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Abstract

The nuclear lamina (NL) consists of a thin meshwork of lamins and associated proteins that lines 

the inner nuclear membrane (INM). In metazoan nuclei, a large proportion of the genome contacts 

the NL in broad lamina-associated domains (LADs). Contacts of the NL with the genome are 

believed to aid the spatial organization of chromosomes and contribute to the regulation of 

transcription. Here, we will focus on recent insights in the structural organization of the genome at 

the NL and the role of this organization in the regulation of gene expression.

Introduction

The NL is a thin meshwork of type V intermediate lamin filaments that coat the INM with 

the exception of sites of nuclear pore complexes (NPCs). The NL in mammalian cells 

consist of A-type and B-type lamins and many associated proteins including proteins that are 

integral components of the INM [1]. The protein constitution of the NL-meshwork can vary 

extensively between cell types and A-type lamin protein levels are generally strongly 

reduced in undifferentiated cell types. In accordance with observations of classical electron 

micrographs [2], it has long been recognized that the chromatin in proximity to the NL is in 

a condensed state. More recently, a novel method that combines DNA-labelling and three-

dimensional electron microscopy (ChromEMT) revealed that chromatin is organized into 5-

nm–24-nm nucleosomal chains with increased packaging densities at the NL [3•]. By 

employing the DamID technology, the identity of the genomic regions that contact the NL 

was first revealed in Drosophila melanogaster [4]. Since this first report, LADs have been 

further characterized in the fruit fly but also in Caenorhabditis elegans and multiple 

mammalian cell types [4–7]. LADs are of particular interest because, in addition to playing 

an important role in genome architecture, regions that contact the NL differ with respect to 

cell type-specific gene expression, suggesting a role for LADs in gene regulation [7,8]. This 

review will focus on the molecular mechanisms that may be involved in the organization of 

LADs and the possible contributions of genome–NL contacts to the regulation of 

transcription during cellular differentiation and development.
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Genome organization at the NL

In mammalian cells, the genome contains approximately 1000–1500 LADs with a median 

domain size of ~0.5 Mb [5,7]. In addition to lamina association, chromatin has been shown 

to be structured in the three dimensional nuclear space in topologically associating domains 

(TADs), characterized by a high level of intra-domain contacts in contrast with few 

interactions occurring between TADs [9]. At a larger scale, TADs have been grouped into A 

and B compartments, corresponding to active and inactive chromatin regions, respectively. 

Likely because of their smaller size and threshold-dependent domain calling, only some 

TAD boundaries overlap with LAD boundaries. However, higher-order B compartments 

have been shown to generally coincide with LADs [9,10]. Although LADs are generally 

characterized as being gene-poor, they comprise about 30–40% of the genome and thus still 

encompass thousands of genes that are generally lowly transcribed. Interestingly, although 

Drosophila LADs are about fivefold smaller, the number of genes per LAD is comparable to 

that of mammalian LADs. This suggests that gene number is a potentially defining 

evolutionary constraint on LAD structure [11].

In addition to low gene density, LADs in mammalian cells are characterized by high A/T 

content and a high LINE (long interspersed nuclear element) density. These features are 

most prominent for LADs that invariably associate with the NL across cell types [8]. These 

constitutive LADs (cLADs) were, therefore, postulated to form a structural backbone of 

spatial genome positioning at the NL, as opposed to the cell type-specific positioning of 

facultative LADs (fLADs) [8]. Interestingly, LADs in totipotent zygotes and pluripotent 

mouse embryonic stem cells (mESCs) are particularly enriched in typical cLAD features, 

suggesting that genome–NL contacts in undifferentiated cells are preferentially established 

on a structural core backbone [our own unpublished data, 8]. This organization may 

represent a default state of LAD organization that is overruled by lineagespecific 

transcriptional programs. Indeed, in zygotes the genome–NL contacts are established before 

zygotic genome activation (ZGA) and enrichment for cLAD features is decreased with the 

commencement of transcription in early embryogenesis and upon differentiation in mESCs 

[our own unpublished data, 7]. Therefore, genome–NL contacts of backbone cLADs seem to 

occur independently of transcription.

In support of an anchoring role for cLADs, single-cell DamID has revealed that LADs that 

are present in most cells largely overlap with cLADs [10]. After considering over one 

hundred single-cell LAD profiles at a 100 kb resolution, this study showed that LADs 

associate with the NL in long stretches of continuous contacts, suggestive of multivalent 

interactions. A model in which multivalent interactions support genome–NL associations 

was further strengthened by the observation that longer LADs and LAD-dense chromosomes 

are more frequently positioned at the NL [10]. Interestingly, following cell division, LADs 

often do not return to the NL and, in some cases, localize to the vicinity of nucleoli instead 

[12]. This is consistent with the observation that nucleolus-associated domains (NADs) 

partially overlap with LADs [13,14]. LADs that maintain their localization at the nuclear 

periphery after mitosis are likely to be cLADs. To further elucidate NL versus nucleolar 

localization of chromatin regions, single-cell NAD profiles could be obtained from cells 

expressing Dam fused to nucleolar proteins.
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Mechanisms of LAD formation

Multivalent interactions of A/T rich regions appear to support robust NL-associations, but 

what are the anchors that mediate these contacts? Lamins could directly mediate tethering as 

they have been shown to bind chromatin and DNA [15,16]. Indeed, in Drosophila, depletion 

of the B-type lamin causes detachment of certain gene loci from the nuclear periphery in S2 

cells [17]. Similarly, loss of the sole lamin protein in C. elegans causes perinuclear release of 

large heterochromatic arrays [18]. Recent work in mESCs showed that overall LAD content 

is largely unaffected in cells depleted of all lamins, indicating that lamins are dispensable for 

tethering the genome to the NL. However, upon closer examination of these cells by DNA-

FISH and Hi-C, local chromatin expansion of cLADs was observed (Figure 1, bottom left). 

The authors suggest a meshwork caging model in which lamins contribute to the structural 

organization of the genome at the NL as opposed to a role in anchoring [19••]. Previous 

work employing a microscopy version of the DamID technique revealed LAD-embedding 

into pockets formed in the lamin meshwork, which is consistent with this meshwork caging 

model [12]. Each lamin isoform forms similar but distinct filamentous networks, hence the 

meshwork properties could differ between cell types with different NL compositions [20–

22]. Indeed, mouse embryonic fibroblast (MEF) nuclei depleted of Lamin A/C or Lamin B1, 

but not Lamin B2, resulted in a less dense lamin meshwork with different properties [21]. 

Similar studies conducted in cells with naturally different NL protein constitutions should 

reveal how different structural properties of the meshwork relate to cell type-specific LAD 

organization.

In combination with lamins, other integral proteins of the NL could potentially mediate 

genome–lamina contacts. Rod cells that naturally lack the Lamin B-receptor (LBR) and 

Lamin A/C display an inverse spatial organization of chromatin with interior 

heterochromatin and peripheral euchromatin positioning (Figure 1, top right) [23]. Similarly, 

in mouse olfactory neurons, the downregulation of LBR inherent to the final stages of the 

differentiation process results in the aggregation of silent olfactory receptor genes in 

heterochromatic foci at the nuclear interior [24]. A role in tethering heterochromatin toward 

the nuclear periphery was confirmed upon knockout of Lamin A/C and LBR in mouse 

postmitotic cells, which leads to the same inverse chromatin organization (Figure 1, top 

right) [25]. Also, depletion of LBR in two human cancer cell lines resulted in concomitant 

decrease in Lamin B1 expression and repositioning of pericentric heterochromatin toward 

the nuclear interior (Figure 1, bottom right) [26••]. Upon oncogene-induced senescence 

(OIS), LBR is downregulated and cLADs have been reported to detach from the nuclear 

lamina, likely contributing to the formation of heterochromatic foci in the nuclear interior. 

However, in this case, the absence of LBR alone was insufficient to cause such dramatic 

changes in chromatin architecture and other nuclear envelope transmembrane proteins 

(NETs) could be involved [27]. Indeed, certain NETs have been shown to play a role in 

chromatin tethering to the nuclear periphery of specific cell types [28,29].

LADs are typically covered by histone marks that contribute to a repressed chromatin state 

and may be involved in genome–lamina interactions. Indeed, it was found that interactions 

of LBR with chromatin can either occur directly through binding to H4K20me2 [30] or via 

LEM-domain mediated interaction with heterochromatin proteins such as HP1 [31,32]. 
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Additionally, HP1 interactions with histone 3 lysine 9 methylated chromatin may help 

mediate LAD-positioning at the NL [33,34]. Indeed, H3K9me2 domains in mESCs show 

high concordance with LADs [35] and can thus serve to ‘hook’ LADs to the NL, even in the 

absence of lamins.

In human cells, H3K9me2-enriched chromatin was shown to project toward the nuclear 

periphery in a G9a (H3K9me2 methyltransferase)-dependent manner [36], and similarly, in 

human HT1080 cells, G9a depletion resulted in reduced NL-association of a number of 

LADs [12]. In addition, knock-out of G9a in mESCs caused selective upregulation of genes 

in LADs [37]. Targeting of LADs with a viral transcriptional activator peptide resulted in the 

loss of H3K9me2-enriched LADs from the NL-surface [12]. A similar strategy in mESCs 

resulted in the heritable repositioning of selected genes toward the nuclear interior [38]. 

Interestingly, in both studies, the employed viral peptide caused chromatin decondensation 

without transcriptional activation, indicating that nuclear organization is mediated by 

chromatin changes rather than by transcription. Taken together, these results clearly suggest 

an important role for H3K9me2 in LAD-positioning toward the NL.

In addition to H3K9me2, H3K9me3 has also been shown to be enriched in LADs [19••]. An 

elegant study dissecting the targeting properties of a bacterial artificial chromosome (BAC) 

encompassing the human beta-globin (HBB) locus showed that NL-positioning of regions 

within the ~200 kb locus involves NL-positioning via both H3K9me2 and H3K9me3 [39]. 

Thus, in this example, at least two independent mechanisms act abreast, and perturbation of 

both H3K9 methylation pathways are required to dislodge the endogenous HBB locus [39]. 

Similarly, in C. elegans only the removal of both SET-2 (necessary for the H3K9me1 and 

me2 marks) and MET-25 (necessary for H3K9me3) results in the repositioning of a 

heterochromatin array and a partial loss of the peripheral localization of endogenous loci 

[18]. In a follow-up study, the NL-associated CEC-4 protein was identified to anchor H3K9-

methylated chromatin to the NL via its chromodomain [40]. A similar NL-anchor protein in 

mammals has not yet been identified, although the protein PRR14 may serve a similar 

function by anchoring H3K9-methylated chromatin via HP1α [41•].

A role for H3K27me3 in LAD organization is less clear. H3K27me3 was found to be 

enriched at LAD borders [5,42] and reduction of H3K27me3 was shown to affect the 

peripheral localization of ectopically integrated LADs [42]. However, H3K27me3 is not 

always found associated with LADs [10] and, therefore, a role in LAD positioning could be 

cell type-specific or LAD-specific. In flies, cell type-specific chromatin signatures 

associated with LADs were also observed. LADs in embryonic Kc167 cells are partially 

associated with Polycomb (Pc) [11,43] but not with HP1a/H3K9me2, while in differentiated 

cell types and particularly neurons, LAD-profiles display striking concurrence with HP1a/

H3K9me2 [44•]. Collectively, a picture emerges of multiple non-exclusive chromatin-

mediated processes that drive NL-association via LAD-specific and cell type-specific 

mechanisms.
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LADs and the regulation of gene expression

Genes within LADs are generally lowly transcribed, which is suggestive of a role for LADs 

in gene silencing. The role of the NL in gene regulation may entail direct involvement in 

gene repression, for example, by exclusion of genes from the transcriptionally active nuclear 

interior, and/or indirect via the reinforcement or locking in of chromatin states. Random 

genomic integrations of thousands of reporters resulted in ~5–6-fold attenuation of gene 

activity when inserted in LADs relative to other genomic regions [45]. In three independent 

studies, artificial recruitment of reporter genes to the NL resulted in mixed outcomes of 

either partial repression of the reporter and some flanking genes [46,47] or no effect on 

transcription at all [48]. Thus, localization toward the NL is in general associated with gene 

repression even though exceptions occur. It still needs to be addressed whether the 

differential transcriptional sensitivities observed in these studies may be related to 

differences in flanking chromatin signatures or to the properties of adjacent LADs (cLADs 

or fLADs). A recent study, employing a new method to simultaneously measure LADs and 

mRNA from the same single cell, may provide a platform to systematically decipher the 

molecular interactions causing the differences in transcriptional dependencies for individual 

LADs in various cell types [49].

Active gene repression at the NL may be mediated via various non-mutually exclusive 

mechanisms. One straightforward mechanism would involve NL association of histone 

modifying enzymes with repressive signatures. LADs are generally depleted of active 

histone marks [5,43,50]. The absence of histone acetylation could be mediated by local 

interactions between the INM components Emerin and Lap2ß with histone deacetylases such 

as HDAC3 [51–55]. Suggestive of an active mechanistic interaction at the NL is the finding 

that HDAC3 activity is increased upon interaction with Emerin [54].

Another potential mechanism of gene repression through genome–NL interaction involves 

the sequestration of chromatin-bound transcription factors (TFs) [52,56,57]. These 

mechanisms are likely to occur only on a subset of fLADs and only in the specific cell types 

in which the TF is expressed. An emerging TF-mediated regulatory role for the NL is 

illustrated in a recent report, which describes the retention of chromatin at the NL via an 

interaction of the GLI1 TF with the NL protein Lap2ß. Transcriptional activation involves 

egress from the NL through ‘pulling’ by the competing nucleoplasmic isoform Lap2α 
[58••]. Nuclear shuttling of TFs between the nucleoplasm and the NL could provide a fast 

and tunable gene expression mechanism. Further studies are required to verify how general 

this type of gene-regulation is across cell types.

A more passive role for the NL in transcriptional regulation may be to preserve and reinforce 

gene inactivity and thereby locking in transcriptional states. Gene repression may not 

directly involve NL association, yet confinement in the NL territory may secure an 

irreversible repressive transcriptional state. During neuroblast differentiation in Drosophila, 

the hunchback gene translocates toward the NL after transcriptional silencing. Thus, the NL 

is not directly involved in hunchback silencing. However, prevention of hunchback 
association with the NL by lamin depletion results in a delay in cellular commitment and a 

prolonged neuroblast competence window [59]. Similar lineage specification defects have 
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been observed in C. elegans upon disruption of the NL [40,60]. In mammalian cells, the role 

of the NL of locking in genes in a repressive state remains mostly unexplored. However, it 

was shown that the overall chromatin density at the nuclear periphery increases in more 

differentiated cell types [61] in combination with increased H3K9me3 levels [62]. Despite 

these changes, the proportion of the genome that contacts the NL appears constant between 

populations of mESCs and terminally differentiated cells [7]. This apparent discrepancy 

might be explained by differences in the proportion of LADs that associate with the NL in 

individual cells. Indeed, while cells in a more undifferentiated state show more heterogeneity 

between LAD content of individual cells [10,49], terminally differentiated single cells may 

have a higher proportion of LADs consistently contacting the NL, perhaps due to the 

increase in H3K9me3 levels. Interestingly, inhibition of H3K9 methylation results in a 

differentiation delay [62] and, removal of H3K9me3 alleviates binding restrictions of 

pluripotency factors to DNA and facilitates reprogramming [63]. Lamin A has also been 

reported to constitute a barrier to induced reprogramming [64]. Thus, the increased 

expression levels of Lamin A, perhaps in combination with increased H3K9me3, may help 

consolidate transcriptional states in more differentiated cell types [62,65].

Conclusions

Genome-nuclear lamina interactions play an important structural role in the three-

dimensional organization of the genome and are likely to be involved in gene regulation. The 

integration of new insights into a preexisting framework of literature reveals a scenario 

whereby NL composition, chromatin state of LADs and presence of DNA-binding proteins 

cooperatively regulate gene expression at the nuclear periphery.
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Figure 1. Schematic representation of lamina composition impact on chromatin conformation.
On the top left is a wild-type nucleus consisting of a nuclear lamina containing LBR and all 

lamins. The compacted heterochromatin is located at the nuclear periphery, while 

euchromatin is located more at the nuclear interior. In triple knockout mESCs that do not 

express any lamins (bottom left), genome–NL interactions are maintained but cLAD 

chromatin is decondensed [19••]. Rod cells of nocturnal animals that naturally lack LBR and 

Lamin A/C and mouse postmitotic cells in which LBR and Lamin A/C were mutated show 

inverted chromatin organization with heterochromatin localizing at the nuclear interior and 

euchromatin localizing at the periphery (top right) [23,25]. In human cancer lines in which 

LBR is downregulated, Lamin B1 expression is also affected and results in the detachment 

of heterochromatin from the NL (bottom right) [26••].
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