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Abstract

Objective—The accuracy of a musculoskeletal model relies heavily on the implementation of the 

underlying anatomical dataset. Linear scaling of a generic model, despite being time and cost-

efficient, produces substantial errors as it does not account for gender differences and inter-

individual anatomical variations. The hypothesis of this study is that linear scaling to a 

musculoskeletal model with gender and anthropometric similarity to the individual subject 

produces similar results to the ones that can be obtained from a subject-specific model.

Methods—A lower limb musculoskeletal anatomical atlas was developed consisting of ten 

datasets derived from magnetic resonance imaging of healthy subjects and an additional generic 

dataset from the literature. Predicted muscle activation and joint reaction force were compared 

with electromyography and literature data. Regressions based on gender and anthropometry were 

used to identify the use of atlas.

Results—Primary predictors of differences for the joint reaction force predictions were mass 

difference for the ankle (p<0.001) and length difference for the knee and hip (p≤0.017). Gender 

difference accounted for an additional 3% of the variance (p≤0.039). Joint reaction force 

differences at the ankle, knee and hip were reduced by between 50% and 67% (p=0.005) when 

using a musculoskeletal model with the same gender and similar anthropometry in comparison 

with a generic model.

Conclusion—Linear scaling with gender and anthropometric similarity can improve joint 

reaction force predictions in comparison with a scaled generic model.

Significance—The scaling approach and atlas presented can improve the fidelity and utility of 

musculoskeletal models for subject-specific applications.
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I Introduction

Computational modelling and simulation of the musculoskeletal system can be used to 

address biomechanical questions, including those that require information that is not 

amenable to direct measurement, such as muscle forces and articular, or joint, loading. This 

type of information is essential for clinical applications, including: designing assistive 

devices [1], planning rehabilitative treatments [2], [3], analysing pathology such as 

osteoarthritis [4], designing implants [5], and the prevention of injuries [6].

The quantification of muscle forces and articular loading requires a detailed description of 

musculoskeletal geometry in the musculoskeletal model that is used to mathematically 

model the skeletal bones, joint articulations and musculotendon actuators. The lower limb 

model created by Delp et al. has been used extensively, and its underlying dataset is an 

amalgamation of two classic studies using measurements of five cadaver subjects [7] that has 

since been altered and refined [8], [9]. This generic model is used to investigate the general 

features of musculoskeletal design [8] and has been extended to include large numbers of 

additional subject measurements, such as incorporating variations in muscle volume and 

length [10], [11]. Klein Horsman et al. [12] published the first complete dataset that was 

based on the geometrical measurement of a single cadaveric specimen (male, age 77 years, 

mass 105 kg, height 1.74 m), and others have followed this approach (Carbone et al. [13]; 

male cadaver, age 85 years, mass 45 kg).

Linear scaling of generic models is the most time and cost efficient way in the clinical 

setting of representing an individual’s musculoskeletal geometry [14] – [16]. In this 

approach simple measurements of anthropometry such as body mass and limb lengths are 

used to scale the documented generic dataset to the individual subject [16], [17]. However, 

the generic models currently available (presented in TABLE I) do not enable gender and 

inter-individual anatomical variations to be accounted for [18], [19]. Such variations in 

human anatomy cannot be extrapolated comfortably from a single model and substantial 

errors have been reported when generic models are used, through scaling, to represent 

individual subjects [20] – [23].

Three-dimensional reconstructions of high-resolution magnetic resonance imaging (MRI) 

can accurately reproduce bone and muscle geometry [24] and accurately quantifies moment 

arm and muscle length [25]. Thus, MRI can be used to generate an anatomical dataset of in 

vivo subjects; such subject-specific models improve musculoskeletal modelling accuracy 

when compared to generic scaling [26], [27]. However, creating such a dataset for every 

subject for which musculoskeletal modelling is used is time and technology intensive, and 

thus is not in widely clinical use. The hypothesis of this study is that linear scaling to a 

musculoskeletal model with gender and anthropometric similarity to the individual subject 

produce similar results to the ones that can be obtained from a subject-specific model. This 

hypothesis is tested through: first, developing a lower limb musculoskeletal anatomical 

database, or atlas, consisting of datasets derived from MRI and a generic dataset from the 

literature; secondly, quantifying the discrepancies from scaled models where the outputs 

from the personalised, subject-specific musculoskeletal model are considered as a reference 

[28] – [30]; and finally, establishing any relationship between discrepancies of scaled models 
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and the discrepancies from the underlying datasets to the modelled subject to define the use 

of the atlas in situations where it is impractical to create a subject-specific model to quantify 

joint reaction forces.

II Methods

This study was approved by the NHS Research Ethics Committee and the Imperial College 

Research Ethics Committee. Written informed consent was obtained from all ten healthy 

subjects, covering a wide range of body heights, all with no lower limb musculoskeletal 

conditions (TABLE II).

A MRI-based musculoskeletal atlas

MRIs of each subject were acquired. T1 weighted axial spin echo scans were performed 

with the subjects lying supine with extended knees using a 3.0 T MRI scanner 

(MAGNETROM Verio, Siemens, Germany). Six axial image series were taken contiguously 

from the fifth lumbar vertebra to the distal end of the limb with the following settings: field 

of view 450 × 450 mm2, acquisition matrix = 320 × 320, axial plane resolution 1.406 mm 

×1.406 mm, slice thickness 1 mm. The total acquisition time per subject was approximately 

40 minutes.

Each series of axial images was automatically registered, providing a field of view of the 

entire lower limbs. 3D bone surfaces of the pelvis and the right femur, tibia/fibula, patella 

and foot (calcaneus, talus and navicular bones for all subjects, and metatarsal bones for six 

subjects) were reconstructed based on manual segmentation of bone contours in the axial 

images.

Twenty-one anatomical landmarks were manually digitised on the bone surface. The 

landmarks were used to construct the local coordinate systems of the lower limb, as 

described by the Standardisation and Terminology committee of the International Society of 

Biomechanics [32]. Tibiofemoral contact points were digitised as the most distal ends of the 

medial and/lateral femoral condyles.

The joint parameters were identified by manually fitting geometrical objects to the articular 

surfaces. The following joint parameters were identified: hip joint centre (centre of a sphere 

fitted to the femoral head, Fig. 1a); knee joint centre (midpoint of the central axis of a 

cylinder fitted to the boundaries of both femoral condyles, Fig. 1b); and ankle joint centre 

(centre of a sphere fitted to the talar dome, Fig. 1c). The fitting error, the root mean squared 

distance between a set of 50 digitised points on the articular surface to the surface of the 

fitted object, was 0.7 (± standard deviation 0.3) mm, 1.7 (± 0.6) mm, and 1.8 (± 1.0) mm for 

the hip, knee and ankle joints, respectively. The fitting error in each dataset is reported in the 

supplementary datasets.

Muscle and ligament lines-of-action were described by the origin, via and insertion points. 

Following the topology of the generic dataset of Klein Horsman et al. [12], which has been 

implemented in this atlas, lines-of-action of 163 muscle elements and the patella ligament 

were measured in the MR images (Fig. 1d), where the origins of psoas were estimated based 
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on the measured length of the fifth lumbar vertebra and the intervertebral disc. For 

gastrocnemius and iliopsoas that are free to glide over the underlying bone of the femoral 

condyles and pubis of the pelvis, two wrapping cylinders were defined in the generic dataset. 

These cylinders were manually identified in MR images based on the curved muscle lines-

of-action of gastrocnemius and iliopsoas and the segmented bone surface. The fitting error, 

the root mean squared distance between a set of 50 points digitised on the posterior surface 

of the femoral condyles and the superior surface of the pubic ramus to the cylindrical 

surface, was 1.5 (± 0.2) mm and 1.3 (± 0.2) mm, respectively. The fitting error in each 

dataset is reported in the supplementary datasets.

Segmentation and digitisation of MR images were performed using Mimics (Mimics 17.0, 

Materialise, Belgium) by two experienced operators. On completion, one operator reviewed 

and refined all segmentation and digitisation to ensure consistency across the atlas. The 

intra- and inter-operator reliability in digitisation of the anatomical landmarks and 

tibiofemoral contact points was tested for a subset of six subjects (three male, three female). 

The intraclass correlation coefficient (ICC, two-way mixed effects, absolute agreement) was 

higher than 0.99 and the intra- and inter-operator differences are reported in supplementary 

Fig. A.1.

As shown in the literature, the whole lower limb muscle volume is correlated with the 

subject’s height-mass product and the distribution of each individual muscle volume is well 

preserved across a group of healthy young subjects [11]. According to the equation in [11] 

the whole lower limb muscle volume (Vlm) of each subject was calculated:

V lm = 47 × m × ℎ + 1285 (1)

where m is subject mass in kg and h is subject height in metres.

The muscle volume (Vm) was proportional to the whole lower limb muscle volume and the 

muscle length (Lm) was proportional to the lower limb length, according to the mean value 

from the literature [11]. Muscle physiological cross-sectional area (PCSA) was calculated 

as:

PCSA = V m cos θ

Lm × Lf
Lm

× 2.7
Ls

(2)

where θ is the pennation angle; 
Lf
Lm

 is fibre length to muscle length ratio [10]; and 2.7
Ls

 is the 

ratio of optimal sarcomere length to the sarcomere length in μm [33].

Muscle parameters of a representative subject are presented in TABLE III. Ten MR-based 

anatomical datasets (including coordinates of bony landmarks, joint centres/axes, contact 

points, lines-of-action of muscles and ligament, wrapping object parameters and muscle 

parameters) are available in the supplementary datasets.
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B Gait data collection

Within six months (mean ± standard deviation [range]: 3.1 ± 2.3 [0.1 - 6.0] months) from 

MR imaging acquisition, gait data from the same subjects were acquired using a 10-camera 

VICON motion analysis system (Oxford Metrics Group, UK) with two force plates (Kistler 

Type 9286B, Kistler Instrumente AG, Winterthur, Switzerland). The marker set comprised 

anatomical landmarks of the whole lower limbs (markers on the anterior/posterior superior 

iliac spine, medial/lateral femoral epicondyles, medial/lateral malleolus, the second/fifth 

metatarsal and the heel) as well as clusters of three markers each for the thighs and shanks 

[34]. Subjects were instructed to perform six level walking trials at a self-selected 

comfortable speed (1.25 ± 0.15 [1.03 - 1.41] m/s). The final three trials were selected for 

analysis. Surface electromyography (EMG; Myon 320, Myon AG., Switzerland) during gait 

was recorded at 1000 Hz from eight muscles: gluteus medius, rectus femoris, vastus 

lateralis, vastus medialis, biceps femoris long head (LH), semitendinosus, soleus and tibialis 

anterior. The electrodes were aligned parallel to the muscle fibres over the muscle belly, as 

described in the literature [35], [36]. Prior to electrode placement, the skin was shaved and 

cleaned with alcohol wipes. Recorded EMG signals were corrected for offset, high-pass 

filtered at 30 Hz using a zero phase-lag, four order Butterworth filter and rectified. The 

rectified signals were then low-pass filtered at 10 Hz [37].

C Lower limb musculoskeletal model

A lower limb musculoskeletal model FreeBody V2.1 was used to quantify forces during gait 

[38], [39]. It consists of four rigid segments (foot, shank, thigh and pelvis), articulated by 

ankle, knee and hip joints, actuated by 163 lower limb muscle elements and the patellar 

ligament. The ankle and knee joints each possess six degrees of freedom (DOFs, a 

combination of 3DOFs planar joint and 3DOFs spherical joint), and, in this use of the 

model, the hip joint possesses three rotational DOFs (a spherical joint). The position and 

orientation of each rigid segment was constructed based on the measured kinematics using 

the method in [40], with a constraint to the hip joint [39]. The net joint force and moment 

was calculated using wrench notation in the inverse dynamic method [41]. Afterwards, 

muscle forces and resultant articulated contact forces across the ankle, knee and hip joints 

were calculated using a one-step static optimisation [42] by minimising the sum of cubed 

muscle activations [43]. The optimisation model is formulated, as below (3):
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min ∑
m = 1

163 fm
fmaxm

3
subject to

∑
l = 1

L
fl . nli − ∑

k = 1

K
fk . nk(i − 1) + Ji − Ji − 1

∑
l = 1

L
fl . nli × rli − ∑

k = 1

K
fk . nk(i − 1) × rk(i − 1) − di × Ji − 1

=
MiE3 × 3 03 × 3

Mici Ii

ai − g
θ̈i

+
03 × 1

θ̇i × Ii θ̇i
0 ≤ fm ≤ fmaxm, m = 1, …, 163

(3)

where fm is the muscle force of muscle element m (m=1,…,163) and fmaxm is the maximum 

muscle force of muscle element m, i is the segment number (numbering from distal to 

proximal), L is the number of the proximal muscle element at the segment i, K is the number 

of the distal muscle element at the segment i, ni the line of action of the proximal muscle 

element, ni-1 the line of action of the distal muscle element, ri the moment arm of the 

proximal muscle element, ri-1 the moment arm of the distal muscle element, Ji the proximal 

joint reaction force, Ji-1 the distal joint reaction force, Ii the inertia tensor, θ̈i the angular 

acceleration about COM, θ̇i the angular velocity about the COM, ai the linear acceleration of 

COM, g the gravitational acceleration, Mi the segment mass, E3×3 the identity matrix, ci the 

vector from the proximal joint to the segment COM and di is the vector from the proximal to 

the distal joint, ci and di are the skew sysmetirc matrix of ci and di, respectively.

For each individual subject, eleven lower limb musculoskeletal models were created: one 

using the subject-specific MR-based dataset and the others through linear scaling of the 

generic and the remaining nine MR-based datasets. In the scaled models, scaling factors 

were the ratios of the intersegmental length and width measured of the subject to 

intersegmental length and width in the underlying dataset. The following anatomical 

parameters scaled using this methodology were: lines-of-action of muscles/ligament, muscle 

wrapping parameters, joint centres and contact points [39]. Segment inertia parameters were 

determined based on the subject’s height, mass and gender, using the regression equations in 

De Leva [44], which were identical in the eleven models. Maximum muscle force of each 

muscle element was calculated as the maximum muscle stress (60 N/cm2) [9] multiplied by 

the PCSA of each muscle element. In total, 330 simulations (10 subjects × 11 anatomical 

datasets × 3 gait trials) were analysed in the study.

D Data analysis and statistics

Predicted muscle force, muscle activation and joint reaction force from models were 

expressed at a gait cycle percentage from 0% (right heel strike) to 100% (the consecutive 

right heel strike) at 1% intervals and averaged over three trials. The subject-specific 

(reference) model was evaluated: first, as a verification of the model the predicted muscle 

activation was compared to the experimental EMG of this subject. The magnitude (M), 
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phase (P) and combined (C) errors were quantified using the Sprague and Geers metric [45], 

where a combined error of less than 0.40 is the best validation for similar work in the 

literature [28]; secondly, the predicted knee and hip joint reaction force was compared to the 

measured data in the literature [46], [47]. The measured knee joint reaction force was from 

eight subjects with instrumented knee implants [46]; the measured hip joint reaction force 

was from ten subjects with instrumented hip implants [47].

Differences between the scaled and subject-specific model outputs were quantified using the 

root mean square difference (RMSD) and normalised by the mean force from the subject-

specific model (3):

RMSDd =
∑i = 0

100 (Fs
i − Fd

i )2

100 /Fs × 100 ( % ) (4)

where Fs is the predicted force from the subject-specific model; Fd is the predicted force 

using the dth scaled model; and Fs is the mean force during gait from the subject-specific 

model.

Pearson correlation and multiple linear regression analyses were used to identify the model 

in the atlas that produced the closest joint reaction forces to the ones from a subject-specific 

model. The following anthropometric measurements were investigated: height, mass, body 

mass index (BMI), limb length, pelvis width, femur length, tibia length, and the limb length 

to pelvis width ratio. Multiple regressions to the discrepancies in joint reaction forces were 

identified based on stepwise forward regression (pin = 0.05, pout = 0.1). The appropriateness 

of the final regression was checked by inspecting the normal probability plot of the 

regression standardised residual and the scatterplot of the standardised residual.

A Wilcoxon Signed Rank test was performed to test the hypothesis that scaling of the model 

(the ten remaining underlying datasets in the atlas) with gender and anthropometric 

similarity as identified by the regression, produced minor discrepancies of joint reaction 

force predictions from the subject-specific model, than scaling of a single generic model. 

The appropriate use of the atlas was tested through the gait data in the “6th Grand Challenge 

Competition to Predict In Vivo Knee Loads” from one subject (DM, male, height: 172 cm, 

mass: 70 kg) [48]. The subject-specific model of DM from Ding et al. [39] was implemented 

in Freebody V2.1 and is freely available at http://www.msksoftware.org.uk/software/

freebody. All statistical procedures were performed using IBM SPSS with an alpha level of 

0.05 (Version 24.0, IBM Corp., USA).

III Results

Subject-specific modelling of muscle activation showed consistency with the EMG signals 

(Fig. 2 for a representative subject and see supplementary Fig. A.2 for the other nine 

subjects). Across all subjects, the quantitative evaluation of predicted muscle activations to 

EMG data using Sprague and Geers metric is shown in TABLE IV, with phase errors ranging 

from 0.17 (soleus, standard deviation, SD = 0.06) to 0.32 (rectus femoris, SD = 0.03) and 

combined errors ranging from 0.26 (soleus, SD = 0.09) to 0.44 (rectus femoris, SD = 0.12) 
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from the subject-specific models. The predicted muscle activations from ten scaled models 

to each subject are shown in Supplementary Fig. A.3 with quantitative magnitude (M), phase 

(P) and combined (C) errors expressed as mean ± standard deviation [range]. When 

compared to the errors from the subject-specific model, the mean phase errors from the 

scaled models were greater (p ≤ 0.013) for gluteus medius, vastus lateralis, vastus medialis, 

semitendinosus, soleus and tibialis anterior.

Joint reaction forces predicted from the subject-specific models are shown in Fig. 3 while 

mean and maximum values from each subject-specific model are summarised in 

Supplementary TABLE A.I. When compared to the measured forces in the literature, 

differences in mean and maximum joint reaction forces are 23% and 26% at the knee, 33% 

and 47% at the hip.

The maximum RMSDs, expressed as the percentage of mean force from the subject-specific 

model, are shown in Fig. 4. Differences are greater for the muscle forces than the joint 

forces: in the ankle planar flexors, maximum RMSDs were found to be 336% at flexor 

hallucis longus and 271% at flexor digitorum longus; in the ankle dorsiflexors, 325% and 

301% at tibialis anterior and extensor digitorum longus, respectively; in the knee extensors 

465% at vastus lateralis; and in the hip adductors, 448% at gracilis. The differences in joint 

reaction forces were greatest at the knee joint with a maximum RMSD of 61%, followed by 

the ankle joint with 48% and hip joint with 30%. The maximum RMSD of the sum of joint 

reaction forces (ankle, knee and hip) was 26% from the scaled model, in comparison with 

the sum of these from the subject-specific model.

A significant moderate to strong correlation (R > 0.30, p < 0.05) was found between the 

discrepancies in the joint reaction force predictions and the discrepancies in gender and 

anthropometric measurements of the underlying anatomical datasets (apart from the pelvis 

width, see TABLE V).

The final multiple regression found the significant predictors to the difference in the joint 

reaction force predictions, which are, for the different predictions of the ankle joint forces: 

the differences in gender (regression coefficient, B = 7.66, p = 0.005) and mass (B = 0.49, p 
< 0.001); for the different predictions of knee joint forces: differences in gender (B = 7.75, p 
= 0.013), mass (B = 0.38, p = 0.001), limb length (B = 1.00, p = 0.017), and the limb length 

to pelvis width ratio (B = 37.22, p = 0.011); for the different predictions of hip joint forces: 

differences in gender (B = 2.64, p = 0.039), mass (B = 0.10, p = 0.033) and limb length (B = 

0.38, p < 0.001); and for the different predictions of the sum of these: differences in gender 

(B = 25.24, p = 0.003), mass (B = 0.99, p = 0.001) and limb length (B = 2.23, p = 0.046) 

(Fig. 5 and TABLE VI). The regression models accounted for 49%, 61%, 36% and 40% of 

the variances of the differences at the ankle, knee, hip joint force predictions, and the sum of 

these, respectively (TABLE VI).

In comparison with the RMSDs produced by scaling of the generic model, scaling of the 

musculoskeletal model with gender and anthropometric similarity as identified by the 

regression significantly reduced the RMSDs in joint reaction forces of ankle, knee, hip and 

their sum (p = 0.005, TABLE VII).

Ding et al. Page 8

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2020 March 27.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Based on the regression to the knee joint force prediction, the closest scaled model in the 

atlas was identified for subject DM in the “6th Grand Challenge Competition to Predict In 

Vivo Knee Loads”. It produced similar values as the subject-specific model for RMSE and 

R2 when compared to the measured knee joint reaction force, as shown in Fig. 6 for two 

representative gait cycles. The RMSE from the closest model was lower than the RMSEs 

from all other ten models in the atlas.

IV Discussion

Use of a single, scaled generic musculoskeletal model is unable to account for wide inter-

individual variability in lower limb anatomy [27] – [29]. This study for the first time has 

demonstrated that the discrepancies from the scaled models are significantly correlated with 

the discrepancies in gender and anthropometric measurements of the underlying anatomical 

datasets when compared to a subject-specific model. The discrepancy in mass was the 

primary anthropometric predictor of the discrepancy in the ankle joint force prediction and 

the discrepancy of limb length was the primary anthropometric predictor of the 

discrepancies in knee and hip joint force predictions. After mass and limb length, the limb 

length to pelvis width ratio was found to be the third significant predictor: it accounted for 

an additional 3% of the variance of discrepancies at the knee. Therefore, these 

anthropometric measures should be taken into account and varied when creating a 

comprehensive lower limb anatomical atlas.

The differences in predicting the knee and hip joint forces are expected as there are known 

gender differences in pelvic shape [18], [49] and there is some evidence of gender 

differences at the distal femur [50]. Such differences are not accounted for by scaling of one 

unique gender model. These differences may promulgate throughout the whole lower limb 

force predictions through the action of biarticular muscles [51]. Our study has shown that 

these gender differences do not dominate differences in joint reaction force predictions, 

when compared to anthropometry, but do improve the fit of the regression of RMSDs by 5% 

at the ankle (p = 0.005), 3% at the knee (p = 0.013), 2% at the hip (p = 0.039) and 6% for 

their sum (p = 0.009).

Linear scaling of a dataset with same gender and similar anthropometry to the subject 

reduced discrepancies when compared to scaling of a generic dataset: discrepancies were 

reduced at the ankle joint from 44% to 16%, a 64% reduction (p = 0.005); at the knee joint 

from 48% to 16%, a 67% reduction (p = 0.005); and at the hip joint from 34% to 17%, a 

50% reduction (p = 0.005). The reduction was most evident for subjects with lower body 

mass, for example, subject M5 showed a reduction of 89% at the ankle joint and 77% at the 

hip joint. As a demonstration of the use of the atlas, scaling of the closest model to one 

subject in the literature with an instrumented knee implant produced knee joint forces 

consistent with the measured knee joint forces (R2 ≥ 0.78). The RMSE from the scaled 

closest model was comparable to the best ones that can be obtained from the subject-specific 

model. The results support our hypothesis. It is worth noting that the subject-specific model 

of DM predicted lower later-stance knee forces than the scaled closest model. This may be 

attributed the geometry differences between the artificial knee and the natural knee [52], 

[53]. Previous studies have found that muscle architecture scales with subject morphology, 
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such as body mass and limb length [11]. The results of our study, however, suggest that the 

muscle attachments may not scale with these morphological parameters, highlighting the 

importance of having an anatomical atlas that far closer represents the subjects.

There are methodological differences between the generic and MR-based datasets which 

may affect the consistency of the atlas. First, joint centres and axes were measured using the 

functional method in [12] and measured based on joint geometry from the MR images. 

Additionally, the foot was maintained in plantar flexion position during the cadaveric 

measurement [12] and was in a more neutral position in the MR scanners. The MRI-based 

anatomical datasets showed a good consistency as indicated by the high coefficient of 

determination value of over 0.96 in joint reaction forces (TABLE VII).

Scaling using the closest anatomical model still produced a discrepancy of 16% in joint 

reaction force predictions, when compared to the subject-specific model. This discrepancy 

corresponds to a 0.37 BW difference for hip joint force during gait. In addition, the final 

regression model for the hip joint only accounted for approximately 33% of variance 

(adjusted R2 = 0.333) of the discrepancy. This indicates that the linear scaling based on the 

gender and anthropometric similarity may not be adequate, especially for the hip joint force 

prediction. Recent studies have demonstrated a better estimation of muscle attachment sites 

by applying a morphing technique to the bone surface when compared to linear scaling [54], 

[55]. This technique could in future be applied to generate a larger, population-based dataset 

of subject-specific musculoskeletal models.

To facilitate the development of subject-specific musculoskeletal models, the entire 

anatomical atlas is accessible at http://www.msksoftware.org.uk, including segmented bone 

surfaces (STL files), bony landmark coordinates, joint centres, contact points, lines-of-action 

of muscles and ligaments, wrapping object parameters and muscle parameters. Subject-

specific musculoskeletal models from the atlas implemented in FreeBody are available in the 

same repository. The fidelity of subject-specific musculoskeletal models was evaluated by 

comparing the predicted muscle activation against the experimental EMG of the same 

subject, and secondly, by comparing the calculated joint reaction forces against the 

instrumented implant measurements from other subjects in the literature. EMG patterns from 

eight muscles were comparable with the literature [56], [57] and the errors between muscle 

activations and EMG were comparable with other validation studies [28], [39]. Considerable 

differences were found between the higher calculated joint reaction forces with the measured 

joint reaction forces in the literature. This can be partially explained by the discrepancy 

between the artificial joint and the natural joint and subsequently, the discrepancy introduced 

in gait: a slightly higher walking speed and greater ground reaction force were found from 

our young healthy subjects and so a higher joint reaction force is expected. We acknowledge 

that improvements to the musculoskeletal geometry alone may not be sufficient to minimise 

the disagreement between model outcomes and true physiological loading in the 

musculoskeletal system. Other improvements in the literature focusing on taking greater 

account of realistic neuromuscular strategies have enabled better estimation of muscle 

activation and joint reaction force. These improvements include EMG-driven 

musculoskeletal models [58] – [60] and subject-specific synergy controls [61], [62].
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There are some limitations to this study. First the muscle parameters including fibre length 

to muscle length ratio (
Lf
Lm

), pennation angle (θ), and sarcomere length (Ls) were obtained 

from studies of elderly cadavers [10], [12]. Until now, there is no complete and 

comprehensive dataset measuring these parameters in vivo and it is known that uncertainty 

in these parameters can affect muscle force predictions significantly [63], [64]; they cannot 

be obtained from MRI. Second, MR images were acquired in the standardised position of 

subjects lying in the MR scanner, resulting in a muscle moment arm definition for that 

position only; the variation in muscle moment arm during dynamic and loaded conditions 

was not taken into account. Some studies have recently demonstrated the feasibility for 

physiological measurements of muscle moment arms over a range of joint motion [65], [66] 

and using this approach will provide a better representation of the musculoskeletal geometry 

during functional activities. Third, in our optimisation model, each muscle element was 

modelled with a constant strength and it was independent of any contraction dynamics 

associated with muscle length and velocity. For muscles that covered a large muscle 

attachment site, their strength was evenly distributed across the separate elements and the 

effect of this muscle decomposition was not corrected in the cost function in either the 

subject-specific model or the scaled model. Decomposition and muscle dynamics have been 

shown to affect the prediction of muscle forces [28], [67]. Finally, the errors quantified in the 

study were from healthy subjects during gait only and thus the effect of extrapolating these 

results to other activities and pathological subject should be investigated.

V Conclusion

This study tested the hypothesis that linear scaling to a musculoskeletal model with gender 

and anthropometric similarity to the individual subject can produce similar results to the 

ones that can be obtained from a subject-specific model. A lower limb musculoskeletal 

anatomical atlas, consisting of datasets derived from MRI and a generic dataset from the 

literature, was developed; the discrepancies from scaled models were quantified where joint 

reaction forces from the personalised, subject-specific musculoskeletal models are 

considered as references; and finally, the use of the atlas was identified based on gender and 

anthropometric similarity. This method produced the lowest discrepancies when compared 

to the other linearly scaled models, thus supporting our hypothesis. Discrepancies of 16% in 

joint reaction force calculations remain, indicating that there is potential for further 

improvements. We have provided a new anatomical atlas that is publically available to 

accelerate the development and adoption of subject-specific musculoskeletal models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Lower limb anatomy geometry for a representative subject. (a) Hip centre (b) Knee centre 

and knee axis (c) Ankle centre; (d) Muscle element lines-of-action (in pink) and patella 

ligament (in blue). Wrapping objects (in green) were defined for iliopsoas and 

gastrocnemius.

Ding et al. Page 15

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2020 March 27.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 2. 
Predicted muscle activations (solid line) from the subject-specific model compared to the 

experimental EMG data (grey area) in a representative subject (F1). EMG data were 

individually normalised to the maximum recorded signal of each muscle during gait and 

predicted muscle activations were defined to be between 0 (fully deactivated) and 1 (fully 

activated) in terms of the peak value predicted during gait. Magnitude (M), phase (P) and 

combined (C) errors from predicted muscle activations are quantified using Sprague and 

Geers metric. See supplementary Fig. A.2 for the results of the other nine subjects.
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Fig. 3. 
Mean joint reaction force (solid line) and standard deviation (shaded area), expressed in 

bodyweight (BW), from ten subject-specific models at the ankle, knee and hip joint. Mean 

and maximum joint reaction force for each subject-specific model is reported in 

Supplementary TABLE A.I.
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Fig. 4. 
RMSDs in muscle and joint reaction forces: (a) maximum RMSDs and standard deviations 

in muscle forces crossing the ankle, knee and hip joints, (b) maximum RMSDs and standard 

deviations in ankle, knee and hip joints, and the sum of these. RMSDs are expressed as a 

percentage of mean force from the subject-specific model.
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Fig. 5. 
Significant anthropometric predictors of root mean square difference (RMSD) in joint forces 

at (a) the ankle, (b) the knee, (c) the hip and (d) the sum of all joints. Difference in 

anthropometric measurements is expressed as a percentage difference from the underlying 

dataset to the subject. R and p values are from the Pearson correlation analysis.
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Fig. 6. 
Predicted knee joint reaction force, expressed in body weight (BW), using eleven models in 

the atlas compared to the experimental measurement (solid line) and the subject-specific 

prediction (dashed line) in two representative gait cycles: (a) DM_ngait1 and (b) 

DM_bouncy5. The subject-specific model of DM from Ding et al. [39] is freely available at 

http://www.msksoftware.org.uk/software/freebody. The scaled-closest model is identified 

based on the regression; the scaled-others are presented as mean (dotted line) and standard 

deviations (shaded area). The root mean square error (RMSE) and coefficient of 

determination (R2) are calculated by comparing the difference between the model prediction 

with the experimental measurement. The RMSE and R2 from the scaled-others models are 

expressed as mean ± standard deviation [range].
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Table I
Single Complete Subject Lower Limb Musculoskeletal Generic Models Used in the 
Literature

Model Gender Height (m) Body mass (kg) Lower limb length (mm) Age (years)

Rajagopal et al.[9] Male 1.70 75 not provided not provided

Carbone et al.[13] Male not provided 45 813 85

Klein Horsman et al.[12] Male 1.74 105
904

a 77

a
Limb length is calculated as the sum of femur and tibia lengths of the right leg: femur length is measured as the distance from the trochanter major 

to the mid point of the femoral epicondyles; tibia length is measured as the distance from the mid point of the femoral epicondyles to the medial 
malleolus.
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Table II
Participant Characteristics

Subject Age (years) Height (m) Height percentile (%ile)
a Body mass (kg) Limb length (mm)

b

Male 1 27 1.92 99th 85.0 910

Male 2 42 1.83 90th 96.0 836

Male 3 25 1.80 80th 70.0 876

Male 4 28 1.72 39th 70.0 787

Male 5 21 1.68 20th 64.0 727

Female 1 43 1.84 99th 78.0 873

Female 2 45 1.68 87th 70.0 796

Female 3 39 1.64 68th 61.6 757

Female 4 24 1.58 31th 55.6 714

Female 5 27 1.55 17th 45.0 690

Mean
(SD)

32
(9)

1.72
(0.12)

69.5
(14.5)

797
(76)

a
Height percentile is calculated based on British adults [31].

b
Limb length is calculated as the sum of femur and tibia lengths of the right leg: femur length is measured as the distance from the major trochanter 

to the mid point of the femoral epicondyles; tibia length is measured as the distance from the mid point of the femoral epicondyles to the medial 
malleolus.
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Table III
Muscle Parameters of a Representative Subject (F1)

Muscle PCSA (cm2)
Muscle 
volume (Vm, 
cm3)

Muscle length 
(Lm, cm)

Fibre length to 
muscle length 

ratio (
Lf
Lm

)
Pennation angle 
(θ, °)

sarcomere length 
(Ls, μm)

Adductor brevis 11.26 118.05 14.23 0.68 6.10 2.91

Adductor longus 14.79 181.49 21.91 0.50 7.10 3.00

Adductor magnus 58.58 631.19 32.82 0.39 15.50 2.19

Biceps femoris long head 31.75 234.49 29.68 0.28 11.60 2.35

Biceps femoris short head 6.80 112.43 26.89 0.49 12.30 3.31

Extensor digitorum longus
a 7.28 77.90 37.89 0.24 10.80 3.12

Extensor hallucis longus
a 2.64 37.74 37.89 0.31 9.40 3.24

Flexor digitorum longus 8.50 34.53 26.02 0.16 13.60 2.56

Flexor hallucis longus 19.87 87.53 24.01 0.20 16.90 2.37

Gastrocnemius lateral 24.32 169.44 25.14 0.27 12.00 2.71

Gastrocnemius medial 55.89 290.70 28.11 0.19 9.90 2.59

Gemellus inferior
b 1.01 7.29 7.20 1.00 0.00 2.70

Gemellus superior
b 1.01 7.29 7.20 1.00 0.00 2.70

Gluteus maximus 49.01 958.03 30.38 0.62 21.90 2.60

Gluteus medius 51.94 364.58 19.99 0.37 20.50 2.40

Gluteus minimus 8.78 118.05 13.44 1.00 0.00 2.70

Gracilis 3.63 117.24 33.70 0.79 8.20 3.24

Iliacus 11.76 199.15 26.19 0.56 14.30 3.02

Obturator externus 5.92 61.03 10.30 1.00 0.00 2.70

Obturator internus 3.68 30.52 8.29 1.00 0.00 2.70

Pectineus 5.53 73.88 13.36 1.00 0.00 2.70

Peroneus brevis
c 6.47 47.38 37.10 0.19 11.50 2.76

Peroneus longus
c 13.54 99.58 37.10 0.19 14.10 2.72

Peroneus tertius
d 6.20 1.00 0.00 2.70

Piriformis 4.88 48.99 10.04 1.00 0.00 2.70

Plantaris
d 2.40 1.00 0.00 2.70

Popliteus 2.64 26.50 10.04 1.00 0.00 2.70

Psoas minor
d 1.10 1.00 0.00 2.70

Psoas 15.30 305.16 34.05 0.50 10.60 3.11

Quadratus femoris 4.76 36.14 7.60 1.00 0.00 2.70

Rectus femoris 46.82 304.35 33.52 0.21 13.90 2.42

Sartorius 3.22 183.90 55.00 0.90 1.30 3.11

Semimembranosus 40.63 277.85 28.46 0.24 15.10 2.61

Semitendinosus 9.06 208.79 32.30 0.65 12.90 2.89
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Muscle PCSA (cm2)
Muscle 
volume (Vm, 
cm3)

Muscle length 
(Lm, cm)

Fibre length to 
muscle length 

ratio (
Lf
Lm

)
Pennation angle 
(θ, °)

sarcomere length 
(Ls, μm)

Soleus 151.65 498.69 33.52 0.11 28.30 2.12

Tensor fasciae latae 4.31 71.47 16.59 1.00 0.00 2.70

Tibialis anterior 14.01 153.38 33.09 0.27 9.60 3.14

Tibialis posterior 31.23 119.65 31.95 0.12 13.70 2.56

Vastus intermedius 45.99 308.37 34.66 0.24 4.50 2.17

Vastus lateralis 76.97 936.35 38.32 0.38 18.40 2.14

Vastus medialis 67.23 486.64 34.48 0.22 29.60 2.24

Fibre length to muscle length ratio (
Lf
Lm

), pennation angle (θ), and sarcomere length (Ls) were taken from [10]. For muscles which were not 

measured in [10] their fibre length to muscle length ratio was set as 1, pennation angle was set as 0° and sarcomere length was set as 2.7μm.

a
Muscle volume was only available for the combined extensor digitorum longus and extensor hallucis longus in [11]. Volume proportion in [12] 

was used to divide the two muscles.

b
Muscle volume was only available for the combined gemellus inferior and gemellus superior in [11]. Volume proportion in [12] was used to divide 

the two muscles.

c
Muscle volume was only available for the combined peroneus longus and peroneus brevis in [11]. Volume proportion in [12] was used to divide 

the two muscle.

d
Muscle was not included in [11]. Its PCSA was obtained from [12].
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Table IV
Absolute Values of Magnitude (M), Phase (P) and Combined (C) Errors Between 
Predicted Muscle Activations From Models (Subject-Specific and Scaled Models) to 
Measured EMG Data, Reported as Mean (Standard Deviation) for All Ten Subjects

M   P   C

Subject-
specific 
model

Scaled 
model p value

a
Subject-
specific 
model

Scaled 
model p value

a
Subject-
specific 
model

Scaled 
model p value

a

Gluteus medius 0.22 (0.13) 0.34 
(0.20)

0.028 0.20 (0.03) 0.24 
(0.02)

0.013 0.31 (0.10) 0.44 
(0.17)

0.017

Rectus femoris 0.26 (0.20) 0.38 
(0.24)

0.013 0.32 (0.03) 0.34 
(0.04)

0.799 0.44 (0.12) 0.53 
(0.18)

0.047

Vastus lateralis 0.20 (0.09) 0.37 
(0.09)

0.005 0.27 (0.08) 0.40 
(0.04)

0.005 0.35 (0.09) 0.55 
(0.07)

0.005

Vastus medialis 0.20 (0.15) 0.21 
(0.10)

0.799 0.28 (0.06) 0.31 
(0.05)

0.007 0.37 (0.07) 0.39 
(0.06)

0.169

Biceps femoris 
(LH)

0.19 (0.11) 0.23 
(0.16)

0.575 0.21 (0.03) 0.22 
(0.03)

0.575 0.30 (0.07) 0.32 
(0.14)

0.575

Semitendinosus 0.15 (0.14) 0.21 
(0.10)

0.093 0.22 (0.06) 0.28 
(0.06)

0.005 0.29 (0.11) 0.36 
(0.08)

0.009

Soleus 0.18 (0.11) 0.18 
(0.09)

0.959 0.17 (0.06) 0.26 
(0.08)

0.007 0.26 (0.09) 0.36 
(0.10)

0.059

Tibialis anterior 0.17 (0.13) 0.23 
(0.15)

0.721 0.26 (0.05) 0.31 
(0.04)

0.005 0.32 (0.11) 0.41 
(0.12)

0.114

a
p value is from the Wilcoxon Signed Rank test by comparing the error from the subject-specific model with the mean error from ten scaled models 

(α = 0.05).
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Table V
Correlation Between Root Mean Square Difference (RMSD) in Joint Reaction Forces 
From Scaled Models and the Discrepancies from the Underlying Datasets to the Modelled 
Subject

RMSD
a

Ankle Knee Hip Sum

R p value R p value R p value R p value

∆gender
b 0.354 0.001 0.373 <0.001 0.355 0.023 0.341 0.002

∆height
c 0.612 <0.001 0.585 <0.001 0.475 <0.001 0.528 <0.001

∆mass
c 0.662 <0.001 0.697 <0.001 0.463 <0.001 0.550 <0.001

∆limb length
c 0.426 <0.001 0.702 <0.001 0.536 <0.001 0.435 <0.001

∆femur length
c 0.426 <0.001 0.585 <0.001 0.520 <0.001 0.435 <0.001

∆tibia length
c 0.490 <0.001 0.658 <0.001 0.536 <0.001 0.485 <0.001

∆pelvis width
c 0.103 0.335 0.101 0.354 0.256 0.001 0.142 0.212

∆BMI
c 0.459 <0.001 0.360 0.001 0.401 <0.001 0.404 <0.001

∆limb length to pelvis width ratio
c 0.324 0.002 0.441 <0.001 0.516 <0.001 0.380 0.001

The values in italics are statistically significant.

a
RMSDs in ankle, knee and hip joints, and the sum of these, are expressed as the percentage of mean force from the subject-specific model.

b
Difference in gender is defined as 1 or 0.

c
Difference in anthropometry measurements is expressed as a percentage difference from the underlying dataset to the subject; pelvis width is 

defined as the distance between right and left anterior superior iliac spine; the limb length to pelvis width ratio (ratio) is defined as limb length 
divided by pelvis width.
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Table VI
Identified Multiple Regression Models to Quantify Root Mean Square Difference (RMSD) 
in Joint Reaction Forces

Ankle

Predictor R R2 Adjusted R2 Change in R2 p value

constant + ∆mass 0.662 0.439 0.432 0.439 <0.001

constant + ∆mass+∆ gender 0.698 0.488 0.476 0.049 <0.001

Multiple Regression Model RMSD
a
 = 11.06+0.49×∆mass+7.66×∆gender

B
b Standard error p value

95% CI
b

constant 11.061 2.156 <0.001 6.775 15.346

∆mass 0.490 0.063 <0.001 0.365 0.615

∆gender
c 7.663 2.672 0.005 2.350 12.975

Knee

Predictor R R2 Adjusted R2 Change in R2 p value

constant+∆LL 0.702 0.493 0.487 0.493 <0.001

constant+∆LL+∆mass 0.744 0.553 0.542 0.060 <0.001

constant+∆LL+∆mass+∆ratio 0.764 0.583 0.568 0.030 <0.001

constant+∆LL+∆mass+∆ratio+∆gender 0.783 0.613 0.595 0.030 <0.001

Multiple Regression Model RMSD = 5.32+1.00×∆LL+0.38×∆mass+37.22×∆ratio+7.75×∆gender

B Standard error p value 95% CI

Constant 5.321 2.780 0.059 -0.210 10.851

∆LL
d 1.001 0.411 0.017 0.184 1.819

∆mass
d 0.379 0.108 0.001 0.165 0.594

∆ratio
d 37.221 14.257 0.011 8.860 65.582

∆gender 7.751 3.062 0.013 1.660 13.842

Hip

Predictor R R2 Adjusted R2 Change in R2 p value

constant+∆LL 0.536 0.287 0.278 0.287 <0.001

constant+∆LL+∆mass 0.580 0.337 0.319 0.050 <0.001

constant+∆LL+∆mass+∆gender 0.599 0.359 0.333 0.022 <0.001

Multiple Regression Model RMSD = 9.60+0.38×∆LL+0.10×∆mass+2.64×∆gender

B Standard error p value 95% CI

Constant 9.595 1.436 <0.001 6.642 12.549

∆LL 0.377 8.337 <0.001 0.172 0.582

∆mass 0.096 0.041 0.033 0.008 0.183

∆gender 2.641 1.626 0.039 -0.634 5.917

Overall

R R2 Adjusted R2 Change in R2 p value

constant+∆mass 0.550 0.302 0.293 0.302 <0.001

constant+∆mass+∆gender 0.602 0.363 0.346 0.061 0.009

constant+∆mass+∆gender+∆LL 0.629 0.396 0.372 0.033 0.046
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Multiple Regression Model RMSD = 7.40+0.16×∆mass+4.03×∆gender+0.16×∆ratio

B Standard error p value 95% CI

Constant 7.399 1.326 <0.001 4.758 10.040

∆mass 0.163 0.037 <0.001 0.089 0.237

∆gender 4.031 1.484 0.008 1.074 6.987

∆ratio 0.158 0.078 0.046 0.003 0.313

a
RMSDs from the scaled modes in joint reaction forces at the ankle, knee, hip and their sum are expressed as the percentage of mean force from the 

subject-specific model.

b
B indicates regression coefficient; CI indicates confidence interval.

c
Difference in gender is defined as 1 or 0.

d
Difference in mass (∆mass), limb length (∆LL) and limb length to pelvis width ratio (∆ratio) is expressed as percentage difference from the 

underlying dataset to the modelled subject.
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Table VII
A Comparison of Root Mean Square Difference (RMSD) and Coefficient of 

Determination (R2) in Joint Reaction Forces Produced by the Scaled Generic Model and 
the Scaled Closest Model.

Ankle Knee Hip Sum
c

Scaled-
generic

Scaled-

closest
a

Scaled-
generic

Scaled-closest Scaled-
generic

Scaled-closest Scaled-
generic

Scaled-closest

RMSD 
(%)

R2 RMSD 
(%)

R2 RMSD 
(%)

R2 RMSD 
(%)

R2 RMSD 
(%)

R2 RMSD 
(%)

R2 RMSD 
(%)

R2 RMSD 
(%)

R2

M1 20 0.99 14 0.98 55 0.64 18 0.92 32 0.86 16 0.97 25 0.83 11 0.96

M2 43 0.76 13 0.98 37 0.82 15 0.97 32 0.81 11 0.98 38 0.80 13 0.98

M3 31 0.90 15 0.99 40 0.79 20 0.97 36 0.91 21 0.94 49 0.87 10 0.97

M4 43 0.79 5 0.99 55 0.76 13 0.93 19 0.97 16 0.97 54 0.84 11 0.96

M5 87 0.81 9 0.99 56 0.75 20 0.99 39 0.92 9 0.99 31 0.82 11 0.99

F1 13 0.99 10 0.99 37 0.89 10 0.99 43 0.86 17 0.98 47 0.91 5 0.99

F2 47 0.70 35 0.96 35 0.96 14 0.90 26 0.88 22 0.94 52 0.85 10 0.94

F3 51 0.17 28 0.94 57 0.55 12 0.99 48 0.94 30 0.99 34 0.56 17 0.97

F4 40 0.76 17 0.95 44 0.75 11 0.93 37 0.83 13 0.95 52 0.78 10 0.94

F5 64 0.57 18 0.89 69 0.54 30 0.89 24 0.94 10 0.93 79 0.68 27 0.91

Mean 44 0.72 16 0.97 48 0.76 16 0.95 34 0.90 17 0.96 46 0.79 13 0.96

SD 21 0.23 9 0.03 11 0.14 6 0.04 9 0.05 7 0.02 15 0.10 6 0.02

p 

value
b

0.005 0.005 0.005 0.005

M and F designate male and female.

a
The closest musculoskeletal model for scaling (scaled-closest) is derived from the multiple regression model with the minimum RMSD (min 

f(RMSDd)) in joint reaction forces: for the ankle, min f(RMSDd) = min (11.06 + 0.49 × Δmassd + 7.66 × Δgenderd) ; for the knee, min f(RMSDd) 

= min (5.32 + 1.00 × ΔLLd + 0.38 × Δmassd + 37.22 × Δratiod + 7.75 × Δgenderd) ; for the hip, min f(RMSDd) = min (9.60 + 0.38 × ΔLLd + 0.10 

× Δmassd + 2.64 × Δgenderd); and for their sum, min f(RMSDd) = min (7.40 + 0.16 × Δmassd + 4.03 × Δgenderd + 0.16 × Δratiod), where: 

Δgenderd indicates the difference in gender between the subject and the model (d), which is 1 when gender is different else is 0; Δmassd, ΔLLd and 

Δratiod indicate the percentage difference in mass, limb length (LL) and the limb length to pelvis width ratio from the underlying dataset (d) to the 

modelled subject.

b
p value is from the Wilcoxon Signed Rank test between RMSDs from scaled-generic and scaled-closest models (α = 0.05).

c
RMSDs of the sum of joint reaction forces of ankle, knee and hip; R2 is the mean R2 in joint reaction forces of ankle, knee and hip.
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