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Abstract
In the constructed habitat in which we spend up to 90% of our time, architectural design influences occupants’ behavioral
patterns, interactions with objects, surfaces, rituals, the outside environment, and each other. Within this built environment,
human behavior and building design contribute to the accrual and dispersal of microorganisms; it is a collection of fomites
that transfer microorganisms; reservoirs that collect biomass; structures that induce human or air movement patterns; and
space types that encourage proximity or isolation between humans whose personal microbial clouds disperse cells into
buildings. There have been recent calls to incorporate building microbiology into occupant health and exposure research and
standards, yet the built environment is largely viewed as a repository for microorganisms which are to be eliminated, instead
of a habitat which is inexorably linked to the microbial influences of building inhabitants. Health sectors have re-evaluated
the role of microorganisms in health, incorporating microorganisms into prevention and treatment protocols, yet no paradigm
shift has occurred with respect to microbiology of the built environment, despite calls to do so. Technological and logistical
constraints often preclude our ability to link health outcomes to indoor microbiology, yet sufficient study exists to inform the
theory and implementation of the next era of research and intervention in the built environment. This review presents built
environment characteristics in relation to human health and disease, explores some of the current experimental strategies and
interventions which explore health in the built environment, and discusses an emerging model for fostering indoor
microbiology rather than fearing it.
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From fear to reluctant acceptance of the
microbial world

Long before knowing why it worked, the ill were quar-
antined to prevent the spread of disease [1]. The idea that
microorganisms were solely disease-causing agents to be
avoided began with the discovery that basic hand hygiene
and aseptic techniques reduced the spread of disease [2, 3],

and led to the proposals of Germ Theory in the 1860s [4, 5]
and Koch’s postulates in the 1890s [6]. This idea captured
our imagination [7], and shaped public policy [8, 9], pro-
tocols, best practices, and infection control training—par-
ticularly in the healthcare and food service industries.
Successive developments in microbiology and microbial
ecology, technology, and theory advanced our under-
standing of microorganism taxonomy, anatomy, physiol-
ogy, ecology, and infectious potential, and continued to
refine our relationship to microorganisms and move us past
a strict definition of Germ Theory [4, 10].

In the early-1900s, culture-based investigations revealed
the possibility of a commensal microbial community [11]—
that which benefits from its association without impacting
the host. In the following decades, led by early work from
Hungate on protozoa in cattle [12] and McNall-Ngai et al.
on squid and Vibrio fischeri [13, 14], the understanding that
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microorganisms could not only be commensal, but mutua-
listic with their hosts, began to develop. Investigations into
host-microorganism relationships exposed a multitude of
microorganism-driven benefits for the host, and even the
reliance of some microorganisms or strains on host eco-
systems: thus, the abstraction of host-associated micro-
organisms was solidified [12, 14–16]. Even more nascent is
the concept that microbial exposure is integral to our health
[17], refuting the paradigm that pathogenic microorganisms
are consistently pathogenic, and that some microorganisms
could, in fact, be beneficial and essential due to their
antagonism with hosts. Our wariness of infectious disease
led us to become infatuated with preventing microbial
exposure, including those essential microbial-host interac-
tions which were only latently understood. Concurrent to
this, urbanized populations saw a rise in allergies, asthma,
and inflammation-related chronic diseases, many of which
were or seemed to be linked to a lack of microbial exposure;
a correlation which was described by the Hygiene
Hypothesis [18, 19]. In response, calls propose to redefine
“hygiene” from practices that remove all microbiota to
simply acting to prevent the spread of pathogenic micro-
organisms [20]. Yet, not all microorganisms interact with a
host in the same way, and not all interactions lead to
positive outcomes, and the Hygiene Hypothesis as origin-
ally defined did not encompass this nuance [21].

The collective change in ideology regarding micro-
organisms as beneficial has led to the development of the
Old Friends Hypothesis [22]—that early childhood expo-
sure to microorganisms can properly tune the developing
immune system such that it will not overreact to future
challenges, and aid in establishing a diverse, symbiotic
host-associated community. The change in ideology has
permeated enough to be implemented into practice. The
health sector has redefined its view of the roles that
microorganisms play in human health, particularly in
establishing an active, yet restrained, immune system and
that of a stable and functional microbial community in
preventing the overgrowth of certain taxa or activation of
pathogenesis [17–21]. Health procedures have even begun
to incorporate microorganisms into treatment or prevention
regimens, in particular with fecal microbial transplant or
probiotics to help stabilize the gut microbiota against dis-
turbance or to recover a diverse community [23–27].

Microorganisms can be found in every environment,
including built environments—our habitat of buildings,
roads, vehicles, and other human-associated spaces—and
even in ultra-clean rooms and space stations [28]. Collec-
tively, these factors mold the built environment’s micro-
biome [29–31]—all the genetic material of the microbial
members present, from which can be derived taxonomic
identification and metabolic potential, including activities
like nutrient utilization and antimicrobial production

[30, 32]. The indoor microbial community is a blend of
microorganisms sourced from various ecosystems which
seed each particular built environment. Thus, no two homes
or two offices share the exact same microbial footprint.

The majority of interest in microbiology of the built
environment has focused on microbially-mediated building
deterioration or detriment to occupant health from specific
microorganisms of interest. Despite advances in awareness
of the potential for microbial exposure indoors [33],
microorganisms in the built environment are still considered
as debris to be removed, instead of members of a microbial
ecosystem which is inexorably linked to the influences of
building inhabitants [29, 31, 34–37]. Given the propensity
for microbial biofilms or overgrowth to pose a threat to the
health of occupants, it is not difficult to understand why.
Yet, in the same way that a stable host-associated microbial
community can resist disturbance that would shift the
community and cause harm to the host, indoor micro-
biologists and architects have pondered the equivalent in the
built environment—i.e., a ‘house-associated microbial
community’. These so-called ‘healthy buildings’ or ‘bioin-
formed designs’ would keep microbiology in mind [38–40].
Hypothetically, these designs would acknowledge the
impossibility of ridding the built environment of micro-
organisms indoors and instead learn to carefully use selec-
tive pressures and microbial sourcing to cultivate a healthy,
symbiotic microbiome [41]. Examples of current practices
and supporting research are discussed below.

Insularity or connectivity contributes to
microbial transmission between occupants

Architectural design affects human or animal behavior, i.e.,
their interactions with each other and their surroundings,
indoors [42, 43] and how and where we emit and deposit our
unique individual microbial communities [44–46]. The
occupant-associated proportion of indoor microbial commu-
nities can be directly attributed to the individuals who spend
sufficient time within that space [43, 47–52] and what
household activities are performed, allowing for epidemiolo-
gical tracking of infectious organisms [53] or microbial for-
ensics [54]. The amount of occupancy in buildings, influenced
by building type, occupancy schedule, and indoor activity,
facilitates the accrual of human-associated microorganisms
[34, 44, 55, 56]. Higher occupant density and increased indoor
activity level typically increases social interaction and con-
nectivity, through direct contact, indirect contact with shared
surfaces, or via shared air, all of which may facilitate the
spread of disease [57–59]. For example, schools and libraries,
which have long occupancy schedules, high occupant density,
and high turnover of individuals throughout spaces in a day,
often have high concentrations of putative human pathogens in
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the air [60, 61]. Overcrowding in hospitals contributes to the
risk of patients contracting a hospital-acquired infection (HAI)
during their initial stay, as well as to staff illness [62, 63].
Despite incorporating many ways to isolate occupants, prisons
are not designed with infection control in mind [64]; hygiene
practices are hampered by resource rationing or location of
hygiene facilities. Facilities may be overcrowded, proper
infection control training may not be provided to staff, and
inmates are under stressful conditions which can modify the
host response and their personal microbiome, leaving them
vulnerable to infectious disease [64].

The primary avenue of reducing person-to-person micro-
bial transfer is quarantine, achieved indoors by spatial or
temporal separation. Quarantine remains an effective way of
preventing the spread of infectious agents; however, it is
typically applied reactively to control a known infection, and
many infectious agents are shed asymptomatically, e.g.,
Clostridioides difficile [65, 66]. Single-patient rooms in hos-
pitals or assisted-living facilities create a proactive, modified
quarantine, which may reduce patient stay durations and
reduce errors in care [67]. In work spaces, quarantine may
take the form of single-occupancy offices rather than shared
or open floor plans, which in survey-based assessments, are
correlated with more employee sick leave [68, 69]. However,
open floor plans may support aspects of teamwork or
increased access to natural light and air which make them
desirable or necessary to a space. Likewise, model simula-
tions of social networking and disease transmission indicate
that schools that reduce interaction and contact within and
between groups of elementary students would be able to
reduce influenza transmission more effectively than total
school closures [70], which provide the opportunity for out-
of-school contact. While effective, quarantine is often at cross
purposes with spatial habitation and may be impossible, or
only possible for only short periods of time, and in most cases
requires significant infrastructure and, therefore, cost.

A contrasting strategy to reducing human-human microbial
transmission indoors that has only recently been proposed is
simply a return to social practices that embrace positive host-
microbial transfers to facilitate a diverse human microbiota.
Cohabiting humans share microbiota with each other, the
degree of which corresponds to the nature of their relationship
and level of intimacy they share [49, 71]. In terms of the built
environment, this involves combining space types or other-
wise fostering certain human-human interactions. For exam-
ple, the integration of child-care and aged-care facilities seeks
to improve emotional, social, and physical wellbeing [72],
and may be inadvertently improving microbial-wellbeing as
well. The human microbiome becomes disordered later in life
[73–75], which can decrease resistance and resilience to dis-
turbance. Providing social interaction with children, who have
a diverse microbiota and whose gastrointestinal tracts still
contain beneficial early-colonizer taxa such as bifidobacteria

[74, 76], may help older adults recolonize their own micro-
biota—something like a “two-legged probiotic”. However,
microbial transfer in these instances cannot be limited to
potentially beneficial microorganisms, and the transference of
pathobionts or viruses will pose a risk to elderly adults.

Correspondingly, “host-sourced probiotics” may come in
a four-legged version: exposure to dogs, but not cats, are
associated with decreased risk of developing asthma or
allergies if children are exposed early in life [19], attributed
to differences in pet species’ microbial community. In
mouse models, early exposure to dust from homes with
dogs reduced the immune response to various allergens later
in life and altered the gut community [77, 78]. Specifically,
exposure to dust from homes with dogs increased the
abundance of the bacteria Lactobacillus johnsonii in the gut
[77, 78], and even oral administration of the bacteria alone
demonstrated similar positive effect to that of the dog-
associated dust [77, 78]. Colonization of the gut by
L. johnsonii creates favorable conditions for co-colonization
of the beneficial bacteria Bacillus fragilis by providing an
N-glucan biosynthesis pathway, something which is
reduced in the gut of asthmatics [79]. Oral probiotics are
often effective in managing respiratory illness symptoms
[80], and a small but encouraging amount of evidence exists
on aerosolized or inhaled probiotics to similar effect
[81, 82]. Intranasal Lactobacillus paracasei reduced
inflammation and immune system markers but increased
neutropenia in the lungs of mice [81], and aerosolized
Lactobacillus rhamnosus protected mice against trans-
planted lung tumors [82]. Importantly, successful probiotics
for humans, in these and other studies, are comprised of
lactic-acid bacterial species which are typically found on or
near human mucosal surfaces at various body sites, but are
not found in the built environment except when sourced
from mammalian occupants. Even then, lactobacilli often do
not survive the aerobic conditions of buildings.

While the concept of prescribed host-microbial transfer
between individuals holds promise, it is also at cross-
purposes with instances where quarantine would be prudent.
It is important to recognize that in any given public build-
ing, be it hospital, school, or office building, there is a
diversity of individuals with differing degrees of immune
system health and inflammatory exacerbation. Therefore,
architectural design and building operation would ideally be
flexible and adaptable enough to respond in a manner to
best serve differing communities of human inhabitants.

Buildings as microbial reservoirs

Architecture influences building biogeography and patterns
of microbial dispersal indoors [44, 46]; the building mate-
rials, surfaces, and products we use [43, 83, 84]; the indoor
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environmental conditions (e.g., temperature, humidity,
light, and airflow) [55, 85, 86]; and the connectivity of the
indoors to the outdoors and its associated microorganisms
[34, 87], all of which can affect the location of micro-
organisms in the built environment and survival once there.
Despite the seeming inhospitality of the built environment
[88], many microorganisms can survive indoors for months
[89–92], and environmental conditions indoors can facil-
itate intermittent bacterial and fungal growth [86]. More-
over, there are plenty of nutrient substrates. Human skin
squamous cells shed indoors serve as a ready food source
for bacteria living in HVAC systems [93], and sufficient
nutrients exist in house dust to host a living bacterial
community even after 90 days of isolation [85].

The concern for health arises from the interaction
between humans, insects, pets, and other occupants and
their built environments, which can be described as a
bidirectional relationship; humans shed host-associated
microbiota [50, 94] as well as track microbiota from their
daily lives back to built environments, yet may also reac-
quire these microorganisms from built environment sur-
roundings [95–97]. For example, hospital patients are more
likely to acquire a HAI if the previous room occupant was
diagnosed with an HAI [98], and are susceptible to infection
by building microorganisms through air, water, and surface
or aerosol transmission [99].

Moisture and relative humidity

Moisture is one of the most potent contributors to microbial
survival in air and on surfaces [100–103], including resis-
tance to electrostatic charges on surfaces [104], microbial
activity [86, 105], and the structure of the microbial com-
munity overall as survivors prosper [34, 56, 106]. The
ability of microbial cells or spores to become aerosolized
from surfaces and be resuspended into air due to occupant
traffic or disturbance [107, 108] is increased by a low-
relative humidity [109]. Low-relative humidity, such as
20–30%, increases the infection rates of aerosolized parti-
cles, such as influenza [110, 111], as well as overall HAI
frequencies [112]. This reflects two mechanisms of low
relative humidity: (1) the drying of host mucous membranes
which increases susceptibility to infection [111, 113], and
(2) the increased potential for particles to aerolosize as
smaller droplets, stay aloft longer, and travel further dis-
tances [111]. Low humidity is also perceived as less com-
fortable and less fresh [111].

High relative humidity, such as >80%, contributes to
microbial survival and activity on surfaces (Fig. 1) [100–
103]. It is associated with more mucosal irritation and
antigenic potential from fungi [109, 114] and can better
facilitate the direct-contact transfer of microorganisms from
fomite to host [95]. Microenvironments within surfaces,

particularly carpet, can create pockets of higher relative
humidity which can further mediate transfer from surfaces
(Fig. 1) [115]. Similarly, air thermodynamics creates
updrafts and other turbulence which can bring micro-
organisms into a person’s breathing zone [116], and warm
or moist air rises and can create pockets of higher relative
humidity when trapped by ceilings. However, by allowing
for larger aerosolized particles, high relative humidity can
cause particles to settle out of air more quickly. A variable
gradient or localization of relative humidity within a
building or a space may be required to provide optimal
conditions for reducing the dispersal and contraction of
potential pathogens in the built environment [111].

Dampness or water damage which supports microbial
biofilms is especially important for overt microbial growth,
especially fungal or mold growth, and biodeterioration of
building materials (Fig. 1) [117–121]. Dampness has also
been extensively studied in relation to the exacerbation of
asthma symptoms [122], and these efforts are not repeated in
this review. Motile Escherichia coli are capable of traveling
from sink traps back up the drain into the sink, at a rate of 2.5
cm per day, from where they spread to other areas via droplet
spray during sink use [123]. Similarly, water heaters host
bacterial communities which can spread Mycobacterium via
aerosolization at faucets and showerheads [124–126], and
Legionella pneumophila can persist in building ventilation
systems and infect building occupants [127, 128].

However, development of building systems or cleaning
products which intentionally create biofilms have also been
utilized to positive effect. Recently, microbial biofilms have
been used to reinforce building surfaces instead of decom-
posing them; namely, through mineralization and deposition
of calcium carbonate into concrete [129]. The hydrophobic
nature of many bacterial biofilms can impart that protective
hydrophobicity onto building surfaces [130], as well. Bio-
films have also been used to remediate water and air,
especially when other filtration, e.g., reverse osmosis, or
sterilization techniques are impractical. Microbial biofilms
treat building waste water and even provide non-potable
water for reuse within building systems [131]. Similarly,
active “green walls” have been used to improve air quality
(measured via clean air delivery rate), by utilizing a com-
bination of plant and plant- or soil-associated microorgan-
isms to degrade particulates in conjunction with active
airflow [132–134]. However, green walls do have the
potential to increase humidity indoors, and poor infra-
structure in installations can result in moisture-related
structural damage, potentially providing adequate micro-
bial growth conditions. The potential health benefits or
infection risks of intentional microbial biofilms indoors
have not been thoroughly examined, yet the possibility
exists to try and make use of biofilms particularly where
they might not interact with occupants.
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Temperature

Ambient indoor air temperature has been both positively
[34, 114, 135] and inversely [56, 114] correlated with
indoor microbial community richness (Fig. 1). It is likely
that this correlation has more complex underpinnings, such
as the relation of temperature to relative humidity, and with
seasonal or local weather conditions and the resultant
change in building operations. Most of the studies noting a
change in the microbial community correlated with tem-
perature were in buildings utilizing air conditioning
[34, 56, 135]. Given that most buildings are maintained at
temperatures conducive to microbial growth, it seems less
probable that temperature alone is a suitable mark for
microbial control indoors, with the exception of viruses
which are more sensitive to temperature [103]. However,
ambient indoor air temperature does affect animal and
human hosts, and the rate at which they shed microorgan-
isms or the degree to which they are susceptible to them.

For example, low air temperature (5 °C) did not affect the
susceptibility of guinea pigs to acquiring aerosolized
influenza virus as the immune system response was not
impaired, but this low air temperature did cause infected
guinea pigs to produce and shed more virions in oronasal
fluids, to produce virions for 40 h longer, and to increase the
rate of transmission [110].

Lighting

A great deal of work has focused on the effect of light and
architectural design to improve human health, productivity,
and comfort [136, 137], specifically pointing to the bene-
ficial effects of full-spectrum sunlight on human physiol-
ogy. As early as 1845, it was understood that sunlight in
buildings was important for human health and there were
calls from the medical community to repeal the 100-year old
Glass Tax in Britain [138]. The shift towards indus-
trialization, and the reduction of natural daylight indoors, to

(e)

(d)(b)

(a)

(f)

(c)

(g)

Fig. 1 Environmental factors and subsequent effects on built envir-
onment microorganisms. a Sunlight (both UV light and visible light)
have been shown to alter the survival of microorganisms living in the
built environment. b Biofilms can form on common built environment
surfaces, especially in moist areas such as sinks and showers in
bathrooms, facilitating transfer through everyday activities and rituals.
c Ambient household conditions constitute a major factor that con-
tributes to the survival and spread of microorganisms. Moisture from
daily activities, such as cooking, allows formation of biofilms while
and high relative humidity increases the rate of aerosolized microbial
cells and spores. Indoor air temperature alters the rate at which built
environment inhabitants shed microorganisms. d Frequented house-
hold items, such as chairs, can harbor a plentiful supply of nutrients

such as human skin squamous cells and other nutrients for micro-
organisms from built environment inhabitants such as humans, insects,
pets, and many others. e Microenvironments within carpet can create
pockets of high relative humidity that can aid in the growth, prolonged
survival, and transfer of microorganisms from fomite to individual.
f Windows provide an access point for microorganisms from the
outdoors to access the built environment, contributing to each build-
ing’s unique microbial makeup. Ventilation through windows provides
air exchange that aids in the reduction of potentially contaminated air.
g Humans, insects, pets, and other occupants exchange microorgan-
isms from their own personal microbiome with their built environ-
ments contributing to the two-way exchange between hosts and built
environment

Building upon current knowledge and techniques of indoor microbiology to construct the next era of. . . 223



which the glass tax contributed, was having noticeable
health effects for those spending more and more time
indoors [136]. In the pre-antimicrobial era, sunlight was
used to treat microbial infections such as tuberculosis of the
skin [139, 140], and architectural design responded to
accommodate health-based infrastructure [136, 140, 141].
In the late 1800s, researchers began studying the bacter-
icidal effects of sunlight [142–144]; quickly realizing the
importance of sunlight for controlling pathogenic bacteria,
particularly in health care facilities [145–147]. There were
even concerns that tall buildings in cities would block the
sunlight needed to kill the agent of Typhoid Fever [148]. In
cities like New York the skyline still reflects codes related
to building setbacks for access to light and air, and the
British Law of Ancient Lights, dating back to the Pre-
scription Act of 1189 highlights the understanding of the
value of light for health [149].

A large body of research has been conducted on the effect
of full-spectrum (sunlight) light [141, 150, 151], ultraviolet
light [147, 152–156], and blue or red wavelengths [157–160],
on mono-cultured bacterial or fungal survival and activity
(Fig. 1). Additionally, light has been shown to reduce virus
virulence and increase viron decay [103, 141, 161]. However,
microorganisms, particularly bacteria, may easily evolve
resistance to UVA and UVB light exposure [153]. UVC light
to control microbial growth has recently gained popularity
because there is no a priori resistance to it, as it does not
penetrate the atmosphere. While effective [155], it is logical to
predict that resistance to UVC might develop over time with
increased exposure. Only a few studies evaluate the effect of
light on whole microbial communities related to the built
environment, including those in house dust or on human skin
[85, 162, 163]. A recent study demonstrated that different
light wavelengths affect the survival of bacteria in complex
dust communities differently: visible or UV light reduces the
number of living bacteria in dust and results in a less human-
associated bacterial community than darkness does [85, 143].
Similarly, indoor surface bacterial communities contained
fewer human-associated taxa as the amount of illumination in
hospital rooms increased [164]. In terms of light exposure, it
appears that daylighting schemes which benefit humans in a
myriad of ways also facilitate control of bacterial populations
indoors [141], and is likely one of the easiest strategies to
support “healthy buildings.” Anecdotally, when architects
describe “healthy building” principles, they routinely speak of
access to daylight and outside air, and this is supported by the
prioritization of daylight in building performance rating sys-
tems such as LEED and WELL [165, 166].

Draining or filling the building microbial reservoir

Control of indoor microbial communities typically involves
the removal of microbial biomass. New infection-

prevention standards have been integrated into healthcare
facilities’ architectural designs and clinical procedures
[167, 168]. Sophisticated technology exists to monitor
hand-hygiene compliance, “time-outs” during surgical pro-
cedures for safety checklists, and surface disinfection [169].
Mechanical filtration, non-ionizing UVC, disinfection of
building cavities and wall assemblies, room pressurization
and laminar ventilation air-flow, have been implemented to
control pathogen spread [170], yet, few studies confirm that
these interventions decrease HAI [103, 110, 171, 172]. This
may be due to the fallibility of typical cleaning behaviors.
Common surface cleaning techniques do not remove all
microbial biomass from surfaces, where, after just a few
days [173], microbial communities are found even in clean
rooms or reagents that are considered to be sterile [28, 174–
176]. Furthermore, the use of cleaning materials which are
themselves contaminated with bacteria simply relocate
bacteria between surfaces without removing them [177].
Often times, the use of powerful antimicrobial cleaning
solutions can contribute to complacency by cleaning staff
[178], and adherence to cleaning protocols may lapse over
time [179], leading to the persistence of microorganisms in
spaces that are considered clean [176]. However, education
on correct and thorough cleaning has been demonstrated to
significantly decrease microbial load on frequented surfaces
in healthcare environments [180].

Disruption of microbial transfer can be achieved in real-
time using ventilation with sufficient air exchanges and/or
directed air flow to reduce the impact of potentially con-
taminated air [57, 58]. This has been widely implemented in
health care settings or clean rooms and spaces, and has been
proposed for other crowded public spaces [181]. While
appropriate ventilation may not effectively reduce all
infection transmission, depending on microbial transmission
potentials and pathology, it has been demonstrated to reduce
the spread of bacterium Mycobacterium tuberculosis, as
well as a number of viruses: measles, chickenpox (var-
icella), influenza, smallpox, and severe acute respiratory
syndrome (SARS) [182]. Natural ventilation, which has a
lower energy impact and can help mediate relative humid-
ity, has been demonstrated to reduce disease transmission
risk [141, 183], and to reduce the human occupant microbial
signal in dust by introducing outdoor-associated micro-
organisms [48, 55, 184]. However, high ventilation rates
which cause too much turbulence can negatively affect
health by retaining particulate matter in the air [185].

The concept of promoting a dynamic and living indoor
microbial community is not widely accepted, and infection
control practices continue to view indoor microbiota as a
problem that can be rectified given the right cleaning pro-
tocols. With the demonstrated failure of current cleaning
protocols and mandates, some have investigated the inten-
tional addition of benign microorganisms in the built

224 P. F. Horve et al.



environment to control pathogenic microorganisms and
neutralize the potential negative impact that the microbial
world has on our health. In recent years, microbial-based
cleaning products (MBCPs) have gained popularity [186]
and typically include microorganisms that can outcompete
and degrade organic elements of pathogenic microorgan-
isms [187]. The most commonly utilized microorganisms
typically belong to the genera Archromobacter, Actino-
bacter, Alcaligenes, Arthrobacter, Rhodopseudomonas,
Rhodobacter, and Lactobacillus [186], the majority of
which have been found to degrade xenobiotic compounds
[188] and are widely accepted as non-hazardous. Bacillus-
based cleaning products have shown promising results in
decreasing the viability of pathogenic microorganisms, with
continued decreases in pathogenic bacterial load associated
with continued cleanings [189]. Further, Bacillus-based
cleaning has been shown to reduce antibiotic resistance
genes, including those associated with species associated
with hospital associated infections [190]. Microbial aero-
solizers have also become commercially available to pro-
vide a “probiotic for the home”, which are typically bacilli-
based and do not appear to contain lactobacilli. Regardless
of the bacterial composition, intended use, and health
claims, probiotic cleaners generally lack clinical trials at
this time.

The lifelong impact of microbial roommates

When contemplating the indoor microbiome, we invariably
return to the goal of enhancing the experience and health of
its macroscopic occupants. Aside from clear evidence for
infection-potential, the role of the built environment on
long-term health or chronic conditions is unclear. Occu-
pants may face indirect effects on health or exacerbation of
chronic conditions from microbial byproducts, including
dozens of bacterial [191] and over 150 fungal allergens
[192], as well as microbial volatile organic compounds
(mVOCs). These mVOCs have, as yet, only been associated
with adverse health effects, such as neurosensory, mucosal
membrane, or respiratory reactions [193], which can result
in absenteeism or the need for medical intervention
[61, 194–196]. Asthma, in particular, is exacerbated by
antigens and mVOCs, as well as building material-sourced
VOCs [194]. In the United States, an estimated 19.9 million
adults suffer from asthma [197], which accounts for more
school absences than any other chronic health condition
[198], and for approximately $616.9 million USD in losses
per year for the United States economy from lost pro-
ductivity, absenteeism, and emergency medical visits [199].

Different indoor bacterial communities are commonly
reported in the homes of dermal or asthmatic atopy or non-
atopic asthma sufferers [56, 200] in comparison with

otherwise healthy homes. One study found the urban homes
of young children with atopic dermatitis or wheezing had
lower bacterial richness than homes with healthy children
[201] while another study found there was no difference in
bacterial richness of asthmatic vs. nonasthmatic homes
[200]. Despite the differences in outcome, both studies
concluded that the overall community was significantly
altered. In addition to reports of decreased abundance of
members of the phyla Firmicutes and Bacteroidetes in
homes with children who suffer from wheezing or atopy
[201], members of the phyla Cyanobacteria and Proteo-
bacteria were increased in asthmatic homes [200]. Many
human pathobionts, microorganisms capable of pathogeni-
city but not inherently infectious [202], belong to the Pro-
teobacteria phylum. Cyanobacteria, typically found in water
systems, has been detected in office buildings [203], and
were posited to be responsible for the prevalence of allergic
reactions to algae [204]. Yet, it has not been demonstrated
whether an altered community in dust is a cause of atopic or
asthmatic symptoms, or the effect of having a respiratory
condition and altering cleaning and ventilation habits,
which subsequently alter the indoor community. Moreover,
phylum-level changes in a dust community may not be
meaningful for all phyla; Firmicutes, Bacteroidetes, and
Proteobacteria are found in host-associated and environ-
mental ecosystems, with species or strain-level differences
in community composition based on the specific
conditions there.

Furthermore, while buildings can exacerbate pre-existing
respiratory conditions, the role of the built environment in
causing or preventing the development of respiratory con-
ditions remains unclear. Recent research has shown that a
diverse and abundant microbial community in house dust,
which is often associated with rural farmhouses and homes
with pets, is not deleterious to human health [205–208].
Longitudinal studies which point to the presence of patho-
bionts and antigens in the home during the first few years of
life having a long-term protective effect against the devel-
opment of adverse symptoms [201] lend support to the Old
Friends hypothesis. Specifically, exposure to allergens from
cockroaches, dogs, and cats were associated with a lower
risk of recurrent wheezing [201]. Some of the bacteria of
interest were correlated with allergen concentration,
including a known cockroach symbiont, and researchers
speculated that some of these bacteria in dust may be
sourced from cockroaches or mice and that a combination
of low bacterial diversity and high antigen concentration
may be most efficacious in causing antigen sensitization
[201].

Outside of the importance of early microbial and antigen
exposure in developing a well-functioning immune system,
the potential for positive feedback from the built environ-
ment to human health is less well understood. It is possible
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that a diverse microbial community indoors can facilitate a
more diverse host-microbial community, or at least provide
a regular source of immune system challenge that can
facilitate better host-microbial control. However, environ-
mental microbial communities appear to have short-lived
effects on skin microbiota in healthy individuals [163, 209].
In hospital patients, the skin and digestive tract microbial
community can be modulated in stays less than 2 weeks,
and this disordered host microbiome may allow for colo-
nization from unlikely sources, such as the built environ-
ment [210]. Microorganisms found on various surfaces
within neonatal intensive care units (NICUs) were subse-
quently observed in the digestive tract of resident infants,
including the same strain of Enterococcus faecalis in the gut
of two infants housed in the same ward [211]. The lack of
biodiversity within the infants gut at the start of the study
provided an ideal environment to track specific strains of
microorganisms being transferred between the “sterile”
environmental and the human microbiome. Similarly, the
Hospital Microbiome Project observed surfaces and patients
in a newly opened hospital for the span of a year, revealing
more of the intricate relationship between the human
microbiome and the built environment using 16S rDNA
sequencing [212]. It was observed that when a patient was
admitted to a room, they initially acquired taxa that was in
the room prior to their stay; however, over several days of
occupancy, the patient’s microbial signature began to
influence that of the room. Patient skin and the room sur-
faces were found to be more similar further into the
patient’s stay [212].

As in any complex system, a simplified model reveals
patterns. In the same way that the transfer of building-
sourced microorganisms and the resulting health effects is
most easily observed in infants and the immunocompro-
mised, humans living in extreme built environments can
model how a simplified indoor microbiome might affect
otherwise healthy individuals. In isolated communities such
as in the Arctic or Antarctic, heightened social connected-
ness created by consolidated living conditions can con-
tribute to the spread of human-to-human [213] and
building-to-human [214] infections; gastrointestinal dis-
ease from water recycling systems is a constant concern
[214]. The bacterial community in the gastrointestinal tract
of Antarctic visitors decreased in diversity and lost key
beneficial members, such as Bifidobacterium [215], both of
which can lead to a disrupted intestinal community and risk
of disease. Similarly, the sterilization of food and equipment
prior to launch, the harsh conditions of space travel, and the
isolation from any outside microbial source, contributes to
the development of a low-diversity microbial community
which is both sparse and tough [28, 216, 217], and does not
make for pleasant company [218–220]. The harsh condi-
tions and increase in radiation can contribute to accelerated

evolution; a distinct strain of Aspergillus niger was isolated
from the International Space Station [221]. Over time, rapid
evolution to support hardiness can lead to the development
of ‘survivor strains’ which are extremely difficult to kill or
eradicate, and recent research has demonstrated this in the
built environment [222]. In the same way that HAI are a
growing threat to public safety, space-evolved micro-
organisms and built environments devoid of life may one
day hamper our efforts for long-term space travel or resi-
dency without radical design changes.

While we are beginning to describe the ways in which
the built environment affects health, more research is clearly
needed before any accurate conclusions can be reached. The
majority of indoor microbiology studies rely on observa-
tions and variation within the microbial community, but
have not connected these to any potential health outcomes
[29, 44, 49, 223, 224]. Similar to the loss of host-associated
microorganisms contributing to human immune dysfunc-
tion, it has been hypothesized that the loss of macro- and
microorganism diversity seen in most urban environments
has also reduced our environmental microbial exposures
which help train the immune system [225]. However, the
loss of ecosystem-scale biodiversity is inexorably tied to
increased pollution, as well as changing lifestyle (i.e.,
activity levels and changes in social engagement), and it is
difficult to disentangle these other effects from that of
reduced diversity in microbial exposures. Moreover, it has
not been conclusively established that a diverse indoor
microbiome has any effect on health in otherwise healthy
individuals, and the diversity and plasticity of occupants
and their respective immune status requires flexibility in the
content of that indoor microbiome. Thus, “healthy indoor
microbiome” eludes definition, and may only apply to the
young or the immunocompromised [210, 211].

Built environment research now and in the
future

Epidemiological investigation has shown humans can
acquire infectious disease from the built environment
[99, 127, 128, 226, 227], but outside of pathogen-based
investigations, only a few studies demonstrate microbial
transmission from a built environment to a human or animal
host [163, 209]. Evaluating the transfer of microorganisms
from the built environment to humans has challenges, not
the least of which are the technical and logistical challenges
of tracking individual cells moving from an area of very low
biomass to very high biomass. Additionally, surface mate-
rial and microorganism characteristics contribute to the
likelihood of resuspension or transfer [95, 228, 229], and
the complexity of the microbial community of the recipient
likely mediates the potential for retention on a host.
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As with all microbial communities, elucidation of trends
requires both a temporal and spatial resolution of sampling.
Microbial transfer from the built environment to humans is
often successfully observed using individuals whose
microbiota are in a dysbiotic state such as the very young or
very sick [127, 128, 210, 211, 230, 231]. Transcriptomics is
the sequencing of all an organism’s or community’s RNA
transcripts [232], yet it only provides a snapshot of activity.
In built environments which may only allow for sporadic
activity from microbial communities, or time-dependent
activity in the case of communities exposure to daylight,
transcriptomics may not yield information on the entire
community. Due to the low probability of observing a
spontaneous transfer event, an in situ microbial transfer
from the built environment to an occupant requires a high
resolution of spatial and temporal samples can financially
preclude the use of “omics”-technologies which could
provide more highly resolved data. Some of these difficul-
ties have been overcome by large-scale, or long-term pro-
jects which accumulate sufficiently large datasets to locate
infrequent microbial transmissions. Interestingly, several of
these utilize 16S rDNA sequencing data, yet with sufficient
time or spatial resolution of samples, the inclusion of reg-
ular sampling from patients regardless of symptoms, or the
examination of low-diversity communities from built
environments and hospital patients, the transmission of
microorganisms from buildings to bodies was successfully
observed [209, 211, 212]. Despite these successes, the
logistical difficulty of finding the transmission of a micro-
bial needle in a dust haystack remains a barrier to under-
standing how microorganisms in buildings affect human
health. A great deal of discussion has centered around the
development of low-cost, real-time microbial sensing cap-
abilities in buildings [31, 233], which would track total
biomass, or detect certain species or antigens, and interface
with building automation services to alter operations.

The majority of studies determine the identity of bacteria
present by sequencing the 16S ribosomal RNA gene (rDNA).
This highly conserved prokaryotic gene provides a useful and
reliable, yet inexpensive, means of taxonomic identification.
However, the increased use of universal prokaryotic primers
favors bacteria over archaea and typically results in under-
estimated diversity and taxonomic resolution of archaea.
Similarly, the difficulty in predicting ecology and host-
microorganism interactions using only taxonomic markers
(e.g., 16S rDNA, 18S rDNA, Internal Transcribed Spacer
(ITS) regions) provides fodder for hypothesis but not
mechanism. Another major limiting factor is the lack of strain-
specific identification, which obscures evidence that micro-
organisms from the built environment and those identified as
causative agents in hosts are the same microorganisms. In
some cases, the specificity of strain is not needed to determine
where the microorganism came from, as in the case of

Legionella in water systems, due to the specificity of niche
location within the built environment that one may find the
microorganism. However, many microorganisms spend parts
of their lives in different habitats, making it more difficult to
determine the origin of that strain. Later research into the
microbiomes of the built environment has included the use of
metagenome sequencing, which generates data on all the
DNA material in an environment, including genomic and
plasmidic. Metagenome sequencing has given researchers a
holistic view of the indoor microbiome, for example, the
ability to determine what genomic characteristics are typical of
a specific built environment [46, 222, 234]. Yet, genetic
potential does not always translate to activity, and DNA-based
technology easily picks up relic DNA from an environment.

An important feature to assess in any microbial community
is the determination of which species present are alive and
metabolically active [235]; rDNA and rRNA extracted from
the same sources resulted in significantly different overall
characterization of the microbiota [32, 236]. Analyzing both
RNA and DNA in combination, even just rRNA and rDNA,
can provide further insight than just one method alone, such
as the effect of environmental conditions on which micro-
organisms thrive while others struggle or perish. There are
other methods to select for living microorganisms which may
be dormant or only slightly metabolically active, such as
amplification inhibitors added prior to nucleic acid extraction.
For example, propidium monoazide (PMA) is a membrane-
impermeable dye that is only able to enter into cells which
have a damaged cell membrane [237]. PMA preferentially
covalently binds to double stranded DNA (dsDNA), where it
strongly inhibits polymerase chain reaction (PCR) from
occurring in downstream laboratory protocols, allowing stu-
dies to solely amplify the dsDNA of living cells. By com-
paring samples from the same community with and without
PMA treatment, researchers can begin to understand the
current state and recent history of the community in which
they are studying [85], respectively. For example, PMA
treatment was used to determine how different types of light
might select for microbial communities in dust [85]. The
detection of living cells is an added technological challenge
for real-time microbial monitoring in buildings; however, the
detection of living cells may be immaterial in certain cir-
cumstances, such as the detection of microbial antigens.

Previous studies looking at health effects have used
either correlational studies [191, 238] or mouse models
[239]. Mouse models provide a good starting point for
epidemiological studies, but often react differentially in
comparison to humans when exposed to the same com-
pounds [240], due to differences in metabolic rates, prenatal
development and immune system, and interactions related
to social structure and use of their environment. Moreover,
microbial and chemical exposure may be localized within a
building, and the sum of an occupant’s path through the
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built environment over time leads to tailored exposures
from the built environment—recently coined ‘exposomes’
[241, 242]. In recent years, a new technology, ‘organ chips’,
has emerged as a potential medium through which to study
the built environment. Organ-on-a-chip (OOC) systems
replicate human organs by combining microfluidics, three-
dimensional tissue constructs, and cultured human cells
[243]. OOCs allow researchers to study the effects of dif-
fering exposomes on human metabolism, immune response,
and toxicity by combining multiple OOCs to create a sys-
tem of organs, just as in the body [244]. OOC technology
could develop into an invaluable tool in the study of the
daily exposome on the inhabitants of the built environment.

Yet another challenge in the study of the built environ-
ment is determining what effects, if any, may come from
our daily exposomes. Perhaps the clearest example of the
potential future investigation of the built environment is the
recent research that piloted wearable collection devices to
track the overall accumulation of microorganisms and
abiotic factors over the course of three test subjects’ normal
day [242]. A combination of DNA and RNA sequencing,
liquid chromatography-coupled spectrometry, and scanning
electron microscopy was used to determine the identities of
the microorganisms and chemical compounds that the study
participants encountered during the sampling period. This
study found strong location-dependant relationships
between the movement of the study participants and the
microorganisms and compounds they were exposed to,
alluding to the potential impact that varying built environ-
ment compositions could have on microbial exposure. The
three individuals were exposed to over 2500 species of
microorganisms; however, the authors reported that 43.74%
of the analyzed DNA could not be connected to a known
species. This demonstrates the tremendous amount of
research that needs to be done and is, on its own, a strong
reason to invest more time, energy, and money into
studying the built environment.

Summary

Overall, our understanding and our views of the relation-
ships we have with microorganisms are evolving
[20, 31, 202, 245]. What remains is the ability to know why,
when, and how microorganisms transfer from the built
environment to occupants, when these interactions matter,
under what circumstances these transfers lead to disease,
and when these interactions are beneficial to built envir-
onment occupants [33]. The variety of occupants and health
needs in a space will likely dictate strategies to inform that
indoor microbiome, including fostering or inhibiting human
to human contact, removing or adding microbial biofilms,
and integrating microbial communities into building

systems. Similarly, the move towards building automation
will need to incorporate technologies designed to monitor
and manipulate microorganisms in ways which do not
create the harsh selective pressures that may lead to dan-
gerous survivor phenotypes, such as full spectrum sunlight
instead of antibiotics or single-ingredient cleaning products.
Technological advances such as high-throughput sequen-
cing and transcriptomic analysis have given us new insights
into the communities and activities of the microorganisms
with which we share our everyday lives. Despite these new
insights, we still conceive of our living spaces as places that
must protect and isolate us from the world of microorgan-
isms. Using new technology to understand microbial
dynamics and host interactions, we continue to evolve past
the idea that buildings are isolation chambers to protect
occupants from contact with the microbial world and begin
to shape salubrious indoor microbial ecosystems through
building design.
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