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Abstract

The ability to predict the impact of cis-regulatory sequence on gene expression would facilitate 

discovery in fundamental and applied biology. Here, we combine polysome profiling of a library 

of 280,000 randomized 5′ UTRs with deep learning to build a predictive model that relates human 

5′ UTR sequence to translation. Together with a genetic algorithm, we use the model to engineer 

new 5′ UTRs that accurately direct specified levels of ribosome loading, providing the ability to 

tune sequences for optimal protein expression. We show that the same approach can be extended 

to chemically modified RNA, an important feature for applications in mRNA therapeutics and 

synthetic biology. We test 35,000 truncated human 5′ UTRs and 3,577 naturally occurring variants 

and show that the model predicts ribosome loading of these sequences. Finally, we provide 

evidence of 45 SNVs associated with human diseases that substantially change ribosome loading 

and thus may represent a molecular basis for disease.

The sequence of the 5′ untranslated region (5′ UTR) is a primary determinant of translation 

efficiency1,2. While many cis-regulatory elements within human 5′ UTRs have been 

characterized individually, the field still lacks a means to accurately predict protein 

expression from 5′ UTR sequence alone, limiting the ability to estimate the effects of 

genome-encoded variants and the ability to engineer 5′ UTRs for precise translation control. 

Massively parallel reporter assays (MPRAs) – methods that assess thousands to millions of 

sequence variants in a single experiment – coupled with machine learning have proven 
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useful in addressing similar voids by producing quantitative biological insight that would be 

difficult to achieve through traditional approaches3–9.

Earlier MPRAs designed to learn aspects of 5′ UTR cis-regulation relied on FACS10,11 or 

growth selection12 to stratify libraries by activity. These techniques require the expression of 

a single library variant per cell that must be transcribed within the cell from a DNA 

template, making it difficult to distinguish between the effects of transcriptional and 

translational control. Polysome profiling13 overcomes this limitation by enabling single cells 

to translate tens to hundreds of in vitro transcribed (IVT) and transfected mRNA variants. 

Polysome profiling has been used extensively to measure translation of native RNA 

isoforms14,15 but isolating the role of 5′ UTR regulation has been difficult due to differences 

in the size and sequence of the concomitant coding sequences and 3′ UTRs.

Here we report the development of an MPRA that measures the translation of hundreds of 

thousands of randomized 5′ UTRs via polysome profiling and RNA sequencing. We then 

use the data to train a convolutional neural network (CNN) that can predict ribosome loading 

from sequence alone.

Results

MPRA design and validation

To build a model capable of predicting the ribosome loading of human 5′ UTR variants and 

designing new 5′ UTRs for targeted expression (Fig. 1a), we first created a 280,000-member 

gene library with random 5′ UTRs but constant eGFP coding sequence and 3′ UTR (Fig. 

1b). Specifically, the 5′ UTR of each construct begins with 25 nucleotides of defined 

sequence used for PCR amplification, followed by 50 nucleotides of fully random sequence 

before the eGFP coding sequence. HEK293T cells were transfected with IVT library mRNA 

and harvested after 12 hours. Polysome fractions were collected and sequenced 

(Supplementary Fig. 1). For a given UTR, the relative counts per fraction were multiplied by 

the number of ribosomes associated with each fraction and then summed to obtain a 

measured Mean Ribosome Load (MRL) (Supplementary Note 1). Below, we refer to the 

entire workflow required to measure the MRL of all 5′ UTRs in a library, i.e. library 

transfection, polysome profiling, high-throughput sequencing and MRL analysis, as a 

“polysome profiling experiment”. We initially focused on the first 50 bases upstream of the 

CDS to specifically investigate the regulatory signals that mediate the initiation of 

translation beyond ribosomal recruitment to the 5′ cap. Intriguingly, variants within the 50 

nt window directly adjacent to the start codon are under stronger negative selection than 

those further upstream16, providing another motivation to focus on this window.

To validate our approach, we asked whether it captured known aspects of translation 

regulation. Translation initiation is largely dependent on start codons and their context and 

position relative to a CDS12,17. Our data clearly show the expected decrease in ribosome 

loading for sequences with either out-of-frame upstream start codons (uAUGs) (Fig. 1c) or 

upstream open reading frames (uORFs) (Supplementary Fig. 2b)18,19. On average, we 

observed considerably lower use of CUG and GUG as alternative start codons compared to 

AUG (Fig. 1c and Supplementary Figs. 3 and 4) unlike other reports that show widespread 
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usage of non-AUG start sites15,20,21, possibly because these alternative start codons are used 

more often under stress conditions22. Still, we found that CUG and GUG start codons can 

impact ribosome loading, especially when surrounded by strong sequence context 

(Supplementary Figs. 3 and 4). The region surrounding the start codon, known as the 

translation initiation site (TIS) or the Kozak sequence, is a primary determinant of whether a 

ribosome will begin translation. We scored the repressive strength of all out-of-frame TISs 

by finding the mean MRL of sequences with all permutations of NNNAUGNN (except 

where NNN is AUG) (Fig. 1d). Using the 20 most repressive and 20 least repressive 

sequences, we calculated nucleotide frequencies for the strongest and weakest TISs. This 

analysis recapitulated the importance of a purine (A or G) at position −3 relative to AUG and 

a G at +4 (Fig. 1e)10,23,24. Ultimately, these data suggest that each TIS sequence can 

uniquely tune translation initiation to a fine degree. Translation initiation and elongation is 

also affected by RNA secondary structure that forms within 5′ UTRs and coding sequences, 

with strong structures showing the most negative effect on translation17,25. By calculating 

UTR minimum free energies (MFE)26 and comparing them to UTR MRLs, we captured and 

quantitated this repressive effect of secondary structure on ribosome load (Supplementary 

Fig. 2c)17,25.

Modeling 5′ UTRs and ribosome loading

We set out to develop a model, Optimus 5-Prime (Supplementary Code), that could 

quantitatively capture the relationship between 5′ UTR sequences and their associated 

MRLs. To this end, we trained a convolutional neural network (CNN) with 260,000 of the 

280,000-member eGFP library. The remaining 20,000 sequences were withheld for testing. 

After an exhaustive grid search to find optimal hyperparameters (Fig. 2a, Online Methods), 

Optimus 5-Prime could explain 93% of MRL variation in the test set (Fig. 2b). A model 

trained on data from another polysome profiling experiment performed similarly 

(Supplementary Fig. 5a). By comparison, position-specific k-mer (k = 1–6) linear models 

could at best explain 66% of the variation in the test set (Supplementary Figs. 6 and 7, 

Supplementary Table 1).

So far, we used MRL as a simple measure for translation but the raw data also captures how 

often a given sequence occurs in each polysome fraction. We thus set out to build a model 

capable of predicting the full polysome distribution for a given sequence. Using a similar 

network architecture but with 14 linear outputs representing the polysome fractions 

(Supplementary Fig. 8), the model captured the relationship between 5′ UTR sequence and 

distribution of ribosome occupancy on held out test data remarkably well (Fig. 2c), 

explaining an average of 83% of variation across all fractions (Fig. 2d). To test whether the 

mean ribosome load prediction corresponds to actual protein expression, we selected and 

synthesized mRNAs containing 10 different UTRs from the library with a wide range of 

observed MRLs. We then transfected these mRNAs into HEK293 cells and measured eGFP 

fluorescence using IncuCyte live cell imaging. Fluorescence and predicted MRL were highly 

correlated (r2: 0.87) and the most poorly translated sequence showed 15-fold less 

fluorescence than the best (Fig. 2e). We also tested Optimus 5-Prime on 77 5′ UTRs 

previously designed by Ferreira et al.27 and characterized using a fluorescent reporter system 

in six different cell lines. UTRs were designed to result in a range of expression levels by 
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inserting one or multiple uORFs. Our model’s MRL predictions correlated well with the 

independently reported fluorescence levels (r2: 0.73–0.85, Supplementary Fig. 9).

Finally, to learn whether Optimus 5-Prime would generalize to other coding sequences, we 

built a separate degenerate 5′ UTR mRNA library with an mCherry CDS replacing eGFP. 

Following the polysome profiling and modeling procedure as above, we found that the 

model, although only trained on the eGFP library, still performed well, explaining 77% and 

78% of the variation in MRL for two independent polysome profiling experiments of this 

new reporter library (Supplementary Fig. 5). The decrease in accuracy is explained in part 

due to differences between the eGFP and mCherry polysome profiling protocols (Online 

Methods).

To aid interpretation of the model we applied visualization techniques developed in 

computer vision and recently popularized in computational biology4,8,28. Visualization of 

the filters in the first and second convolution layer revealed recognizable motifs including 

strong TIS sequences (e.g. ACCAUG), stop codons (TAA, TGA, TAG), uORFs, non-

canonical start codons (CUG, GUG), and sequences composed of multiples of CG or AU 

likely involved in secondary structure formation (Fig. 2f and Supplementary Fig. 10). Of 

note, several filters did not fall into either of these categories and also did not match 

previously described PWMs for RNA binding proteins (Tomtom29 and the Homo sapiens 
RBP database30), suggesting the possibility for previously undescribed regulatory 

interactions.

Evaluation of mRNA containing Ψ and m1Ψ

The two uridine analogs pseudouridine (Ψ) or 1-methyl-pseudouridine (m1Ψ) are widely 

used for mRNA therapeutics because they can increase mRNA stability and help modulate 

the host immune response31,32. We applied our method to transcripts bearing either Ψ and 

m1Ψ instead of uridine (U) (Fig. 2g) and found that the model trained on the unmodified (U) 

library could explain 68% to 76% of the measured variability in the Ψ and m1Ψ polysome 

profiling data, respectively (Fig. 2h). Prediction accuracy could be further improved by 

training the models directly on data from the modified RNAs (the same held-out library 

sequences were used in all test sets to ensure consistency). This is likely due to the model 

learning the impact of Ψ and m1Ψ on the formation of secondary structure33. Concordantly, 

mean ribosome load is more positively correlated with a UTR’s predicted minimum free 

energy (MFE) for Ψ (r = 0.56) and m1Ψ (r = 0.58) than for U (r = 0.43) (Fig. 2i).

5′ UTR design for targeted ribosome loading

As a further test of our model’s capabilities, we asked whether it could be used to engineer 

completely novel, functional 5′ UTRs. A tool capable of designing 5′ UTRs for a targeted 

level of protein expression would be a valuable asset for mRNA therapeutics and metabolic 

engineering. While there has been some success in this effort in prokaryotes, yeast and even 

mammalian cells27,34–36, a fully rational approach to designing functional 5′ UTRs has not 

yet been implemented. We developed a genetic algorithm that iteratively edits an initial 

random 50-mer (not contained in the 280,000 sequence library) until it is predicted by the 

model to load a target number of ribosomes and thus achieve an intended level of translation 
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activity (Fig. 3a). The model used for this process was developed before Optimus 5-Prime in 

Figure 2 and differs slightly in terms of network architecture (Online Methods) and 

performance (r2: 0.92) (Supplementary Fig. 11) (Online Methods). We designed two sets of 

UTRs for testing. The sequences in the first set were designed to target MRLs of 3, 4, 5, 6, 

7, 8, 9, and a no-limit maximum (Fig. 3b). The second set was designed to follow the step-

wise evolution of a UTR. For this second set, we started the algorithm to first select for 

sequences with low ribosome loading and then, after 800 iterations, to select for high 

ribosome loading. Each unique sequence generated by the algorithm as the UTR evolved 

was synthesized and tested (Fig. 3c and Supplementary Fig. S12a–d). We did this for 20 

sequences where upstream AUGs were allowed and another 20 in which AUGs were not 

allowed. Both sequences containing uAUGs and not containing them could span the full 

MRL range.

Of the 12,000 total UTRs evolved for targeted expression in the first set, the median MRL 

for targets 3 through 8 followed the expected trend from low to high with low variability 

within each group. For the step-wise evolved UTRs in the second set, predicted MRLs 

(green) closely matched the trend of the observed (blue) along the trajectory. While we 

created sequences with high ribosome loading (Supplementary Fig. 12e), in both sets the 

prediction from the model and the observed MRL eventually diverged as the model 

produced UTRs with very high predicted MRLs. We suspected that the divergence between 

predictions and measurements at very high MRL values might reflect the unusual sequence 

composition of the maximally evolved UTRs which often contained multiple long stretches 

of poly-U – sequences rarely seen in the random library. We corrected the model by training 

it (Fig. 3d) for four additional iterations with 6,082 UTRs from the target MRL sub-library, 

which had a much higher frequency of homopolymers, and 2,695 previously unseen random 

UTRs. Reevaluation of held-out sequences from the ‘target MRL’ library showed a dramatic 

improvement in comparison to the original model (r2 from 0.386 to 0.772) (Fig. 3e and 

Supplementary Fig. 13a) as did the predicted loading of the step-wise evolved sequences 

(Fig. 3c red line and Supplementary Fig. 12a–d). Using this expanded dataset, we retrained 

the Optimus 5-Prime model in Figure 2, which showed increased accuracy with all sub-

libraries and unchanged performance with random library sequences (Supplementary Fig. 

13b). Due to this improvement, we used the retrained version of Optimus 5-Prime from this 

point on.

Predicting the effect of human 5′ UTR variants on ribosome loading

Can a model trained only on synthetic sequences predict how human 5′ UTR sequences 

control translation? Assessing model performance on endogenous transcripts is challenging 

due to confounding contributions of 3′ UTRs and coding sequence lengths. As an alternative 

approach, we synthesized and tested via polysome profiling a 5′ UTR library consisting of 

the first 50 nucleotides preceding the start codon of 35,212 common human transcripts as 

well as 5′ UTR fragments carrying 3,577 variant sequences from the ClinVar database37 that 

occur within these regions; the same eGFP context as the randomized library was used. 

Using the retrained model, we were able to explain 81% of the observed variation in MRL 

with the common and SNV 5′ UTR sequences (Fig. 4a) showing that, despite training on 
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random sequences, the model was able to learn the cis-regulatory rules of human 5′ UTR 

sequences that lay directly upstream of a coding sequence.

Genetic variants play a major role in phenotypic differences between individuals38 and how 

these sequences affect translation is only beginning to be understood39,40. But existing 

approaches to this problem, such as quantitative trait locus (QTL) analysis and genome wide 

association studies (GWAS) are limited to common variants and cannot scale to the 

enormous number of rare 5′ UTR variants occurring in the human population. In contrast, a 

model-based approach can in principle be used to score the impact of any 5′ UTR variant on 

translation. With this in mind, we investigated Optimus 5-Prime’s ability to predict the effect 

of disease relevant-variants by testing its performance in predicting the ribosome load 

change between pairs of wild-type (‘common’) and SNV-containing 5′ UTR sequences, 

measured as log2 difference. The majority of SNVs had little to no effect, but 45 had log2 

differences greater than 0.5 or less than −0.5 (Supplementary Table 4, Clinvar 

SUB4797518). Overall, Optimus 5-Prime could explain 55% of the observed MRL change 

(Fig. 4b) and accurately predicted the direction of change for 64% of the variants. The 

relatively lower predictive accuracy compared to direct variant effect prediction is a 

consequence of the increased noise due to comparing two measurements. Moreover, a 

majority of variants do not impact translation, resulting in a large cluster of variants for 

which the MRL change is close to zero where measurements are dominated by noise. 

Importantly, the model can explain 76% of the change of variants with log2 differences 

greater than 0.5 or less than −0.5 (Supplementary Fig. 14a). As an example, one of the 

ClinVar variants with sizeable differences in MRL, rs867711777, is found in the 5′ UTR of 

the CPOX gene and shows a log2 difference of −0.89. The depletion of CPOX reduces heme 

biosynthesis and is the cause of hereditary coproporphyria (HCP)41. The large MRL 

difference suggests that this SNV, labeled as uncertain in the ClinVar database, could be 

pathogenic. The variant rs376208311 lies in the 5′ UTR of the ribosomal subunit gene RPL5 

and shows a −0.87 log2 difference in MRL. This variant is associated with Diamond-

Blackfan anemia (BDA). One cause of the disease is a result of either the disruption or 

downregulation of RPL542. Another SNV, rs121908813, is implicated in familial 

pheochromocytoma, a condition characterized by tumors found in the neuroendocrine 

system that secrete high levels of catecholamines43. In our assay, the variant UTR shows a 

−1.5 log2 difference in MRL compared to the wild type 5′ UTR sequence. TMEM127 acts 

as a tumor suppressor and decreased expression of it could explain the observed 

pathogenicity of this variant. For the three examples, the model predicts that, of all possible 

variants, these specific SNVs, all of which introduce an upstream start codon, would most 

dramatically affect ribosome loading (Fig. 4c). We also identified 2,308 additional SNVs 

that resulted from oligo synthesis errors, and found that 103 of them showed MRL changes 

greater than 0.5 or less than −0.5 in log2 scale (Supplementary Fig. 14b).

Modeling human 5′ UTRs of varying length

Human 5′ UTR sequences vary in length from tens to thousands of nucleotides with a 

median length of 218 nt44,45. Because only 13% of human 5′ UTRs are shorter than 50 nt 

and thus covered by Optimus 5-Prime, we next asked whether the approach introduced here 

could be extended to longer 5′ UTRs. To this end, we first created a 5′ UTR library where 
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the length of the random sequence upstream of the start codon ranged from 25 to 100 nt, 

which would increase the coverage of human 5′ UTRs to 29%. After polysome profiling and 

RNA sequencing, we retained 83,919 distinct 5′ UTRs spanning the entire length 

distribution from 25–100 nt. As observed with the 50 nt library, sequences containing 

uAUGs had a lower median MRL than similar length sequences not containing them. 

Moreover, for sequences not containing uAUGs, the MRL slightly increased with length, 

likely because longer transcripts can accommodate more ribosomes (Supplementary Fig. 

15a). We then retrained our model to capture and predict the impact of both sequence and 

length on MRL. To accommodate sequences up to 100 nucleotides in length, we increased 

the width of the input layer but otherwise retained the same network architecture as before 

(Fig. 4d). To ensure that 5′ UTRs of every length would be represented equally, we took the 

100 5′ UTRs with the deepest read coverage at every length (~10% of the library) as the test 

set, rather than using the top 10% of the entire population. The remaining 90% was used for 

training. In fact, we found that the average number of sequencing reads per library member 

rapidly decreased with increasing UTR length, likely because of the decreasing yield of full-

length sequences for longer 5′ UTRs (Supplementary Fig. 15b). We also created a second 

test set consisting of 7,600 human 5′ UTRs – 100 UTRs for every length from 25 to 100 nt. 

The generalized Optimus 5-Prime model performed well on both the human (r2: 0.78) and 

random (r2: 0.84) sequences (Supplementary Fig. 15c,d) and for 5′ UTRs of any length (Fig. 

4e, r2: 0.75–0.84). The slight decrease in performance observed for longer 5′ UTRs is due to 

lower read coverage for longer sequences and concomitant decrease in the quality of the test 

set. These results suggest that the approach we developed here is not limited to fixed-length 

UTRs and could be extended even beyond a 100 nt window by synthesizing correspondingly 

longer 5′ UTRs for model training.

Discussion

The method developed here, which combines polysome profiling of a randomized 5′ UTR 

library with deep learning, has provided a wealth of information detailing the relationship 

between the 5′ UTR sequence preceding a CDS and regulation of translation. The data and 

model enabled the quantitative assessment of secondary structure, uAUGs and uORFs, 

Kozak sequences, and other cis-regulatory sequence elements in the context of unmodified 

mRNA, Ψ, and m1Ψ-modified mRNA. Optimus 5-Prime, the CNN trained on the data has 

notable performance, explaining up to 93% of mean ribosome load variation in the test set 

and up to 81% of variation for 38,789 truncated human UTRs. In future work, this approach 

could be further generalized to include the impact of the mRNA 5′ terminal including 5′ cap 

structure and even 3′ UTR sequence on ribosome loading. Our model also proved capable of 

predicting the effect of disease-relevant 5′ UTR variants on translation, even suggesting 

mechanisms of action. Of note, predictions are not limited to common variants or even those 

that have been previously described; instead the model can be used to screen every possible 

SNV, insertion or deletion in the 100 bases upstream of the start codon – there are millions 

in the human genome - and select those for further study that have the strongest impact on 

ribosome loading and thus the highest likelihood of being pathogenic. Finally, using 

Optimus 5-Prime and a genetic algorithm, we were able to engineer new 5′ UTR sequences 
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for targeted ribosome loading, enabling even more forward-looking applications in synthetic 

biology and precision medicine.

Online Methods

Randomized 50-mer 5′ UTR Library.

A vector (pET 28) encoding a T7 promoter followed by 25 nt of a defined 5′ UTR 

(GGGACATCGTAGAGAGTCGTACTTA) and eGFP was linearized with AgeI to allow for 

the insertion of the 5′ UTR library between the defined sequence and the CDS. The defined 

25 nt sequence allows for PCR amplification after reverse transcription. Two nucleotides at 

positions +11 (C to A) and +14 (C to T) in the eGFP CDS were changed in order to 

introduce stop codons (TAA) in frame −1 and −2 relative to ATG. The oligo (Supplementary 

Table 5: primer 282) that was used for library insertion contains the defined 5′ UTR, 

followed by 50 nt of randomized bases and 21 nt that overlap the eGFP sequence (includes 

the ATG start site) (IDT). A reverse primer (primer 283) complementary to the 21 nt eGFP 

overlap was used to produce a double-stranded product via Klenow extension with Klenow 

polymerase I (NEB). The vector and insert were assembled by Gibson reaction (NEB) and 

the product was electroporated into 5-alpha electrocompetent E. coli (NEB). A small portion 

of the electroporation was plated and resulted in ~750,000 cfu and the rest was grown in 

liquid culture overnight (both under kanamycin selection). The isolated plasmid is the eGFP 

library.

The same process above was performed, with some modifications, to produce the mCherry 

library. The same defined 5′ UTR that lies upstream of the randomized 50-mer UTR in the 

eGFP construct, was used (primer 252). Klenow extension with primer 253 created the 

double-stranded insert that was assembled with the AgeI linearized backbone by Gibson 

reaction. The mCherry CDS, however, does not have intentionally-placed stop codons.

eGFP Library Sequence.

Bold indicates the defined 5′ end of the 5′ UTR. The 50-mer random (and non-random in 

the case of the designed library) UTR immediately follows. The underlined sequence 

corresponds to a truncated poly-A signal. During in vitro transcription, a 70 nt long poly-A 

tail is added at the 3′ end.

GGGACATCGTAGAGAGTCGTACTTA(N50)atgggcgaattaagtaagggcgaggagctgttcaccggg

gtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacc

tacggcaagctgaccctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacgg

cgtgcagtgcttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagc

gcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcga

gctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatc

atggccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcagcgtgcagctcgccgac

cactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagcacccagtccaagctgagc

aaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgt

acaagttcgaataaagctagcgcctcgactgtgccttctagttgccagccatctgttgtttg
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mCherry Library Sequence.

The sequence shares the same defined 5′ end and truncated BGH poly-A signal sequences 

as the eGFP library.

GGGACATCGTAGAGAGTCGTACTTA(N50)atgcctcccgagaagaagatcaagagcgtgagcaaggg

cgaggaggataacatggccatcatcaaggagttcatgcgcttcaaggtgcacatggagggctccgtgaacggccacgagttcgag

atcgagggcgagggcgagggccgcccctacgagggcacccagaccgccaagctgaaggtgaccaagggtggccccctgccctt

cgcctgggacatcctgtcccctcagttcatgtacggctccaaggcctacgtgaagcaccccgccgacatccccgactacttgaagct

gtccttccccgagggcttcaagtgggagcgcgtgatgaacttcgaggacggcggcgtggtgaccgtgacccaggactcctccctgc

aggacggcgagttcatctacaaggtgaagctgcgcggcaccaacttcccctccgacggccccgtaatgcagaagaagaccatggg

ctgggaggcctcctccgagcggatgtaccccgaggacggcgccctgaagggcgagatcaagcagaggctgaagctgaaggacg

gcggccactacgacgctgaggtcaagaccacctacaaggccaagaagcccgtgcagctgcccggcgcctacaacgtcaacatca

agttggacatcacctcccacaacgaggactacaccatcgtggaacagtacgaacgcgccgagggccgccactccaccggcggca

tggacgagctgtacaagtcttaacgcctcgactgtgccttctagttgccagccatctgttgtttg

In vitro Transcription.

A template for in vitro transcription was produced via PCR of the library plasmid with 

primer 254 and 255 and KAPA Hi-Fi polymerase (Kapa Biosystems). The double-stranded 

DNA product has the T7 promoter at the 5′ end and a truncated BGH poly-A signal 

sequence followed by 70 nt of poly-A (introduced with primer 254) at the 3′ end. The IVT 

reaction used the HiScribe T7 High Yield RNA Synthesis Kit (NEB) and 3´-0-Me-

m7G(5′)ppp(5′)G RNA Cap (NEB) was used as the cap structure analog. The DNA 

template was digested with DNase I (NEB) and the IVT mRNA was purified using RNA 

Clean & Concentrator (Zymo Research). This protocol was used to produce the unmodified 

eGFP IVT mRNA and mCherry IVT mRNA for transfection. For synthesis of individual 

mRNAs for assessment of expression, linear DNA templates were assembled containing a 

T7 polymerase promoter, 5′ UTR, coding sequence, 3′ UTR, and template encoded polyA 

tail. mRNA transcription and purification were carried out as described previously46. For 

mRNA libraries containing alternatives to uridine, UTP was replaced with pseudouridine-5′-

triphosphate or N1-methylpseudouridine-5′-triphosphate in the transcription. The final 

mRNAs utilized Cap1 to increase mRNA translation efficiency. After purification, the 

mRNA was diluted in citrate buffer to the desired concentration.

IVT mRNA Transfection.

HEK293T cells were plated on 10 cm cell culture dishes 24 hours before transfection (1 – 2 

million per plate). At 60% to 80% confluency, cells were transfected with 14.5 μg of library 

mRNA using Lipofectamine MessengerMAX (Thermo Fisher Scientific) following the 

manufacturer’s protocol. Washed plates with 10 ml 1x DBPS and 10 ml media (DMEM with 

10% FBS and 1% Penicillin-Streptomycin) after one hour of incubation. Cells were lysed 12 

hours after transfection.

Cell Lysis and RNA Isolation.

Salt solution (10x): 100 mM NaCl, 100 mM MgCl2, 100 mM Tris-HCl pH 7.5, and RNase-

free water (Zuccotti P, Modelska A 2016). Wash buffer: 100 μg/ml cycloheximide (NEB) in 
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RNase-free DPBS (10 ml per plate). Lysis buffer: 1x salt solution, 1% of 20% Triton X-100, 

1 mM DTT, 0.2 U/μl SUPERase-In (Thermo Fisher Scientific), 100 μg/ml cycloheximide. 

Wash buffer and lysis buffer were chilled throughout the protocol. After 12 hours of growth 

at 37 °C, cells were placed on ice and media was aspirated. Translating ribosomes were 

halted by adding 5 ml of wash buffer and were then placed at 37 °C for 5 minutes followed 

by aspiration on ice. Cells were washed by adding 5 ml wash buffer and aspirating 

thoroughly. Cells were then lysed by 300 μl of ice-cold lysis buffer, scraped, and cell clumps 

disrupted by pipetting ~5 times, and then placed into a pre-chilled microcentrifuge tube. 

Lysis solution was incubated for 10 minutes on ice and then triturated by passing through a 

25-G needle 10 times14. Debris was cleared by centrifugation at 16,000 x g for 5 minutes. 

Supernatant was supplemented with 1.5 μl of 1 U/μl DNase I (final concentration of 0.005 

U/μl) and placed on ice for 30 minutes. Lysate was then stored at −80 °C or proceeded 

directly to polysome profiling.

Polysome Profiling.

Sucrose gradient buffers contained either 20% or 55% (w/v) sucrose and 100 mM KCl, 20 

mM HEPES pH 7.2, 10 mM MgCl2. 5.4 ml of 20% sucrose was gently layered over 5.4 ml 

of 55% sucrose in an ultracentrifuge tube. The tube was then sealed with parafilm and 

placed on its side and left overnight at 4°C. Approximately 2 h before use, the gradient was 

returned to its upright position. Once prepared cell lysate was layered over the gradient and 

centrifuged for 3 hours at 151,000 x g using Beckman SW-41 Ti rotor.

mCherry Library Polysome Profiling Protocol.

Sucrose gradient buffers contained either 7% or 47% (w/v) sucrose and 150 mM NaCl, 20 

mM Tris-HCl pH 7.2, 5 mM MgCl2, and 1 mM DTT. 5.4 ml of 7% sucrose was gently 

layered over 5.4 ml of 47% sucrose in an ultracentrifuge tube. The tube was then sealed with 

parafilm and placed on its side and left overnight at 4°C. Approximately 2 h before use, the 

gradient was returned to its upright position. Once prepared cell lysate was layered over the 

gradient and centrifuged for 1 hour and 45 minutes at 39,000 RPM using Beckman SW-41 

Ti rotor.

Polysome Fraction Processing and Next-Generation Sequencing.

Fractions of 500 μl corresponding to ribosome peaks including the 40s and 60s peaks were 

individually collected and processed. 500 μl of TRIzol (Thermo Fisher Scientific) was added 

to each fraction and vortexed. After incubating at room temperature for 5 minutes, 100 μl of 

chloroform was added, vortexed and incubated for 5 minutes at room temperature. Fractions 

were spun at 13,000 x rpm for 10 minutes and the RNA from the supernatant was purified 

following the protocol for RNA Clean & Concentrator (Zymo Research). Eluted in 15 μl of 

RNase-free water. The purified RNA was reverse transcribed using SuperScript IV (Thermo 

Fisher Scientific) and the gene-specific primer 289, for eGFP libraries, and primer 220, for 

mCherry libraries. Both RT primers have unique molecular indices (UMIs). The products 

were then amplified with overhangs for Illumina-based sequencing; the reverse primers 

contain barcodes that indicate the polysome fraction from which the RT product was 

derived. A custom read 1 forward primer anneals to the defined 5′ end of the 5′ UTR; the 

mCherry library and the eGFP library share the same 5′ end sequence. Products were 
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sequenced with the Illumina NextSeq platform using NextSeq 500/550 v2 High Output 75 

cycle kits.

Sequence Processing.

Raw sequence files, separated by their fraction-associated barcodes, were processed with 

Cutadapt47, outputting the 50 nt UTR and 9 – 15 nt of the N-terminal of the CDS. UTRs 

were clustered and UMIs were counted using Bartender48. The eGFP library contained 

approximately 750,000 unique sequences and the mCherry library contained approximately 

500,000 sequences. UTRs were removed if the CDS sequence did not match the intended 

sequence. Because many of the remaining sequences had very few reads, we took the top 

280,000 for the eGFP library and the top 200,000 for the mCherry library. No sequences 

between the eGFP and mCherry library matched. To normalize differences in total read 

counts between fractions, relative reads were calculated within each fraction. Using these 

values, the relative distribution of reads for each UTR across the fractions was determined. 

Mean ribosome load was calculated by multiplying each fraction’s relative distribution of 

reads by the number of ribosomes associated with each fraction and these values were 

summed (Supplementary Note 1).

Translation Validation.

Ten 5′ UTR sequences with a wide range of MRLs were selected from the eGFP library and 

individually cloned into the same vector as the randomized library (discussed above). IVT 

mRNA were synthesized and HEK293 cells were transfected with Lipofectamine 2000 then 

monitored for eGFP fluorescence using an IncuCyte S3 Live Cell Analysis System. 

Expression was reported as the maximum eGFP fluorescence over a 20.5-hour time window.

Convolution Neural Network.

All code was written in Python 2.7 and all neural network development was done using 

Keras49 and TensorFlow backend50. For hyperparameter selection, the top 50,000 sequences, 

in terms of total read counts per UTR, were used. We performed 10-fold cross-validation 

grid search to exhaustively test hyperparameter combinations of convolution layers (2, 3), 

convolution filter lengths (8, 10, 12), number of convolution filters (40, 80, 120), number of 

nodes in the dense layer (40, 80, 120), dropout probability between all layers (0, 0.2, 0.4). 

The best hyperparameter combination:

1st convolution layer: 120 filters (8x4), ReLU activation, 0% dropout

2nd convolution layer: 120 filters (8x1), ReLU activation, 0% dropout

3rd convolution layer: 120 filters (8x1), ReLU activation, 0% dropout

Dense layer: 40 nodes, 20% dropout

Output layer: 1 linear output

For the unmodified U eGFP model, 260k UTRs were used for training while 20k were used 

to evaluate the model. The model was trained over three epochs before overfitting occurred. 

Before training, we first sorted the UTRs based on the number of total reads; those with the 

highest read counts were used for the test set. UTRs with more reads have higher resolution 
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and so more accurately reflect their mean ribosome load compared to low read, and thus 

noisier UTRs (Supplementary Fig. 15a–c). However, the model performs nearly as well after 

randomly splitting the training (260,000) and test (20,000) sets (Supplementary Fig. 15d).

Polysome Profile Model.

After performing the same grid search as the model trained to predict the mean ribosome 

load of a sequence, the best hyperparameters for polysome profile CNN are as follows:

1st convolution layer: 120 filters (8x4), ReLU activation, 0% dropout

2nd convolution layer: 120 filters (8x1), ReLU activation, 0% dropout

3rd convolution layer: 120 filters (8x1), ReLU activation, 0% dropout

Dense layer: 80 nodes, 10% dropout

Output layer: 14 linear output

The same training / test split as for the MRL model was used.

Model used for evolving new UTRs.

1st convolution layer: 40 filters (8x4), ReLU activation, 0% dropout

2nd convolution layer: 40 filters (8x4), ReLU activation, 0% dropout

Dense layer: 40 nodes, 20% dropout

Output layer: 1 linear output

k-mer Linear Model.

UTR sequences were represented as k-mers at each position of the UTR. These position-

specific k-mers were used as features for training a model via linear regression. 1-mers to 6-

mers were tested. Training involved regularization to limit overfitting and 5-fold cross 

validation. The same training / test sets used in building the CNN were used.

Filter Visualization.

For each filter, 2,000 8-mers from the eGFP 5′ UTR library that showed the highest 

activation were selected. From these, position-weight matrices (PWMs) were calculated and 

used to visualize the sequence compositions that strongly activate each filter. Visualization 

of the 2nd convolution layer involves a wider sequence window (15 bases) and PWMs were 

calculate with fewer k-mers (max 200).

Filter Activation by UTR Position.

For a given filter, the filter’s activation at each UTR position was assessed (only the top 

100,000 UTRs in terms of total read counts were analyzed). These activations, position by 

position, were compared to UTR MRLs and a Pearson r was calculated. Negative values 

indicate a negative correlation between filter activation and MRL. Positive values indicate 

that filter activation and MRLs are positively correlated.
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Relationship between UTR structure and MRL for U, Ψ, and m1Ψ.

The MFE for 20,000 UTRs from the eGFP library were calculated using Nupack26 and 

compared to the MRLs from U, Ψ, and m1Ψ data sets.

Genetic algorithm for designing new 5′ UTR sequences.

The 5′ UTR model used for evolving new sequences was trained with a different 

architecture than the main model (see “Model used for evolving new UTRs“ above) used 

throughout the manuscript; sometime after training this first model we determined that 

adding a third convolution layer and additional filters to each layer showed improved 

performance.

All sequence evolutions began with randomized sequences. Over a set number of iterations, 

a single randomly selected base, or two with a 50% probability, were introduced and the 

fitness was evaluated using the model. If the new sequence scored higher, or closer to the 

target mean ribosome load then it was accepted, otherwise, the unchanged sequence was 

selected.

Evolution for Target Mean Ribosome Load.

We evolved three distinct sets of targeted expression: sequences without upstream AUGs 

(uAUGs) and upstream stops, sequences where uAUGs and upstream stops were allowed, 

and sequences where uAUGs were not allowed but upstream stops were. Each set evolved 

initially random sequences to hit mean ribosome loads of 3, 4, 5, 6, 7, 8, 9, and maximum. 

200 sequences for 3 – 7 and 1000 sequences for 8, 9, maximum were selected. In total, 

including the three sequence conditions, 12,000 sequences were synthesized and tested via 

polysome profiling. Regarding Figure 2B, the predicted values are scaled to the observed 

values within the data. This creates a discrepancy between the categorical names (x axis 

markers) and the predicted MRL which are the values that should be used for the 

comparison between observed and predicted.

Step-wise Evolution of Sequences.

As a sequence evolves using our algorithm, a new sequence is created if its score is 

improved relative to its previous state. We recorded the sequences for these steps and tested 

their performance relative to the model prediction. Four distinct conditions were used and 20 

UTRs for each were evolved, totaling 80 UTR step-wise evolution examples. The first two 

were evolved to the highest ribosome load over 800 iterations; one allowed for uAUGs and 

the other did not. The third condition evolved sequences to the lowest ribosome load over 

800 iterations and then changed the selective pressure for highest ribosome load over 800 

iterations while allowing uAUGs. The fourth condition is the same as the third except that 

uAUGs were not permitted. In total, beginning with 20 sequences for each condition, 7,526 

UTRs were generated for analysis.
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Selection of Human UTR Sequences.

All human 5′ UTR transcripts from the human genome, as annotated by Ensembl, were 

retrieved using Biomart51. The first 50 nt sequences upstream of the annotated translation 

initiation sites were selected for synthesis, totaling 35,212 sequences.

Selection of 5′ UTR SNV.

All sequence variants in the ClinVar database37 occurring in the selected UTR regions above 

were selected for synthesis, totaling 3,577 sequences.

Control / Reanalysis of Library UTRs.

5,000 of the eGFP library sequences were selected over a range of mean ribosome loads. 

These were synthesized and tested via polysome profiling with the rest of the designed 

sequences.

Synthesis of Designed 50 nt Sequences.

All designed and human 5′ UTR sequences were synthesized by CustomArray, Inc. 

Fragments were PCR amplified and cloned into the pET 28 eGFP vector described above.

Design and Synthesis of varying Lengths 5′ UTR Sequences.

Random and human 5’UTR sequences of varying length (25–100 nt) were synthesized by 

Agilent Technologies. All human 5′ UTR transcripts from the human genome, as annotated 

by Ensembl, were retrieved using Biomart51. The first 100 nt upstream of the annotated 

translation initiation sites were selected for synthesis, totaling 17,586 sequences in the 

length range from 25 to 100 nucleotides. Fragments were PCR amplified and cloned into the 

pET 28 eGFP vector described above.

Generalized CNN for 5’UTRs up to 100 nt.

The generalized model used the same CNN architecture as the model trained only on 50 nt 

UTRs. 76,319 random sequences with lengths ranging from 25 to 100 nucleotides were used 

for training. The input space was expanded to 100 nucleotides using one-hot encoding; for 

sequences shorter than 100 nt zero padding was used. The top 100 sequences at each length, 

as measured by total read counts per UTR, were used to test the model’s accuracy, resulting 

in a test set of 7,600 random 5’UTRs. A test set consisting of 7,600 human 5’UTRs was 

created similarly: out of 15,555 human UTRs that were detected in the sequencing data, the 

top 100 UTRs by read count at each length were used as part of the test set.

Statistics.

All r-squared values are the square of the correlation coefficient of linear least-squares 

regression. All boxplots and violin plots have median as the center, and first and third 

quartile as the box upper and lower edges. The upper line is the third quartile plus 1.5 times 

interquartile range and the lower line is the first quartile minus 1.5 times interquartile range. 

Maxima and minima are identified. All violin plots have standard deviation identified. All p-

values are obtained from two-tailed t-test and were calculated using python package 
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scipy.stats.ttest_ind. Sample sizes and p-values were indicated in relevant figures. Additional 

information can be found in the Life Sciences Reporting Summary.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We would like to thank A. Rosenberg and J. Linder for helpful discussions on data analysis and modeling. We 
would also like to thank M. Moore, A. Hsieh, and Y. Lim for constructive comments on the manuscript. We are 
grateful to C. Wang for providing the fluorescence data from Ref. 27. This work was supported by a sponsored 
research agreement by Moderna Therapeutics and NIH grant R01CA207029 to G.S.

References:

1. Araujo PR et al. Before it gets started: Regulating translation at the 5′; UTR. Comparative and 
Functional Genomics (2012). doi:10.1155/2012/475731

2. Jackson RJ, Hellen CUT & Pestova TV The mechanism of eukaryotic translation initiation and 
principles of its regulation. Nature Reviews Molecular Cell Biology (2010). doi:10.1038/nrm2838

3. Angermueller C, Pärnamaa T, Parts L & Stegle O Deep learning for computational biology. Mol. 
Syst. Biol (2016). doi:10.15252/msb.20156651

4. Alipanahi B, Delong A, Weirauch MT & Frey BJ Predicting the sequence specificities of DNA- and 
RNA-binding proteins by deep learning. Nat. Biotechnol (2015). doi:10.1038/nbt.3300

5. Zhou J & Troyanskaya OG Predicting effects of noncoding variants with deep learning–based 
sequence model. Nat. Methods (2015). doi:10.1038/nmeth.3547

6. Kleftogiannis D, Kalnis P & Bajic VB DEEP: A general computational framework for predicting 
enhancers. Nucleic Acids Res. (2015). doi:10.1093/nar/gku1058

7. Liu F, Li H, Ren C, Bo X & Shu W PEDLA: Predicting enhancers with a deep learning-based 
algorithmic framework. Sci. Rep (2016). doi:10.1038/srep28517

8. Kelley DR, Snoek J & Rinn JL Basset: Learning the regulatory code of the accessible genome with 
deep convolutional neural networks. Genome Res. (2016). doi:10.1101/gr.200535.115

9. Zhao W et al. Massively parallel functional annotation of 3’ untranslated regions. Nat. Biotechnol 
(2014). doi:10.1038/nbt.2851

10. Noderer WL et al. Quantitative analysis of mammalian translation initiation sites by FACS-seq. 
Mol. Syst. Biol (2014). doi:10.15252/msb.20145136

11. Kosuri S et al. Composability of regulatory sequences controlling transcription and translation in 
Escherichia coli. Proc. Natl. Acad. Sci (2013). doi:10.1073/pnas.1301301110

12. Cuperus JT et al. Deep learning of the regulatory grammar of yeast 5′untranslated regions from 
500,000 random sequences. Genome Res. (2017). doi:10.1101/gr.224964.117

13. Zuccotti P & Modelska A Studying the Translatome with Polysome Profiling in Post-
Transcriptional Gene Regulation (ed. Dassi E) 59–69 (Humana Press, 2016). 
doi:10.1007/978-1-4939-3067-8

14. Floor SN & Doudna JA Tunable protein synthesis by transcript isoforms in human cells. Elife 
(2016). doi:10.7554/eLife.10921

15. Wang X, Hou J, Quedenau C & Chen W Pervasive isoform-specific translational regulation via 
alternative transcription start sites in mammals. Mol. Syst. Biol (2016). doi:10.15252/
msb.20166941

16. Whiffin N et al. Characterising the loss-of-function impact of 5’ untranslated region variants in 
whole genome sequence data from 15,708 individuals. bioRxiv (2019). doi:10.1101/543504

17. Hinnebusch AG, Ivanov IP & Sonenberg N Translational control by 5′-untranslated regions of 
eukaryotic mRNAs. Science (2016). doi:10.1126/science.aad9868

Sample et al. Page 15

Nat Biotechnol. Author manuscript; available in PMC 2020 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



18. Morris DR & Geballe AP Upstream Open Reading Frames as Regulators of mRNA Translation. 
Mol. Cell. Biol (2000). doi:10.1128/MCB.20.23.8635-8642.2000

19. Johnstone TG, Bazzini AA & Giraldez AJ Upstream ORFs are prevalent translational repressors in 
vertebrates. EMBO J. (2016). doi:10.15252/embj.201592759

20. Lee S et al. Global mapping of translation initiation sites in mammalian cells at single-nucleotide 
resolution. Proc. Natl. Acad. Sci (2012). doi:10.1073/pnas.1207846109

21. Reuter K, Biehl A, Koch L & Helms V PreTIS: A Tool to Predict Non-canonical 5’ UTR 
Translational Initiation Sites in Human and Mouse. PLoS Comput. Biol (2016). doi:10.1371/
journal.pcbi.1005170

22. Starck SR et al. Translation from the 5’ untranslated region shapes the integrated stress response. 
Science (80-. ) (2016). doi:10.1126/science.aad3867

23. Hinnebusch AG The Scanning Mechanism of Eukaryotic Translation Initiation. Annu. Rev. 
Biochem (2014). doi:10.1146/annurev-biochem-060713-035802

24. Kozak M Point mutations define a sequence flanking the AUG initiator codon that modulates 
translation by eukaryotic ribosomes. Cell (1986). doi:10.1016/0092-8674(86)90762-2

25. Kozak M Influences of mRNA secondary structure on initiation by eukaryotic ribosomes. Proc. 
Natl. Acad. Sci (1986). doi:10.1073/pnas.83.9.2850

26. Zadeh JN et al. NUPACK: Analysis and design of nucleic acid systems. J. Comput. Chem (2011). 
doi:10.1002/jcc.21596

27. Ferreira JP, Overton KW & Wang CL Tuning gene expression with synthetic upstream open 
reading frames. Proc. Natl. Acad. Sci (2013). doi:10.1073/pnas.1305590110

28. Bogard N, Linder J, Rosenberg AB & Seelig G Predicting the Impact of cis-Regulatory Variation 
on Alternative Polyadenylation. bioRxiv (2018). doi:10.1101/300061

29. Gupta S, Stamatoyannopoulos JA, Bailey TL & Noble WS Quantifying similarity between motifs. 
Genome Biol. (2007). doi:10.1186/gb-2007-8-2-r24

30. Ray D et al. A compendium of RNA-binding motifs for decoding gene regulation. Nature (2013). 
doi:10.1038/nature12311

31. Karikó K et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector 
with increased translational capacity and biological stability. Mol. Ther (2008). doi:10.1038/
mt.2008.200

32. Anderson BR et al. Incorporation of pseudouridine into mRNA enhances translation by 
diminishing PKR activation. Nucleic Acids Res. (2010). doi:10.1093/nar/gkq347

33. Kierzek E et al. The contribution of pseudouridine to stabilities and structure of RNAs. Nucleic 
Acids Res. (2014). doi:10.1093/nar/gkt1330

34. Seo SW et al. Predictive design of mRNA translation initiation region to control prokaryotic 
translation efficiency. Metab. Eng (2013). doi:10.1016/j.ymben.2012.10.006

35. Jensen MK & Keasling JD Recent applications of synthetic biology tools for yeast metabolic 
engineering. FEMS Yeast Research (2015). doi:10.1111/1567-1364.12185

36. Salis HM, Mirsky EA & Voigt CA Automated design of synthetic ribosome binding sites to control 
protein expression. Nat. Biotechnol (2009). doi:10.1038/nbt.1568

37. Landrum MJ et al. ClinVar: Public archive of interpretations of clinically relevant variants. Nucleic 
Acids Res. (2016). doi:10.1093/nar/gkv1222

38. Hernandez RD et al. Singleton Variants Dominate the Genetic Architecture of Human Gene 
Expression. SSRN (2018). doi:10.2139/ssrn.3151998

39. Battle A et al. Impact of regulatory variation from RNA to protein. Science (80-. ) (2015). 
doi:10.1126/science.1260793

40. Cenik C et al. Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory 
variation across humans. Genome Res. (2015). doi:10.1101/gr.193342.115

41. Wang B & Bissell DM Hereditary Coproporphyria. (University of Washington, Seattle, Seattle 
(WA), 2012).

42. Boria I et al. The ribosomal basis of diamond-blackfan anemia: Mutation and database update. 
Hum. Mutat (2010). doi:10.1002/humu.21383

Sample et al. Page 16

Nat Biotechnol. Author manuscript; available in PMC 2020 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



43. Qin Y et al. Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nat. 
Genet (2010). doi:10.1038/ng.533

44. Mignone F, Gissi C, Liuni S, Pesole G & others. Untranslated regions of mRNAs. Genome Biol 
(2002). doi:10.1186/gb-2002-3-3-reviews0004

45. Leppek K, Das R & Barna M Functional 5′ UTR mRNA structures in eukaryotic translation 
regulation and how to find them. Nature Reviews Molecular Cell Biology (2018). doi:10.1038/
nrm.2017.103

Methods-only References

46. Richner JM et al. Vaccine Mediated Protection Against Zika Virus-Induced Congenital Disease. 
Cell (2017). doi:10.1016/j.cell.2017.06.040

47. Martin M Cutadapt removes adapter sequences from high-throughput sequencing reads. 
EMBnet.journal (2011). doi:10.14806/ej.17.1.200

48. Zhao L, Liu Z, Levy SF & Wu S Bartender: a fast and accurate clustering algorithm to count 
barcode reads. Bioinformatics (2017). doi:10.1093/bioinformatics/btx655

49. Chollet F Keras (2015). URL http://keras.io (2017).

50. Abadi M. TensorFlow : A System for Large-Scale Machine Learning This paper is included in the 
Proceedings of the TensorFlow : A system for large-scale machine learning. Proc 12th USENIX 
Conf. Oper. Syst. Des. Implement; 2016. 

51. Smedley D et al. BioMart - Biological queries made easy. BMC Genomics (2009). 
doi:10.1186/1471-2164-10-22

Sample et al. Page 17

Nat Biotechnol. Author manuscript; available in PMC 2020 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://keras.io


Figure 1. 
A library of 280,000 random 50-mers as 5′ UTRs for eGFP. (a) A 5′ UTR model capable of 

predicting translation from sequence is used to evaluate the effect of 5′ UTR SNVs and to 

engineer new sequences for optimal protein expression. (b) A library of 280,000 members 

was built by inserting a T7 promoter followed by 25 nt of defined 5′ UTR sequence, a 

random 50-mer, and the eGFP coding sequence into a plasmid backbone. Library IVT 

mRNA was produced by in vitro transcription from a linearized DNA template obtained 

through PCR from the plasmid library. Cells transfected with library IVT mRNA were 

grown for 12 hours before polysome profiling. Read counts per fraction were used to 

calculate Mean Ribosome Loads (MRL) for each UTR and the resulting data were used to 

train a convolutional neural network (CNN). (c) Out-of-frame upstream AUGs (uAUGs) 

reduce ribosome loading (vertical lines indicate positions that are in-frame with the eGFP 

CDS). A similar but much weaker periodicity is observed for CUG and GUG. (d) The 

repressive strength of all out-of-frame variations of NNNATGNN. (e) Nucleotide 

frequencies were calculated for the 20 most repressive (‘strong’) and least repressive 

(‘weak’) TIS sequences.
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Figure 2. Modeling 5′ UTR sequences and ribosome loading.
(a) Optimus 5-Prime structure: A one-hot encoded 5′ UTR sequence is fed into a CNN 

composed of three convolution layers and a fully connected layer to produce a linear output 

predicting MRL. (b) Optimus 5-Prime trained on 260,000 UTRs and tested on 20,000 held-

out sequences could explain 93% of the variability in observed MRLs. Blue dots represent 

sequences with an uAUG while red dots represent sequences without uAUG (n = 20,000). 

(c) A similar model was trained to predict the polysome profile distribution of an individual 

5′ UTR. The observed (blue) and predicted (red) polysome distribution of 5 random picked 

example UTRs out of 20,000 in the test set spanning MRLs from 4 to 8 (top to bottom) are 

shown. (d) The performance of the polysome profile model per fraction ranged from an r2 of 

0.621 to 0.915 and an average of 0.834 across all fractions (n = 20,000). (e) eGFP 

expression for ten UTRs selected from the library were evaluated via eGFP fluorescence 

using IncuCyte live cell imaging (n = 3, centers are the means, error bars are s.e.m.). 

Predicted MRL and fluorescence are highly correlated (r2: 0.87, n = 10). For details, see 
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Supplementary Table 2. (f) Visualization of four out of 120 filters from the first convolution 

layer (left) and four out of 120 filters from the second convolution layer. Boxes below show 

correlation (Pearson r) between filter activation and MRL at each UTR position. Filters 

learned important regulatory motifs such as start and stop codons, uORFs, and GC-rich 

regions likely involved in secondary structure formation. (g) IVT mRNA from the eGFP 

library were generated with pseudouridine (Ψ) or 1-methylpseudouridine (m1 Ψ) in place of 

uridine (U) and evaluated by polysome profiling and modeling. (h) Model performance 

trained and tested on different data sets (r-squared). The unmodified RNA (U) models 

perform best with U data, while the Ψ and m1 Ψ models perform equally well with Ψ and 

m1 Ψ test data (n = 20,000). (i) Ribosome loading as a function of MFE. U is less dependent 

on secondary structure than Ψ and m1 Ψ (Pearson r: 0.43, 0.56, and 0.58, respectively. n = 

19,976).
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Figure 3. Design of new 5′ UTRs.
(a) Diagram of a genetic algorithm that was used in conjunction with Optimus 5-Prime to 

evolve sequences to target specific levels of ribosome loading. (b) Comparison between the 

predicted MRLs and observed MRLs for evolved 5′ UTRs for targeted ribosome loading. 

All 16 box plots are defined in terms of the sample size, minima, median, maxima and 

percentiles (Supplementary Table 3). (c) Step-wise evolution analysis. Randomly initialized 

UTRs were first evolved for low ribosome loading and then for high ribosome (selection 

change at dashed line). Four out of 80 (Supplementary Fig. 11a–d) examples are shown. 

Examples on the left were permitted to have uAUGs while those on the right were not. Each 

unique sequence that was generated during the evolution process was synthesized and tested 

by polysome profiling. The original Optimus 5-Prime prediction (green) and the observed 

MRL eventually diverge, but the predictions from the retrained Optimus 5-Prime (red) more 

accurately reflect the data. (d) The original Optimus 5-Prime is retrained using sequences 

from the designed library with high poly-U, C, A, and G stretches which occur rarely in the 

random library. (e) The accuracy of the retrained Optimus 5-Prime increased when 

predicting the high poly-U sequences (red) generated by the genetic algorithm (r2: 0.386 to 

0.772, n = 2,146).
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Figure 4. Model performance with human 5′ UTRs and generalization to varying lengths 5′ 
UTRs.
(a) The first 50 nucleotides preceding the CDS of 35,212 human transcripts and an 

additional 3,577 UTRs with SNVs (ClinVar) were evaluated using our polysome profiling 

method with eGFP used as the CDS. The retrained Optimus 5-Prime could explain 81.1% of 

the observed variation in MRL (n = 25,000). (b) The log2 change in MRL between an SNV 

and its common sequence was compared to the predicted change between the two (r2: 0.555, 

n = 1,597). SNV classification labels are from the ClinVar database. (c) In silico saturation 

mutagenesis and model prediction of MRL change for all 5’ UTR variants of CPOX, 

TMEM127 and RPL5. The three annotated Clinvar variants, rs867711777 (CPOX, G > A), 

rs121908813 (TMEM127, C > U), and rs376208311 (RPL5, C > A), are predicted to have 

the most dramatic effect on ribosome loading. (d) A library of 76,319 random 5’UTRs with 

varying lengths from 25 to 100 nucleotides was used to train the generalized Optimus 5-

Prime. Sequences are one-hot encoded and zero padded to 100 nucleotides long if shorter 

than 100. (e) 7,600 random (blue dots) and 7,600 human (red dots) sequences are tested 

using the generalized Optimus 5-Prime. 100 sequences of each length (25–100) are 

represented. Model accuracy (r2: 0.754 to 0.838) is shown in predicting MRLs on different 

range of lengths of 5’ UTRs (From left to right: n = 4,000; n = 4,000; n = 4,000; n = 3,200.).
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