metabolic glycoengineering, we

investigated the possibility of directly inserting CD22 ligands
onto the surface of NK-92 cells (Figure 1, method B). In order
to accomplish this, a cholesterol-terminated poly(acrylic acid)
polymer was synthesized by atom-transfer radical-polymer-
ization (ATRP) with an average molecular weight of 30 kDa
(Supplementary Figure 6). The carboxylic acid side chain of

Figure 2. MPB-sia can be metabolically engineered onto the surface of NK-92 cell to enhance the binding ability to CD22 protein. (A) Metabolic
incorporation of various sialic acid derivatives onto NK-92 cells as measured by flow cytometry. Control represents nonengineered NK-92 cells
treated with CD22-Fc and PE-mouse anti human CD22 mAb (Clone HIB22). (B) Quantification of the mean fluorescence intensities of cells upon
incubation with various sialic acid derivatives. Mean with SD are presented for n = 3. (C) Confocal microscopy images of NK-92 cells engineered
with sialic acid (sNK-92) or MPB-sia 1 (MsNK-92), followed by human CD22-Fc incubation and PE-mouse anti human CD22 mAb staining. Cells
were fixed and nuclei were stained with DAPI. Scale bar, 10 μm.
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the polymer was modified with MPB-sia-α2-6-Lac-N3 3
through the copper catalyzed azide−alkyne cycloaddition
reaction with an average of 100 trisaccharides per polymer
chain producing glyco-polymer Chol-P-CD22L100 4 (Supple-
mentary Figure 1). Upon incubation of NK-92 cells with the
Chol-P-CD22L100 4, the cholesterol end of the polymer could
insert into the cellular membrane through hydrophobic−
hydrophobic interactions, anchoring the polymer onto the cell
surface. After 1 h of incubation, the cells were washed followed
by treatment with human CD22 and the PE-labeled anti-CD22
mAb. Strong CD22 binding was detected with 2.5 μM polymer
(equivalent to 250 μM MPB-sia 1) (Supplementary Figure 7).
With the glycopolymer, while the surface CD22 ligand level
decreased rapidly (∼85% loss) during the first 24 h after
removal of polymer-containing medium, CD22 binding
remained detectable for 72 h by FACS analysis (Supple-
mentary Figure 8). Compared to metabolically engineered NK
cells (Supplementary Figure 4), the polymer approach was
associated with much faster drops in surface CD22 ligand
levels. This may be because through metabolic glycoengineer-
ing, MPB-sia 1 taken up inside the cells could be continuously
modified into CD22 ligands over time.
Enhanced Killing of CD22 Positive Cells by Glyco-

engineered NK-92 Cells. With the increased affinity of
glycoengineered NK-92 cells for CD22, their cytotoxicities
toward CD22 expressing human lymphoma Raji cells
(Supplementary Figure 9) were evaluated. Metabolic glyco-
engineered NK-92 cells significantly enhanced lysis of target
cell Raji compared to unmodified NK-92 at effector/target cell
ratio 1 or greater (Figure 3A). To test the CD22 dependence,
CD22 protein was added to the mixture of Raji cell and
glycoengineered NK-92 cells. With increasing amounts of free
CD22 in solution, the abilities of the NK-92 cells to kill Raji
cells decreased, which reached the levels of unengineered NK-
92 cells with 5 μg/mL of CD22 (Figure 3B). The reduced

cytotoxicities in the presence of free CD22 are presumably due
to competitive binding of free CD22 protein to engineered
NK-92 cells, suggesting CD22 plays an important role in
cytotoxicities of engineered NK-92 cells toward CD22+ cancer
cells.
To further confirm the role of CD22 in cytotoxicities of

glycoengineered NK-92 cell, Chinese Hamster Ovarian
(CHO) cells were genetically engineered to express human
CD22 on the cell surface (CHO-hCD22), which were
subjected to cytotoxicity assay by glycoengineered NK-92
cells33,34 with wild-type CHO cells (CHO-WT) as the control.
Both metabolic glycoengineered and glycopolymer-modified
NK-92 cells showed enhanced cytotoxicity toward CHO-
hCD22 cells compared to CHO-WT cells (Figure 3C and
Supplementary Figure 10), confirming the importance of
CD22 in cytotoxicities of engineered NK-92. As the killing
activities of both types of NK cells were similar and metabolic
engineering requires only the monosaccharide MPB-sia 1
without the need to synthesize trisaccharide 3 and the polymer
4, further investigation was focused on the metabolic
glycoengineering approach.
To establish the potential translatability of the glycoengin-

eering strategy, primary lymphoma cells were obtained from
lymphoma patients and incubated with glycoengineered NK-
92 cells (Figure 3D). For patient-derived lymphoma cells
expressing high levels of CD22 (P1−P4 in Figure 3D),
significantly enhanced cytotoxicities by glycoengineered NK-
92 were observed compared to unmodified NK-92. For patient
cells with low levels of CD22 expression (P5−P7), there were
no significant changes in cell death when incubated with
glycoengineered NK-92 or unmodified NK-92. These results
suggested glycoengineering of NK-92 cells with MPB-sia 1 can
be a promising strategy to treat patients with CD22 positive B
cell lymphoma.

Figure 3. Glycoengineered NK-92 cells could enhance killing of CD22 positive cells. (A) Lysis of Raji-luc cells by NK-92 and MsNK-92. Different
effector-to-target cell ratios; P = 0.0049 (E/T = 1) and P = 0.0026 (E/T = 5). (B) Increasing concentration of CD22 reduced the killing activities of
engineered MsNK-92 cells, while impacting little the activities of NK-92 cells without glycoengineering; E/T = 1:1, P = 0.0154 (0 μg/mL free
CD22 protein), P = 0.0442 (1 μg/mL). (C) Relative killing activities of glycoengineered NK-92 cells against CD22 positive CHO cells as detected
by flow cytometry. (D) Significantly enhanced cytotoxicities were bestowed by glycoengineered NK-92 cells toward CD22 high patient-derived
leukemic cells (P1−P4) versus those expressing CD22 in low levels (P5−P7). Top row: surface expression of CD22 on patient-derived leukemic
samples as determined by flow cytometry. Bottom row: lysis of patient-derived leukemic samples by NK-92 and MsNK-92. P = 0.0077 (P1), P =
0.0002 (P2), P = 0.0009 (P3), P = 0.0014 (P4), P = 0.4439 (P5), P = 0.2907 (P6), and P = 0.8473 (P7). Mean with SD are presented for n = 3.
Statistical significances were assessed using Student’s t test. In all figures, ns, P > 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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Enhanced Killing Mechanism of Glycoengineered
NK-92 Cells against Raji Cells. To gain a deeper
understanding of the mode of action against Raji, glyco-
engineered NK-92 cells were incubated with Calcein-AM-
labeled Raji cells and imaged by fluorescence microscopy
(Supplementary Figure 11). If NK-92 cells can bind with Raji,
cell clusters would be formed around unlabeled NK-92 cells.
Significantly higher percentages of glycoengineered NK-92
cells were found clustered with Raji cells compared with native
NK-92 cells and Raji cells, which could be attributed to the
CD22 ligands on the glycoengineered NK-92 increasing the
binding affinity with Raji. Time-lapse imaging further revealed
that the NK-92 cells could find Raji cells and kill them after
binding (see the time-lapse imaging video in the Supporting
Information).

Upon binding with target cells, NK cells can release
cytotoxic granules containing perforin or pro-inflammatory
cytokines such as IFN-γ to kill the target cells.35,36 Confocal
imaging of the NK-92 and Raji cells complexes showed an
increased number of cytotoxic granules at the immunological
synapse in metabolic glycoengineered NK-92 cells when bound
with Raji cells (Figure 4), which indicated glycoengineered
NK-92 cells were activated after initial binding. To further
confirm the activation of glycoengineered NK-92, we detected
the IFN-γ release. The glycoengineered NK-92 generated
higher levels of pro-inflammatory cytokine IFN-γ compared
with the unengineered parental NK-92 (Supplementary Figure
12).

Evaluation of Antitumor Effect of Glycoengineered
NK-92 Cells In Vivo. With the promising in vitro results, we
analyzed the antitumor effect of glycoengineered NK-92 cells

Figure 4. Complex formation between NK-92 cells and Raji cells investigated by confocal microscopy. Raji cells and NK-92 cells were coincubated
for 1 h, fixed, permeabilized, and stained for perforin (red) to identify cytotoxic granules. Cell nuclei were labeled with DAPI (blue). Scale bar: 10
μm. (A) Representative images of cell−cell complex formation. (B) Perforin (red) fluorescence quantification. P = 0.0071. Mean with SD are
presented for n = 3. Statistical significance was assessed using Student’s t test. In all figures, ns, P > 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001.

Figure 5. In vivo antitumor activity of glycoengineered NK-92 cells against Raji-luc xenograft model. 107 Raji-luc cells were injected subcutaneously
into the flanks of Balb/c nude mice. Fifteen days later, the mice were treated with an intratumoral injection of 107 glycoengineered NK-92 cells
(MsNK-92 in 50 μL PBS), unengineered NK-92 (NK-92), or PBS buffer (50 μL) once a week. Bioluminescence images (BLI) were acquired with
an IVIS Lumina II imaging system. (A) Images of mice with tumor at day 36. (B) Tumor growth curve. (C) Tumor weight measurements. (D) BLI
images of the tumor after surgical removal from mice. (E) Quantitative BLI signals of the tumor after surgical removal from mice. Mean with SD
are presented. Statistical significance was assessed using Student’s t test. In all figures, ns, P > 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001. P =
0.0294 (panel B), P = 0.0003 (MsNK-92 vs PBS), P = 0.0010 (MsNK-92 vs NK-92) (panel C), P = 0.0025 (MsNK-92 vs PBS), P = 0.0024
(MsNK-92 vs NK-92) (panel E).
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in vivo. Luciferase engineered Raji (Raji-luc) lymphoma cells
were injected to nude mice subcutaneously. On days 15, 22,
and 29 post tumor inoculation, glycoengineered NK-92 cells
were administered intratumorally (Figure 5 and Supplementary
Figure 13). As a control, groups of tumor-bearing mice
received intratumoral injection of PBS or nonengineered NK-
92 cells. The nonengineered NK-92 cells did not show
significant protection compared to PBS. In contrast, animals
injected with metabolic glycoengineered MsNK-92 cells
significantly slowed down tumor growth compared to other
groups. Thus, with the help of CD22 binding ligand on NK cell
surface, an enhanced antitumor protection was achieved in
vivo.
To better mimic the clinical condition, we further evaluated

the efficacy of our strategy in a B cell lymphoma model. Raji-
luc cells were injected intravenously on day 0, which were
followed by intravenous administration of MsNK-92 cells on
days 2, 5, 8, 12, and 15. Control mice were administered with
either PBS or the same number of the parent NK-92 cells. The
mice receiving MsNK-92 cells did not lose weight (Figure 6a),
suggesting little toxicities due to systemic administration of
cells. The survival of mice was continuously monitored (Figure
6b). While NK-92 cells provided significant protection to mice
compared to the PBS group, all mice eventually died by day 62.
Excitingly, all mice in the group receiving MsNK-92 cells
survived, highlighting the power of the glycoengineering
approach.

■ CONCLUSION

While NK cells can potentially be cytotoxic against cancer cells,
their lack of inherent affinity toward cancer cells is a significant
drawback for NK-based therapy. To overcome this, we
chemically engineered NK cells to gain novel targeting abilities.
Among various strategies and reagents examined, the metabolic
glycoengineering with MPB-sia monosaccharide successfully
introduced CD22 ligand on NK-92 cells through the sialic acid
biosynthetic pathway for B cell lymphoma targeting. The
introduced MPB group greatly enhanced the binding ability
and killing activity of NK-92 cells against CD22 positive cells
in vitro and in mouse tumor models. Moreover, the
glycoengineered NK-92 cells exhibited CD22-dependent
cytotoxicity against primary lymphoma cells isolated from
patients, which highlights its translational potential. The NK
cell metabolic glycoengineering approach is simple and
effective and can complement well the genetic engineering

strategy of chimeric antigen receptors. Although the CD22
ligands on the NK cell surface would eventually become
undetectable, the patients can be infused with multiple rounds
of engineered NK cells to treat cancer. Studies are underway to
further develop the glycoengineering method to enhance the
efficacy of NK cell-based immunotherapy.
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