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Contents

Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
1. The Importance of Infectious Disease Models in Pharmacoeconomics. . . . . . . . . . . . . . . . . . . . . . . . . 372
2. Interventions that Can be Modelled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
3. Modelling Infection Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

3.1 Types of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
3.2 When to Use Transmission Dynamic Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
3.3 Approximating Herd Immunity in Static Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

4. Modelling the Natural History of Infection and Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
5. Incorporating Uncertainty into Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

5.1 Parametric Uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
5.2 Structural Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
5.3 Model Uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
5.4 Methodological Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

Abstract The number of economic evaluations related to infectious disease top-
ics has increased over the last 2 decades. However, many such evaluations
rely on models that do not take into account unique features of infectious
diseases that can affect the estimated value of interventions against them.
These include their transmissibility from infected to susceptible in-
dividuals, the possibility of acquiring natural immunity following re-
covery from infection and the uncertainties that arise as a result of their
complex natural history and epidemiology. Modellers conducting eco-
nomic evaluations of infectious disease interventions need to know the
main features of different types of infectious disease models, the situations
in which they should be applied and the effects of model choices on the
cost effectiveness of interventions.
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1. The Importance of Infectious Disease
Models in Pharmacoeconomics

The number of economic evaluations related to
infectious disease topics has gradually increased
over the last 2 decades, with a database search sug-
gesting that they may now account for around 13%
of the literature on model-based economic evalua-
tions (see figure 1 andAppendix 1), which are them-
selves an area rapidly growing in importance.[1]

Several concurrent trends have contributed to
this expansion. Despite large reductions in the
incidence of infectious diseases over the last 50 years,
they are still the second most common cause of
death worldwide, accounting each year for about
18million deaths and 600million lost disability-
adjusted life-years.[2] This burden, combined with
the risk of high-profile and economically damag-
ing outbreaks, have ensured their continual impor-

tance from a public health perspective. Infectious
diseases have been kept in the public conscious-
ness as a result of emerging diseases such as the
West Nile virus and HIV, pandemics such as se-
vere acute respiratory syndrome (SARS) and in-
fluenza A/H1N1, the threat of bioterrorism and
the emergence of antimicrobial-resistant strains
of existing pathogens. The human and economic
impact of an emerging pathogen is difficult to
estimate but potentially devastating. Additionally,
infectious aetiology has been discovered for a num-
ber of diseases such as hepatitis C and E, peptic
ulcers and cervical cancer, originally thought to be
non-communicable.

At the same time, advances in molecular medi-
cine have facilitated the development of new tools
to prevent and control infectious diseases. The
last 2 decades have been called a new ‘golden age’
in the development of vaccines, the most effective
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Fig. 1. Number of articles found on model-based economic evaluations that are infection and non-infection related, according to year of
publication. Percentages on top of each bar show the proportion of articles that are infection related. See Appendix 1 for search terms used.
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intervention we have against infectious diseases.[3]

The main purchasers of these vaccines have been
governments and large non-governmental orga-
nizations, since they are most effective when used
as part of a population-level public health pro-
gramme. Although vaccines are traditionally one
of the most cost-effective interventions avail-
able,[4] the high price of the new vaccines has
resulted in them being subject to greater scrutiny,
including pharmacoeconomic evaluation, by
decision makers. For instance, there is an increas-
ing role for economic evaluation to inform the
priorities of global initiatives such as the Global
Alliance for Vaccines and Immunisation (GAVI
Alliance).[5,6]

Mathematical modelling offers public health
planners the ability to make predictions about the
impact of emerging diseases as well as the effects
of possible response and control measures. Such
models are needed to bridge the gap between clini-
cal trials (which measure individual-level efficacy
over a short period of time, and for highly se-
lected subpopulations), and population-level use.
This is particularly crucial for infectious diseases,
where mass interventions such as vaccination and
screening can result in effects at a population
level not seen on an individual level, including
herd immunity, changes in the epidemiology of
infection and changes to pathogen ecology as a
consequence of selective pressure.

Infectious disease models are in common use
in epidemiology, and a well developed set of tech-
niques has been developed over the past few
decades to model the epidemiological impact of
interventions such as vaccination.[7] Since these
interventions consume scarce healthcare resour-
ces, decision makers are increasingly interested in
combining such models with pharmacoeconomic
techniques in order to investigate whether or not
interventions provide good value for resources
invested. However, despite the expansion in the
applied literature on economic evaluations of in-
fectious disease interventions, the models under-
pinning such evaluations have not always been
used appropriately. Many economic evaluations
of infectious disease interventions apply models
that do not take into account the unique com-
plexities of infectious diseases, such as their trans-

missibility from infected to susceptible individuals,
the possibility of acquiring natural immunity to in-
fection and the uncertainties that arise as a result of
their complex natural history and epidemiology.

Recently, a number of health economists have
commented on these shortcomings and urged
modellers to adopt techniques that are well est-
ablished in the infectious disease epidemiology
literature. A recent systematic review of econo-
mic models of Chlamydia trachomatis screening
found that almost all inappropriately used static
models that failed to take into account onward
transmission of Chlamydia infection, and hence
were likely to incorrectly estimate the cost effec-
tiveness of screening.[8] Similar conclusions were
drawn in reviews of models of hepatitis A,[9] hep-
atitis B,[10] varicella,[11] meningococcal[12] and
human papillomavirus (HPV) vaccination.[13,14]

This article is an introduction to the basic
types and underlying principles of epidemiologi-
cal modelling of infectious disease interventions,
and the way these affect economic evaluations
built around such models. The review focuses on
the issues around modelling the epidemiology of
infectious diseases, as the normative economic
issues around economic evaluations of infectious
disease interventions have been discussed ex-
tensively elsewhere.[15-18]

A comprehensive taxonomy of decision anal-
ytic models has been published.[19] More recently,
the taxonomy was adapted to economic evalua-
tions of vaccination.[20] The taxonomy cate-
gorizes models based on whether (i) states in the
model change over time (dynamic) or not (static);
(ii) changes to the model occur at random (sto-
chastic) or are fixed (deterministic); (iii) the model
averages the behaviour of populations (aggre-
gate) or tracks individuals (individual based);
(iv) events occur in discrete or continuous time;
(v) individuals can enter or leave the population
(open) or not (closed); and (vi) the model’s
equations are linear or non-linear functions of
parameters. This article highlights some of the
key distinctions between types of infectious
disease models that are not discussed in detail
in previous reviews, as well as the way these
model features affect their estimates of the cost
effectiveness of interventions. Key terms used
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in this review are defined in Appendix 2 and are
indicated by italics when first used in the text.

2. Interventions that Can be Modelled

Infectious disease models that are of interest to
economists are usually those that estimate the
effects of an intervention (and hence can be used
to evaluate its costs and outcomes), rather than
simply make predictions about the unfolding of
an epidemic or the long-term trends in the in-
cidence of an endemic disease. The type of inter-
vention to be evaluated determines the type of
epidemiological model used to capture key ele-
ments of the disease. Some of the most common
interventions related to infectious disease that
have been analysed using economic models in-
clude the following:
� Vaccination. Vaccination has been one of the

main areas of application for pharmacoeco-
nomic models that incorporate models of in-
fectious disease transmission. Such transmission
models are needed in order to capture the
inherent nonlinear effects of vaccination, as a
result of the potential of vaccines to protect
not only directly vaccinated individuals but also
their contacts. The infectious disease models
used to predict the effects of vaccination have
been reviewed elsewhere.[20]

� Screening. Screening for infected individuals
allows them to be treated before they progress
to more severe disease and/or infect other in-
dividuals. Models need to incorporate trans-
mission if early detection affects transmissibility.
This has been shown to be important for many
infectious diseases such as Chlamydia[8] and
HIV.[21] Such models may allow for the pos-
sibility that a screened and treated individual
may be re-infected, which would decrease the
cost effectiveness of screening.

� Social distancing. Planned responses to large
outbreaks of infectious diseases such as an in-
fluenza pandemic often involve social distan-
cing measures such as isolation of suspected
cases, school closures, travel restrictions and
cancellation of mass gatherings such as foot-
ball matches.[22,23] While these may affect the
progress of the epidemic, they come with a cost

in terms of both individual liberty and econo-
mic activity within the population. Their bene-
fit depends crucially on the frequency and type
of interactions that occur between individuals
in different age groups and settings (such as
families, work places and schools). Such infor-
mation can be obtained from population-
based surveys that are available in Europe[24]

and the US.[25] On a smaller level, models can
estimate the impact of isolating infectious in-
dividuals during outbreaks in closed institu-
tional settings such as hospitals, nursing homes
and schools.[26,27]

� Post-exposure treatment. Chemotreatment op-
tions such as antimicrobials can be dealt with
using static models, unless they alter the trans-
missibility of an individual, or a transmittable
characteristic of the infection. Models falling
into the latter categories include the use of
antiretrovirals for HIV (which increases the
life expectancy of infected individuals but de-
creases their infectiousness),[28] antimicrobial
use against pathogens that can develop resis-
tance[29] and antiviral prophylaxis to delay the
spread of pandemic influenza.[30]

� Culling. For animal and plant diseases, one
option to interrupt transmission is to deplete
the host population by culling both infected
livestock and even healthy livestock at risk of
being infected. Models examine the trade-off
between reduced infection transmission and
the detrimental death of animals or plants as a
result of culling. Such models have been ap-
plied to epidemics of diseases such as foot-and-
mouth disease[31] and avian influenza.[32]

3. Modelling Infection Transmission

3.1 Types of Models

Most infectious diseases are communicable,
that is, they are caused by agents that can be di-
rectly transmitted from host to host. Their com-
municable nature has important effects on the
effectiveness of a preventative intervention. This
is because the risk of acquiring an infection is
dependent not only on the individual character-
istics of a potential host (such as age and whether
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or not a prophylactic intervention has been re-
ceived), but also on the prevalence of the infec-
tion among other people in the population with
whom a potential host may come into contact.
Hence, protecting a proportion of people in the
population from becoming infected can have non-
linear effects on the remainder of the population.[33]

If the proportion of a population that is sus-
ceptible to an infection is sufficiently low (because
other individuals are either infected, naturally im-
mune to infection or vaccine protected), then each
infected individual will transmit the disease to fewer
than one susceptible person before recovering.
Consequently, the prevalence of the infection will
decrease over time. Herd immunity is a decrease in
the rate of infection in a population in which a large
proportion of its members are immune, hence re-
ducing the probability that an infected individual
will have contact with a susceptible individual.[33]

The proportion of the population that needs to be
resistant in order to ensure that an epidemic will
not spread (because each infected individual
transmits the infection to less than one suscep-
tible person) is called the herd immunity threshold.
Such a concept is vital in models of vaccination
programmes, since the aim of vaccination is to
protect a large enough proportion of the popu-
lation to eliminate the infection.

This has important implications on the way
infectious diseases should be modelled. When
evaluating interventions involving non-commu-
nicable diseases, the most common types of deci-
sion analytic models used by health economists
are cohort models, such as decision trees and
Markov models.[34] These have two main char-
acteristics. First, they usually model a closed pop-
ulation (with no individuals allowed to enter the
population over time), consisting of a single birth
cohort. Second, the probability of an individual
moving between states represented by different
branches of a decision tree or different transition
states of a Markov model is dependent only on
characteristics of each individual, and not on the
number of other people who are infectious. For
this reason, they have been variously called static
models[20] or models without interaction.[19]

For infectious diseases, it is usually more ap-
propriate to use transmission dynamic models.

These represent an entire population with multi-
ple birth cohorts. The population modelled is
usually open (with new individuals being created
by births), although models over a very short time
scale may have a single closed population without
births. Furthermore, an intervention on one in-
dividual can have effects on others. This is because
the probability of a susceptible individual moving
to an infectious state depends not only on the pro-
portion of people in the susceptible state, but also
on the proportion of people in the infected state.
The instantaneous rate at which susceptible people
become infected is called the force of infection. In a
static model, the force of infection is constant in
time, while in a dynamic model it is a function of
the proportion of the population that is infected
(and hence changes over time).

3.2When to Use Transmission DynamicModels

Compared with static cohort models, trans-
mission dynamic models are usually more analy-
tically complex, require more epidemiological
information to parameterize and demand more
computing resources to implement. Hence, it is
advantageous to use them only when necessary,
that is, when an intervention can potentially pro-
duce significant changes in the force of infection.
This can occur in several ways. An intervention
may decrease the proportion of the population
that is susceptible, decrease the proportion of the
population that is infected or decrease the rate at
which the infection is transmitted between in-
fected and susceptible people. Examples of each
of these interventions are vaccinating infants
against measles,[35] screening for and treating tu-
berculosis carriers in a population[36] and closing
schools during an influenza pandemic.[37] An in-
tervention may also cause changes to the char-
acteristics of an infectious agent through selective
pressure. Examples of this include the emergence
of antibacterial-resistant strains of bacteria as a
result of antibacterial use,[29] and the increase in
prevalence of certain strains of bacteria as a result
of vaccination against other strains.[38,39]

In an economic model where a preventative
intervention such as vaccination, screening or so-
cial distancing is compared with no intervention,
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a dynamic model will usually indicate that the
intervention is more cost effective than an equi-
valent static model. This occurs for two reasons.
First, a dynamic model will predict that a greater
number of infections are prevented by the inter-
vention (both those directly protected by the in-
tervention predicted by the static model, as well
as those indirectly protected through herd im-
munity). Second, a dynamic model will predict
a faster reduction in the number of infections
than a static model, which is more beneficial in an
economic model with positive time preference.
This has been discussed for the case of meningo-
coccal[40] and varicella vaccination,[41] and is il-
lustrated using a hypothetical infant vaccination
programme in figure 2. Hence, a dynamic model
will usually predict a more cost-effective out-
come, both in the short term (due to a more rapid
effect) and also in the long term (as the effect of
herd immunity accumulates over time).

Consequently, if a static model indicates that
the intervention is cost effective, a dynamic model
will usually show the same. Hence, a static model

may be sufficient to obtain a conservative esti-
mate of cost effectiveness. However, there are
several reasons why a dynamic model may still be
necessary.
� Even when both static and dynamic models

agree on a qualitative prediction (such as the
favourable cost effectiveness of an interven-
tion), the dynamic model might predict a more
complex (and realistic) time course in disease
incidence than would a static model. One ex-
ample is the dynamics of a population following
vaccination to a level of coverage insufficient
to reduce the number of susceptibles below the
herd immunity threshold. Figure 2 shows how
a dynamic model predicts that such a vaccina-
tion programme can cause the incidence of
infection to initially drop to a very low level
(during a time period called the honeymoon
period), but then later show a sharp temporary
increase due to the accumulation of suscepti-
ble individuals during the period when the
force of infection was low. A real-life example
is an outbreak of rubella in Greece in 1993
following years of low disease incidence after
partial rubella vaccination.[42] None of this
behaviour can be shown by a static model. This
sharp increase can be economically important,
because it can indicate the need to retain spare
healthcare capacity to accommodate future
spikes in demand.

� A dynamic model may show that interventions
cause changes in the profile of infected indivi-
duals not seen in a static model. For instance,
vaccination reduces the force of infection,
which causes the average age at infection to
increase and the period between any cycles in
infection incidence to lengthen. This can be
economically important. For instance, vaccina-
tion against rubella with a low level of cover-
age can cause the average age at the time of
rubella infection to increase from childhood to
child-bearing age, increasing the risk of con-
genital rubella syndrome, which is a condition
caused by being born to a mother who had
rubella during pregnancy.[35]

� A dynamic model may reveal relationships be-
tween variables that are not apparent using the
static model alone. This is seen in a comparison
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Fig. 2. Dynamic and static model predictions about changes to
varicella incidence following the introduction of an infant immuniza-
tion programme. Initially, following vaccination, there is a honey-
moon period where incidence drops rapidly, but accumulation of
susceptible individuals eventually causes a sharp temporary in-
crease in incidence (post-honeymoon epidemic) before infection
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tions: infant vaccination with 80% coverage and a perfect vaccine
(100% protection for life).
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between static and dynamic models of ther-
apeutic antiviral use in the Netherlands during
an influenza pandemic.[43] Both models pre-
dicted that the intervention would be cost effec-
tive; however, the dynamic model suggested that
the cost-effectiveness ratio would be sensitive to
the size of the pandemic, whereas the static
model did not show this relationship.

� When one preventative intervention is com-
pared with another, a dynamic model does not
necessarily give a more cost-effective result than
a static model, since it will predict that both
options have a greater effect than predicted by
a static model. An example of this is using
economic modelling to determine the appro-
priate age for a catch-up vaccination campaign,
which requires comparing several catch-up
vaccination strategies covering different age
ranges.[44]

� Some diseases are caused by several types or
subtypes of organisms, and interventions can
induce selective pressures that cause a subset
of these types to gain a fitness advantage over
others. Examples are replacement of one type
of bacteria by another following vaccination[38,39]

and emergence of antimicrobial-resistant res-
piratory tract infections following antibac-
terial use.[29] A dynamic model incorporating
multiple bacteria types can predict long-term
emergent behaviour that will not be seen in
static models. Such a model usually incorpo-
rates a competition parameter that measures
the ability of one strain to infect a host who is
already infected by another strain.
On the other hand, dynamic models are un-

necessary when interventions have no effect on
the force of infection on people not receiving the
intervention. One such case is that of infections
such as rabies and West Nile virus, which have
environmental reservoirs largely unaffected by
the proportion of infected people in the popula-
tion. An intervention targeting human hosts ra-
ther than animal or insect reservoirs will have
little effect on the force of infection. The same is
true for interventions affecting the severity of
disease in infected people but not their transmis-
sibility, such as end-of-life therapy for cervical
cancer, which does not significantly affect the

transmission of the causative infective agent
(HPV), since this occurs decades before the de-
velopment of cancer. Another example is that of a
vaccine that prevents individuals from getting
disease from an infection but does not prevent
them from acquiring the infection asymptomati-
cally. For instance, early economic models of pneu-
mococcal[45] and rotavirus[46] vaccination were
largely static because it was not known whether
vaccination would prevent transmission, or sim-
ply reduce the risk of disease. More recently,
however, evidence has emerged that the vaccines
may also prevent transmission,[47,48] so, more re-
cently, dynamic models of vaccination incorporat-
ing herd immunity have been developed.[39,49]

3.3 Approximating Herd Immunity
in Static Models

One method that has been used to avoid the
complexity of dynamic models is to retain a static
cohort model structure, but then to approximate
the population effect of an intervention from the
experience of another similar population that has
undergone the intervention, or from the results of
a dynamic model used in a different situation.
There are several examples of this from economic
evaluations of vaccination. Static cohort models
used to estimate the cost effectiveness of pneumo-
coccal vaccination in England,[50] and of meningo-
coccal C vaccination in Quebec,[51] were extended
using information from post-vaccination surveil-
lance in the US to estimate the population-level
impact. Similarly, the indirect benefit of pertussis
vaccination was estimated in a cohort model of
pertussis vaccination[52] by using equilibrium va-
lues of a separate dynamic model. Besides eva-
luations of vaccination, some cost-effectiveness
evaluations of HIV screening have assumed a
fixed reduction in secondary cases from detecting
and treating a primary HIV case.[53]

There are a number of dangers with this ap-
proach. First, it requires the use of estimates from
either a dynamic model or surveillance conduct-
ed in a different population or situation, since it
would be unnecessary to use amodel at all if there
was already good information on the long-term
effect of an intervention in the same population.

Modelling Infectious Disease Epidemiology 377

ª 2011 Adis Data Information BV. All rights reserved. Pharmacoeconomics 2011; 29 (5)



However, differences between populations (such
as in age profile, likely uptake of the intervention,
size of age and risk groups or mixing frequency
between individuals in the population) may alter
an intervention’s effect in unpredictable ways.
For instance, post-marketing surveillance follow-
ing the introduction of pneumococcal vaccination
in England andWales revealed a level of serotype
replacement not seen in US surveillance data.[54]

Second, estimating herd immunity benefit from
the equilibrium state of a dynamic model ignores
the period of change between the start of an in-
tervention and reaching the equilibrium, when
disease prevalence may fluctuate. This can be
extremely important in an economic evaluation
with positive time preference, since the initial
period is closer in time to the intervention and
hence the costs and benefits accrued during this

period are more influential. Because of these rea-
sons, this technique should ideally be used only
when construction of a population-specific trans-
mission dynamic model is restricted by data lim-
itations, and even then, a wide range of possible
scenarios for key parameters governing the differ-
ences in the populations being modelled should
be considered. Also, more sophisticated approx-
imations could be used than simply applying the
equilibrium state of a dynamic model from the
start of an intervention. For example, one meth-
od of approximating herd immunity has been
proposed that retains a cohort structure but takes
into account a gradual reduction in the force of
infection until a post-vaccination equilibrium is
reached.[55]

Figure 3 is a flow diagram with an algorithm
with key questions that need to be asked when

Q2. Is the disease directly transmitted between humans, and
does the intervention affect its potential for transmission?

Q1. Is the intervention likely to affect the ecology of the causal
micro-organism or its host (for example, by causing serotype
replacement or antibacterial resistance)?

Q4. Is the intervention or strategy being compared with
another intervention or strategy affecting the same infection
rather than with the status quo (no intervention)?

Q3. Could the intervention increase the pathogenicity or
transmissibility of the infection by shifting the age profile of
the disease upwards?

Q5. Is it important to understand nonlinear changes in disease
incidence such as a post-vaccine honeymoon epidemic?

Q6. Does a static cohort model suggest
that the intervention is cost effective?

Dynamic model
or

static model
(as conservative

estimate)

Q7. Are epidemiological or modelling
data available that will allow the
magnitude of herd immunity to be
estimated?

Dynamic model

Static model
(surveillance to
confirm that no

changes to
transmission are
occurring may be

prudent)

Dynamic model
or

static model
(with approximation
for herd immunity)

NO

NO

NO

NO

NO

YES

YES

YES

YES

NO

YES

YES

NO

YES

Fig. 3. Flow diagram showing how the choice of a static model, static model with approximation for herd immunity or dynamic model could
be made based on answers to seven key questions.
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choosing between different types of models to
investigate an infectious disease intervention.

4. Modelling the Natural History
of Infection and Disease

This section provides a brief description of the
features of infectious disease natural history most
relevant to modelling; further details are avail-
able elsewhere.[56]

There are many stages of infection and disease
(see figure 4a and b). Both infection and disease
begin with the exposure of a susceptible host to
the infectious agent. If the host is infected, then
the latent period begins, followed by the infectious
period when the individual is infectious to others.
The length of the latent period can vary from
several days (influenza) to decades (tuberculosis).
The final stage is the one where the host is re-
moved from the infected population, through
recovery or death.

Different stages of disease also commence at
the time of infection. This first stage of disease,

the incubation period, usually lasts until partway
through the infectious period, and is followed by
the symptomatic period. However, some infec-
tions may simply result in asymptomatic infec-
tion rather than disease. Although the purpose of
an intervention is ultimately to reduce the burden
of disease rather than infection, transmission
models need to take into account unreported cases
(both asymptomatic and symptomatic), as these
contribute to infection transmission and hence
affect the consequences of interventions. One
example is the 2009 influenza pandemic, where
the number of cases of symptomatic disease were
reduced by widespread asymptomatic infection
leading to natural immunity in the population.[57]

An individual who recovers from infection
may develop natural immunity. Most epidemio-
logical models do not attempt to capture the de-
tailed biological mechanisms of immune response,
but instead make one of several assumptions about
natural immunity, illustrated in figure 4c.
� Susceptible-infectious-susceptible (SIS) mod-

els assume that no natural immunity occurs, so

IncubationSusceptible

Susceptible Latent Infectious Removed

Symptomatic Removed

Time

Time

Status of infection

Status of disease

Model structures

a

b

c

SusceptibleSIS

SusceptibleSIR

SusceptibleSIRS

Susceptible InfectiousSEIR

Removed

Removed

Infected Removed

Infected

Infected

Infected

Fig. 4. Timeline for the natural history of (a) infection and (b) disease, together with (c) corresponding model structures. In (c), direct lines
indicate movement between health states, while dotted lines indicate that the rate at which susceptible individuals are infected is influenced by
the proportion of the population that is infectious. SEIR = susceptible-exposed-infectious-recovered; SIR = susceptible-infectious-recovered;
SIRS = susceptible-infectious-recovered-susceptible; SIS = susceptible-infectious-susceptible.
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individuals who recover from infection are
immediately susceptible to further infections
of the same kind. This is the simplest option
and may be appropriate to represent diseases
such as gonorrhoea that do not confer immu-
nity, usually because they are caused by patho-
gens that are highly diverse or evolve rapidly
to avoid immune defences.

� Susceptible-infectious-recovered (SIR) models
assume that a host can only be infected once in
an individual’s lifetime (or the time horizon of
the model). This is appropriate for represent-
ing diseases such as measles for which natural
immunity is close to lifelong.

� Susceptible-infectious-recovered-susceptible
(SIRS) models assume that a host is protected
from re-infection for some time after recover-
ing, but that this natural immunity to infec-
tion wanes over time. This is appropriate for
modelling infection by a virus such as influen-
za, which continuously changes over time so
that natural immunity to a particular season’s
strain is lost after a few years.

� Susceptible-exposed-infectious-recovered (SEIR)
models are SIR models modified to include
a latent period during which an individual is
infected but does not transmit infection. This
is important in infectious disease dynamics
since it introduces a delay that reduces the
speed at which an epidemic spreads through
a population. This can also represent a phase
when the host is infectious but without symp-
toms, which may be important if individuals
are expected to change their contacts patterns
after the onset of symptoms. Note that SEIS
and SEIRS models are also possible by in-
corporating a latent period into SIS and SIRS
models.
The way natural immunity is modelled has an

influence on the cost effectiveness of an interven-
tion. An intervention such as vaccination against
an infection will have the largest effect (and hence
be most cost effective) in a model where natural
immunity to the infection is modelled using an
SIS model, and the least effect when using an SIR
model.[58] This is because natural immunity cre-
ates a pool of individuals already resistant to the
infection and, hence, anyone who has been in-

fected before can no longer benefit from vacci-
nation. Often, the choice of model to represent
natural immunity is not straightforward because
of lack of data on the existence and persistence of
natural immunity.

5. Incorporating Uncertainty into Models

In order to evaluate the effects of an inter-
vention, infectious disease models first need to be
calibrated to pre-intervention epidemiology by
choosing suitable parameters representing in-
fectivity and immunity. Next, the intervention is
introduced, either by altering these parameters or
by introducing new model states to represent di-
rectly affected individuals.

These steps rely on assumptions that are often
inherently uncertain. The most common way of
accounting for this uncertainty is to vary key
parameters in a model across their plausible dis-
tributions, either in a univariable fashion or to-
gether,[59] and to see the effect this has on the
predictions of the model. Several authors dis-
cussing both infectious disease models[17,60] and
economic models in general[61,62] have pointed
out that this only takes into account parametric
uncertainty. Other forms of uncertainty that have
been proposed include model uncertainty, struc-
tural uncertainty and methodological uncertainty.
Here we discuss the relevance of different sources
of uncertainty in pharmacoeconomic models of
infectious diseases, as well as appropriate ways to
account for them.

5.1 Parametric Uncertainty

Parametric uncertainty refers to variation in
the numerical input values of a decision analytic
model. These parameters may include transition
rates between health states, values governing the
efficacy of interventions, as well as cost and uti-
lity weights associated with health states.

Parametric uncertainty occurs when parame-
ters are estimated from the results of epidemio-
logical and economic studies that are subject both
to sampling error and to lack of validity (bias)
due to differences in modelled and actual study
populations. Probabilistic sensitivity analysis is
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often considered the best method of accounting
for uncertainty in the joint distribution of the
parameters; for example, it is required in econo-
mic evaluations commissioned by the UK Natio-
nal Institute for Health and Clinical Excellence.[63]

However, probabilistic sensitivity analysis can be
particularly challenging to conduct for infectious
disease models. Key parameters in these models
include the contact rates between different in-
dividuals (e.g. individuals in different age or risk
groups) and the probability that an infected in-
dividual will transmit an infection to a susceptible
individual during a contact. Until recently, con-
tact rates were difficult to quantify and were es-
timated by imposing a simple age structure on the
model, and fitting the contact rates to data about
the current infection status of a population.[64]

Recent population-based contact surveys have
measured contact rates relevant to airborne or
close contact infections directly.[65] However,
they are subject to sampling and measurement
error, and still require the probabilities of trans-
mission for different types of contacts (such as
close-contact or airborne) to be known. Hence,
the uncertainty in both contact rates and trans-
mission probabilities needs to be captured in a
way that incorporates their relatedness to each
other. One method is to take every contact between
two individuals recorded in a survey as a sample
space, and draw random (bootstrap) samples
from this space, while at the same time sampling
from matching individuals in current infection
status surveys, thus obtaining a joint distribution
representing the uncertainty in both. Next, the
probability of transmission is chosen that enables
the model to fit data about the current infection
status of a population.[66]

5.2 Structural Uncertainty

Structural uncertainty refers to different choi-
ces of health states in a model and relationships
between them. For instance, natural immunity
following recovery from infection can be mod-
elled using different possible structures such as
SIS, SIR and SIRS (figure 4c). All three struc-
tures can be successfully fitted to outcome data
by appropriately adjusting the force of infection.

However, an SIS structure will predict that a
preventative measure such as vaccination with
long-term duration of protection has the greatest
impact (and is most cost effective), while an SIR
structure will predict the least impact.[58] One way
of dealing with structural uncertainty is by para-
meterizing the range of choices and then averag-
ing outcomes as these structural parameters are
varied.[62] In the case of natural immunity, the du-
ration of natural immunity could be considered a
parameter that is varied over a plausible range.
This range could potentially take values between
zero and the lifetime of the individual, so that an
SIS model corresponded to a value of zero, SIR
to a value of infinity and SIRS to intermediate
values. Hence, many forms of structural uncer-
tainty can be reduced to parametric uncertainty.
However, in practice, manymodels are constructed
that do not parameterize all plausible model choi-
ces that fit the understanding of the disease being
modelled. Consequently, the usual techniques for
accounting for parametric uncertainty may under-
estimate uncertainty.

5.3 Model Uncertainty

Model uncertainty refers to variations that
arise as a result of different categorical choices
that cannot be readily parameterized. For in-
stance, Brisson and Edmunds[60] discuss a series
of models of varicella vaccination involving sev-
eral model choices: (i) a choice between static and
dynamic models; and (ii) a choice between a
model where exposure to a person infected with
varicella reduced an individual’s risk of zoster
(another disease caused by reactivation of the
same virus in previously infected individuals) and
one without such an effect. Neither choice can be
reliably parameterized. The first is a decision to
use either a simplified model or a more complex
but potentially more realistic one, based on con-
siderations such as those discussed in this article.
The second depends on the modeller’s belief in a
hypothesis for which there is some epidemiolo-
gical evidence[67] but is by no means completely
accepted. In this case, it may be appropriate to
weight different model choices and use model
averaging over the range of choices.[62]
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5.4 Methodological Uncertainty

Methodological uncertainty refers to variations
that arise as a result of different choices for model
values due to normative issues rather than as a
result of the difficulty in reflecting objective rea-
lity. Such considerations include the appropriate
discount rates to apply, the type of economic
analysis (such as cost effectiveness or cost bene-
fit), the time horizon and the analytical perspec-
tive to use. These choices are often made based on
a ‘reference case’ that decision-making bodies
adopt[68] to reflect societal preferences on issues
such as time preference and equity trade-offs be-
tween different sectors of society. However, these
guidelines are usually written with non-infectious
diseases in mind. Indeed, most country-specific
guidelines for economic evaluations do not spe-
cifically discuss infectious diseases, although
Australian guidelines have a vaccine-specific ap-
pendix that discusses the need to consider herd
immunity,[69] and the WHO has a guide for stan-
dardizing evaluations of vaccination program-
mes.[70] Because of their unique characteristics,
these methodological choices can have large effects
on the results of economic evaluations of infectious
disease interventions that are not always predict-
able from their effects on other interventions.[71]

One example is the issue of the time horizon
over which costs and outcomes are assessed.
A lifetime time horizon is usually appropriate for
evaluating interventions for chronic non-infectious
diseases in which no further costs or health ben-
efits are incurred after the death of the recipient
of the intervention. However, for an intervention
such as vaccination against an infectious disease,
wider costs and benefits can continue to accrue
long after the lifetime of the person receiving it.
Indeed, infectious disease interventions can cause
permanent changes to pathogen ecology (such as
eradication or evolution). Hence, the choice of
time horizon is crucial and difficult to establish.
This is illustrated by the case of varicella vacci-
nation,[60,72] where a short time horizon causes
vaccination to appear less cost effective because
of the increase in cases of zoster in older un-
vaccinated adults as a result of reduced immune
boosting from contact with people infected with

varicella. However, for a longer time horizon, the
intervention becomes increasingly cost effective
because zoster incidence decreases as the vacci-
nated cohorts are protected from zoster in later
life. Apart from the time horizon, interventions
with outcomes that occur many years after the
intervention (such as vaccination against HPV or
hepatitis B) are also highly sensitive to choice of
discount rates.[14,73]

Another example is the strong externalities as-
sociated with communicable diseases because of
the possibility that an infected individual will spread
the infection to others. Hence, interventions such
as vaccination and social distancing may have
benefits to people other than the individual receiv-
ing the intervention (and possibly net disbenefits
to the direct recipient). Furthermore, the impact
of preventing or mitigating pandemics such as
SARS, influenza and HIV on the wider economy
may be considered by decision makers to be more
important than the actual health impact.[74,75]

Hence, perspectives that are limited to health sec-
tor costs and outcomes may ignore what are con-
sidered as the most important benefits of certain
infectious disease interventions.

6. Conclusions

Economic evaluations of infectious disease inter-
ventions are likely to continue to play an impor-
tant role in decision making. However, modellers
conducting such evaluations need to understand
the unique features of the disease and interven-
tion they are modelling, as well as the appropriate
choices of models to use.
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Database Search Strategy

Database searched: Ovid MEDLINE
Date of searching: 17 April 2010

382 Jit & Brisson

ª 2011 Adis Data Information BV. All rights reserved. Pharmacoeconomics 2011; 29 (5)



Search terms used:
All economic evaluations
1. Economics/
2. exp Economics, Dental/
3. exp Economics, Hospital/
4. exp Economics, Medical/
5. exp Economics, Nursing/
6. exp Economics, Pharmaceutical/
7. cost$.mp.
8. economic$.mp.
9. pharmacoeconomic$.mp.
10. or/1–9
11. model$.mp.
12. Models, Economic/
13. Models, Theoretical/
14. Decision Support Techniques/
15. Markov Chains/
16. Computer Simulation/
17. simulation$.mp.
18. Decision Trees/
19. decision tree$.mp.
20. or/10–19
21. 10 and 20
Infection-related economic evaluations
22. Communicable Diseases/
23. infection/
24. infect$.mp.
25. bacter$.mp.
26. viral.mp.
27. virus.mp.
28. helminth$.mp.
29. or/22–28
30. 21 and 29

Titles of articles returned were examined briefly
to ensure that the search terms appeared valid,
but no attempt at systematic screening was made.
Hence, the reported number of articles returned
should be regarded as indicative of the literature
rather than exact.

Appendix 2

Glossary of Key Terms Used in Infectious
Disease Modelling

Aggregate (compartmental) model.Model that
is divided into various compartments represent-
ing the average state of individuals assigned to

that compartment. Within a single compartment,
all individuals are considered to be identical
(homogeneous).

Catch-up vaccination campaign. Programme in
which vaccination is offered initially to age co-
horts above the age of routine vaccination in
order to rapidly increase the proportion of the
population that is vaccine protected.

Closed population. Model population that is
fixed in size, and that no new individuals can
enter or leave.

(Single) cohort model. Model of a closed po-
pulation consisting of a single birth cohort, usually
with a fixed force of infection (and hence static).

Communicable disease. A disease caused by an
infection that can be transmitted directly from
host to host.

Competition parameter. Parameter in a trans-
mission dynamic model measuring the ability of
one type or subtype of pathogen to infect a host
that is already infected by another type or subtype.

Deterministic model.Model in which each iter-
ation with the same input parameters and initial
conditions will generate exactly the same output,
because there is no source of randomness (sto-
chasticity) within the model.

(Transmission) dynamic model. Model of an
entire population with multiple birth cohorts,
and a force of infection varying depending on the
proportion of the population who are infected.
The population may be stratified into different
subgroups (by age, risk factors or other demo-
graphic attributes) based on each group’s sus-
ceptibility to infection and probability of contact
with other subgroups.

Force of infection. The instantaneous rate at
which susceptible people become infected.

Herd immunity. The resistance to infection of a
population in which a large proportion of its
members are immune, hence reducing the prob-
ability that an infected individual will have con-
tact with a susceptible individual.

Herd immunity threshold. The proportion of
the population that needs to be resistant in order
to ensure that an epidemic will not spread.

Honeymoon period. Initial time period follow-
ing vaccination when infection incidence drops to
a very low level before subsequently rising.
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Incubation period. Time from an initial infec-
tion to the start of symptomatic disease, during
which the host has no symptoms.

Individual-based model. Model in which each
individual has its own characteristics rather than
being assigned to homogeneous compartments
based on average states of groups of individuals.

Infection. Acquisition by a host of the agent
(such as a bacterium or virus) that can potentially
cause the disease.

Infectious period. Time during which an in-
fected individual can transmit the infectious
agent to others.

Latent period. Time period from an initial in-
fection to the start of the infectious period, during
which an infected individual does not transmit
the infectious agent to others.

Natural immunity. The potential of a host’s
acquired immune system to develop mechanisms
after a first infection that reduce the risk of the
same type of pathogen infecting the host again.

Open population. Model population in which
new individuals can enter or leave the model (for
instance, through births, deaths, immigration
and emigration).

Static model (or model without interaction).
Model with a force of infection that is indepen-
dent of the proportion of the population that is
infected. These are usually single cohort models.

Stochastic model. Model in which two itera-
tions with the same input parameters and initial
conditions may generate different outputs, be-
cause there is a source of randomness (stochasti-
city) within the model itself that determines
whether or not events occur.

Symptomatic period. Time during which an
infected individual has symptoms.
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