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Mitotic kinase anchoring proteins: the navigators of cell division
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ABSTRACT
The coordinated activities of many protein kinases, acting on multiple protein substrates, ensures
the error-free progression through mitosis of eukaryotic cells. Enormous research effort has thus
been devoted to studying the roles and regulation of these mitotic kinases, and to the identification
of their physiological substrates. Central for the timely deployment of specific protein kinases to
their appropriate substrates during the cell division cycle are the many anchoring proteins, which
serve critical regulatory roles. Through direct association, anchoring proteins are capable of mod-
ulating the catalytic activity and/or sub-cellular distribution of the mitotic kinases they associate
with. The key roles of some anchoring proteins in cell division are well-established, whilst others are
still being unearthed. Here, we review the current knowledge on anchoring proteins for some
mitotic kinases, and highlight how targeting anchoring proteins for inhibition, instead of the mitotic
kinases themselves, could be advantageous for disrupting the cell division cycle.
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Introduction

Accurate execution of the cell division cycle results in
the precise duplication and subsequent separation of
DNA and cytoplasm into two newly-formed daughter
cells. The cell cycle is conventionally divided into two
main phases: interphase, where the cell prepares for
division, and M phase, where the cell divides into two
genetically-identical daughter cells. Multiple regula-
tory checkpoints exist in cells to ensure that the cell
cycle progresses with precision and accuracy, as errors
at any point can be detrimental to the cell and organ-
ism as a whole [1–3]. Indeed, many disease states,
most notably cancer, have been linked to aberrant
cell cycle control [2,4,5]. Deciphering the regulatory
nodes of the cell cycle is thus a topic of wide research
interest, from both a basic science and therapeutic
perspective.

Of the post-translational modifications known to
regulate the cell cycle, protein phosphorylation con-
stitutes one of the most studied to date. This phos-
phorylation-centered mitotic research focus likely
stems from observations that the entry into mitosis
is accompanied by a profound increase in the level of
protein phosphorylation throughout the cell [2,6,7].
Historically, the observation that protein phosphor-
ylation was dramatically increased following entry

into mitosis was a key cornerstone in the identifica-
tion of maturation promoting factor (MPF) –
a cytoplasmic factor first identified in Xenopus
oocytes, capable of stimulating entry into M-phase
of the cell cycle [8,9]. MPF was later shown to consist
of a protein kinase we now refer to as Cyclin-
Dependent Kinase 1 (CDK1), and its associated reg-
ulatory subunit Cyclin [10]. Since then, several other
protein kinases have been found to have instrumen-
tal roles in eukaryotic cell division, and enormous
effort has been devoted to understanding the roles of
these protein kinases in mitosis, and to the identifi-
cation of their physiological substrates. Indeed,
many studies have determined the critical roles pro-
tein phosphorylation plays in key mitotic processes,
including chromosome condensation and mitotic
spindle assembly [11].

However, mitotic kinases require strict spatio-
temporal regulation in order to exert their effects
on the cell cycle. Indeed, many mitotic kinases
exhibit dynamic changes in their subcellular distri-
bution as mitosis progresses, or simultaneously
reside at distinct mitotic structures such as centro-
somes and kinetochores. The vital roles of anchor-
ing proteins [defined in relation to other accessory
binding proteins in Box 1 [12]] in these processes,
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acting to spatiotemporally coordinate mitotic kinase
recruitment to key subcellular structures, and hence
their substrates, are critically important for an accu-
rate cell division. Here, we review the best-
characterized anchoring proteins for some mitotic
kinases, and summarize the mounting evidence
supporting crucial roles for these diverse signaling
proteins in coordinating the cell division cycle.

Cyclins control CDKs, the master regulators of
the cell cycle

Cyclin-dependent kinases (CDKs) are a family of
Ser/Thr protein kinases, whose catalytic activity
depends on regulatory subunits termed Cyclins.
This opening statement is a culmination of decades
of research efforts that established that CDKs are
indeed, as their name suggests, Cyclin-dependent.
The identification of MPF [9] was a crucial first
step in the subsequent determination of CDK-
Cyclin interplay during mitosis. Although MPF
was identified in 1971, the discovery of the MPF
catalytic component did not come until 1988 when
a purified MPF preparation from Xenopus oocytes
was shown to contain two major proteins of 32 kDa
and 45 kDa masses respectively [10]. One year
prior, homologs of the Cdc2 protein kinase were
shown to be functionally conserved from yeast to
humans [13]: Cdc2 was originally identified in
genetic screens searching for yeast mutants with
defects in cell division [14,15], and Cdc2 was later
shown to be essential for cell-cycle progression [16].
As Cdc2 was also a 32 kDa mitotic protein, it was
speculated that the 32 kDa protein present in MPF
purifications may be a Xenopus homolog of Cdc2.

Consistent with this idea, an antibody recognizing
a conserved 16 amino acid sequence of Cdc2 was
capable of depleting the purified MPF preparation
of its MPF activity [17]. Importantly, this antibody
immunoprecipitated both the 45 kDa and the 32
kDa proteins present in the MPF preparation [17],
suggesting that Cdc2 and an associated protein may
constitute the functional MPF complex.

Simultaneously, independent studies in sea
urchin oocytes led to the identification of some
proteins that were synthesized and degraded at
each cleavage division [18]. Due to this cyclical
nature in their expression, these proteins were
termed Cyclins. Subsequently, Cyclins were cloned
from fertilized clam embryos, and the ectopic
introduction of Cyclin A mRNA was shown to
promote meiosis in Xenopus oocytes, suggesting
that a rise in Cyclin A may drive progression
into M phase [19]. The biochemical connection
between Cdc2 and Cyclins came in 1989 when
researchers determined that Cdc2 associates with
Cyclin A and B in starfish, clam and Xenopus
oocytes [20–22]. Thus, Cdc2 thereafter became
known as Cyclin-dependent Kinase 1 (CDK1). At
this time, it was also proposed that Cyclin proteo-
lysis may drive inactivation of the associated CDK
[20], thereby promoting the idea that mitotic
kinase activity could be regulated by interacting
proteins in cells.

With the advent of cDNA libraries and Polymerase
Chain Reaction (PCR) technology, many other CDK
family members were identified, and their role as
critical regulators of eukaryotic cell division began to
be fully appreciated [23–26]. To date, 20 members of
the CDK family have been identified, and these have

Box 1
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been designated CDK1-CDK20 [27]. Decades of
molecular research have now determined that
A-type Cyclins bind CDK1 and CDK2 and these
CDK-Cyclin A complexes act to resolve S phase and
promote entry into the G2 phase [28]. During G2,
A-type Cyclins are degraded through ubiquitin-
mediated proteolysis, and the B-type Cyclins are
actively synthesized. Consequently, CDK1 associates
with the newly-translated Cyclin B and this active
complex is thought to regulate several key steps dur-
ing the G2/M transition [11,28].Many substrates have
been reported for CDK1-Cyclin B during this transi-
tion, including histones, whose phosphorylation by
CDK1 promotes chromosome condensation, and
lamins, whose phosphorylation triggers nuclear envel-
ope breakdown (NEBD). Notably, CDK1-Cyclin
B complexes have been shown to localize to centro-
somes during prophase, and phosphorylate the motor
protein Eg5 in order to promote centrosome separa-
tion [11]. CDK1 has also been shown to activate
several other mitotic protein kinases [11,28], and as
such, CDK1 is often regarded as the master mitotic
kinase. Furthermore, the inactivation of CDK1-Cyclin
B complexes is required for mitotic exit, and this
inactivation is achieved through the proteasomal
degradation of Cyclin B following its ubiquitination
by the anaphase-promoting complex E3 ligase, leav-
ing behind inactive, isolated CDK1 in the pro-
cess [1,29].

Cyclins are also key mediators of CDK localization
during the cell cycle. In both humans and Xenopus,
Cyclin A, and thus the CDK1-Cyclin A complex, is
found within the nucleus from S-phase until the
breakdown of the nuclear envelope [30,31]. Cyclin
B and its associated CDK1 partner, on the other
hand, is cytoplasmic in G2 and enters the nucleus
just prior to NEBD [30,31]. Cyclin B possesses
a nuclear export signal, and this signal maintains
Cyclin B in the cytoplasm during interphase [32–35].
Following NEBD, CDK1-Cyclin B is found on the
spindle apparatus as well as on condensed chromo-
somes [30]. These differences in Cyclin localization
are thought to underpin CDK1 substrate specificity
in vivo. A pioneering study sought to determine
whether it was the availability of a Cyclin within
a subcellular compartment that was the limiting step
in the cell cycle-dependent regulation of localized
CDK activity. Expression of a Cyclin B1 mutant pro-
tein lacking its intrinsic nuclear export signal led to

retention of Cyclin B1 in the nucleus, and this mutant
protein was capable of stimulating DNA synthesis
even in the absence of the native DNA synthesis-
promoting Cyclin, Cyclin E [36]. Thus, the spatial
proximity and availability of Cyclins to CDKs appears
to be critical for the spatiotemporal regulation of
localized CDK activity. Phosphorylation of Cyclin
B in prophase was found to regulate the nuclear trans-
location of Cyclin B in prophase, and a mitotic kinase
termed Polo-like Kinase 1 (discussed in detail in
the subsequent sections) was found to be the
kinase responsible for this key mitotic event [37].
Intriguingly, a related Cyclin termed Cyclin F was
shown to be required for the nuclear translocation of
Cyclin B, in a manner dependent on the intrinsic
nuclear localization signals of Cyclin F [38]. This was
the first example of a Cyclin-Cyclin protein interac-
tion [38].

Interestingly, indicative of a potential role in reg-
ulating microtubule attachments or spindle assembly
checkpoint signaling, Cyclin B1 was later found to
reside at kinetochores [39,40]. Recently, two indepen-
dent studies have highlighted the role of the spindle
assembly checkpoint protein Mad1 in promoting
CDK1-Cyclin B1 recruitment to kinetochores
[41,42]. In stark contrast, the related B-type Cyclin,
Cyclin B2, localizes to the Golgi apparatus to enforce
CDK1-mediated disassembly of this organelle during
mitosis [43,44]. Interestingly, a chimeric protein com-
posed of the N-terminus of Cyclin B2 and the
C-terminus of Cyclin B1 was shown to associate
with the Golgi apparatus, suggesting that the
N-termini of Cyclins may determine their localization
patterns in cells [43]. Importantly, this chimeric
Cyclin did not show reduced binding to CDK1, nor
did it affect CDK1 activation, when compared with
wild-type Cyclins [43].

Future efforts aimed at determining the interact-
ing partners of specific Cyclins may shed light on
how these critical CDK1 regulators are controlled
and recruited to specific subcellular compartments,
where the associated CDKs act during the cell divi-
sion cycle. However, it should be noted that Cyclin-
interacting proteins are unlikely to fully explain the
control of CDK1-Cyclin localization. Indeed, phos-
phorylation of Cyclin B has been shown to be
important for retaining Cyclin B in the cytoplasm
[37,45], and the binding of Cyclin B to the nuclear
export-regulating protein CRM1 (Chromosome
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Region Maintenance 1 protein homolog) has also
been established as a key regulatory mechanism of
Cyclin B nuclear translocation [32].

Anchoring proteins regulating Aurora
kinases: an exemplar relationship

The aurora gene was first identified in a Drosophila
screen aimed at identifying genes whose products
could control cell cycle progression [46,47]. With
the discovery of homologs in other species, the
Aurora kinases have emerged as central players in
cell division [48]. Aurora kinases are highly con-
served, and present with a similar domain architec-
ture between homologs [49]. Aurora kinases possess
a Ser/Thr protein kinase domain sandwiched
between N- and C-terminal domains [50]. The N-
and C- terminal domains are thought to be impor-
tant in regulating Aurora kinase stability, as well as
in determining the interaction partners of distinct
Aurora kinases [50]. In humans, there are three
Aurora kinases, designated AURKA, B and C, and
they display distinct subcellular distributions [11].
AURKA localizes to the duplicated centrosomes at
the start of S phase, and shifts to bipolar spindle
microtubules during mitosis [51,52]. AURKB loca-
lizes to chromosomes in prophase and the centro-
mere in prometaphase, before shifting to the central
spindle in anaphase and the mid-body in cytokinesis
[51,52]. The least-studied family member, AURKC,
is localized to chromosomes during mitosis and is
thought to enhance AURKB function, but, unlike
AURKA and B, is principally expressed in the male
and female germline of mammals [48,53].

The ability of Aurora kinases to achieve such
diverse localization patterns during mitosis is
determined through the binding to different reg-
ulatory anchoring proteins. For example, following
NEBD, AURKA is recruited to spindle microtu-
bules by binding the microtubule-associated pro-
tein Targeting Protein for Xklp2 (TPX2), where
TPX2 serves the additional purpose of allosteri-
cally activating AURKA [48,54,55] (Figure 1a).
TPX2 also contributes to full AURKA activation
by shielding it from inhibitory dephosphorylation
by Protein Phosphatase 1 (PP1) [56,57]. Crucially,
TPX2 localization to spindle microtubules is inde-
pendent of its interaction with AURKA, consistent

with the idea that TPX2 recruits AURKA to the
spindle to regulate spindle assembly and spindle
microtubule dynamics [58]. Indeed, the AURKA-
TPX2 interaction was shown to be critically
important for the assembly of spindles of correct
length, and for faithful chromosome segregation
[58]. Furthermore, the AURKA-TPX2 interaction
was shown to be important for AURKA stability
[59]. TPX2-silenced U2OS cells showed lower
AURKA protein levels in G2 and prometaphase,
whereas overexpression of the AURKA-binding
domain of TPX2 blocked AURKA degradation in
telophase [59]. Adding more complexity to the
AURKA-TPX2 interaction, TPX2 itself appears to
be an AURKA substrate. In Xenopus, TPX2 was
phosphorylated by AURKA [56,60], and in HeLa
cells AURKA-phosphorylated TPX2 was shown to
regulate spindle length [61].

AURKA also localizes to centrosomes through-
out the cell cycle. The localization of AURKA to
centrosomes was shown to be dependent on the
protein Bora (Figure 1a), a highly-conserved
AURKA-interacting protein originally identified
based on phenotypic similarities – both AURKA
and Bora mutants exhibited identical centrosome
maturation defects [62]. The AURKA-Bora com-
plex was suggested to be the kinase complex
responsible for phosphorylating and activating
PLK1 [63], a key mitotic kinase required for cen-
trosome maturation and spindle formation. Bora-
depleted cells present with multipolar mitotic
spindles – an effect reminiscent of TPX2 knock-
down [58]. Although the recruitment of AURKA
to centrosomes is dependent on Bora, whether
Bora achieves this in a direct or indirect manner
remains to be determined. Regardless, Bora is
thought to be a key AURKA activator in cells
[62]. However, it should be noted that Bora
doesn’t appear to enhance AURKA activity
per se, but rather acts to make the activation loop
of PLK1 more accessible for phosphorylation by
AURKA [64]. Thus, in the context of AURKA-
dependent PLK1 phosphorylation, Bora can be
considered an AURKA activating protein, but the
in vitro AURKA activity immunoprecipitated with
Bora is far less than the AURKA activity isolated
in TPX2 immunoprecipitates [65]. Once cells
entered mitosis, Bora was shown to be
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phosphorylated and degraded in a PLK1-depenent
manner, and this phosphodegron event is thought
to be a prerequisite for the recruitment of AURKA
to spindle microtubules by TPX2 [65] (Figure 1a).

AURKB, on the other hand, is a component of
the Chromosome Passenger Complex (CPC),
which consists of three non-enzymatic AURKB-
regulatory proteins termed INner CENtromere
Protein (INCENP), Borealin and Survivin [66–
69] (Figure 1b). INCENP, Borealin and Survivin
all act as both targeting and activating subunits of
AURKB [66–68], although the evidence in favor of
Survivin being a bona fide AURKB-activating pro-
tein remains controversial [70,71]. Interestingly,
formation of the CPC appears to be essential for

the stability of individual proteins within the com-
plex [66,70]. The CPC, and hence AURKB activity,
has been linked to the correction of microtubule-
chromosome attachment errors and activation of
the spindle assembly checkpoint [67].

As described earlier, the CPC exhibits a very
dynamic localization profile during cell divi-
sion, and this change in localization is largely
thought to coordinate AURKB activity toward
its substrates during mitosis. Importantly, when
either INCENP, Survivin or Borealin are mis-
localized, the other complex members also mis-
localize [66,70,72–74]. At the onset of mitosis,
the CPC localizes to chromosomes, and in pro-
metaphase to inner centromeres [51,52,67].

a b

Figure 1. Anchoring proteins in the regulation of Aurora kinase localization.
(a): AURKA localizes to the centrosomes in a Bora-dependent manner, where Bora acts to facilitate AURKA-dependent activation of
PLK1. As M phase progresses, activated PLK1 phosphorylates Bora to promote Bora proteolysis, and AURKA associates with TPX2 to
facilitate its localization to the spindle microtubules. TPX2 serves as an allosteric activator of AURKA. (b): AURKB forms the so-called
Chromosome Passenger Complex (CPC), composed of AURKB and three associated non-enzymatic proteins termed INCENP, Survivin
and Borealin. Following Histone H3 phosphorylation at Thr3 by the Ser/Thr kinase Haspin, Survivin mediates recruitment of the CPC
to chromatin. At anaphase, Histone H3 is dephosphorylated and the CPC relocalizes to the central spindle, through binding the
kinesin-6 microtubule-binding protein MKLP2. Created with BioRender.com.
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During the metaphase-to-anaphase transition,
the CPC is found on central spindle microtu-
bules, before concentrating at the midbody dur-
ing the latter stages of cell division [51,52,67].
INCENP acts as the platform on which the CPC
is assembled, and the N-terminus of INCENP
mediates CPC recruitment to centromeres [75].
Biochemical studies determined that it was the
first 58 amino acids of INCENP that are
required for binding to Borealin and Survivin,
and are critical for the localization of the CPC
to the centromere, spindle midzone
and midbody [66,75,76]. Crucially, this
dynamic localization profile correlates with the
pleiotropic functions of the CPC during cell
division, and thus provides an elegant example
of how mitotic kinase anchoring proteins can
facilitate the many functions of their associated
kinase partners, simply by coordinating the
sub-cellular distribution of that kinase.
Interestingly, a single amino acid change in
human AURKA (G198N – AURKB has an Asn
at the equivalent residue to G198) renders the
kinase AURKB-like, promoting localization to
chromosomes and interaction with INCENP
and Survivin. Intriguingly, this AURKA mutant
was able to rescue mitotic defects resulting
from AURKB knockdown [77,78].

The importance of Survivin in localizing the CPC
to chromatin is well-established. Following phos-
phorylation of Histone H3 on Thr3 by the Ser/Thr
protein kinase Haspin, Survivin binds phospho-
Histone H3 (Thr3), and acts to recruit the CPC to
chromosomes, where AURKB is activated and phos-
phorylates Histone H3 on Ser10 to regulate chromo-
some condensation [79] (Figure 1b). Crucially,
Survivin was capable of binding phospho-Histone
H3 (Thr3) in the absence of the other CPC proteins,
strongly suggesting that Survivin is the CPC compo-
nent that mediates CPC recruitment to chromatin
[79]. In latemitosis, when the Haspin site onHistone
H3 is dephosphorylated, CPC localization to chro-
matin is also suppressed, and thus this dephosphor-
ylation event is thought to be key for the
redistribution of the CPC as mitosis progresses [79–
81]. Curiously, whilst the majority of the CPC com-
ponents exist in a quaternary complex to coordinate
the functions of the CPC, a second complex consist-
ing of solely AURKB and INCENP was proposed as

an additional AURKB complex, functioning to reg-
ulate Histone H3 Ser10 phosphorylation [72].
However, whether this sub-complex is merely an
intermediate in the assembly of the full CPC cannot,
at present, be ruled out.

During the metaphase-to-anaphase transition, the
CPC relocalizes from the inner centromere to central
spindle microtubules. This relocalization event is
associated with a decrease in CDK1 activity, and is
dependent on both AURKB and phosphatase catalytic
activity [82–84]. Mechanistically, the kinesin-6 pro-
tein MKLP2 (Mitotic Kinesin-like Protein 2), which
binds central spindle microtubules, associates with
INCENP andAURKB to direct the CPC to the central
spindle [82,85,86] (Figure 1b). This interaction only
occurs in anaphase, once the inhibitory CDK1-
mediated phosphorylation of MKLP2 is reduced
[82] (Figure 1b). Interestingly, MKLP2 also binds
and directs the phosphatase Cdc14A to central spindle
microtubules, and Cdc14A has been proposed to
dephosphorylate INCENP to promote relocalization
of the CPC to the central spindle in anaphase [85].

The Polo Box Domain – a unique mode for
mitotic kinase recruitment

Polo-like Kinases (PLKs) are a family of Ser/Thr
protein kinases that were first described in lower
eukaryotes [87,88]. In Drosophila melanogaster,
a mutant of the protein Polo was found to present
with defects in mitosis [88], and PLK homologs
were subsequently identified in mammals [89]. All
PLKs have a similar domain architecture, with an
N-terminal kinase domain, and a C-terminal reg-
ulatory Polo Box domain containing two signature
motifs termed “Polo boxes” [89] (Figure 2a).
Humans have 5 PLK enzymes termed PLK1-5,
however the exact role and contribution of each
PLK isoform is not well understood [89]. As PLK1
is largely thought to mediate most of the mitotic
functions attributed to the D. melanogaster Polo,
the major focus of the subsequent section will be
on PLK1. However, key roles for the related kinase
PLK4 in centriole duplication have also been
reported in recent years, and as such, the mitotic
functions of PLK4 will also be discussed.

Similar to many other protein kinases, human
PLK1 is activated through phosphorylation within
its T-loop (at Thr210), by an upstream protein
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kinase [90–92]. As described earlier, the AURKA-
Bora complex has been reported to phosphorylate
and activate PLK1 in cells [63] (Figure 2b), although
other upstream kinases have also been implicated
[93]. Emerging as a key regulatory feature of PLK1
in cells, the Polo boxes have been shown to be

instrumental in mediating PLK localization [94–
97]. The Polo-box Domain (PBD) of PLK1 acts as
a phosphopeptide-binding motif, and in this capa-
city, the PBD binds specific phosphorylated proteins
to facilitate the recruitment of PLK1 to those pro-
teins. The priming phosphorylation event on the

a

c

d

e

b

Figure 2. The polo-box domain determines the subcellular distribution of PLK1.
(a): Schematic overview of PLK1 domain architecture, highlighting the N-terminal kinase domain, which needs to be activated by an
upstream kinase, and the C-terminal Polo-box Domain (PBD), which binds to phosphorylated epitopes on anchoring proteins to
promote PLK1 association with the anchoring protein. (b): PLK1 is activated through phosphorylation of Thr210 by an upstream
kinase, principally thought to be the AURKA-Bora complex. The PBD of PLK1 determines the localization of PLK1 and its recruitment
to substrates, by binding to phosphorylated anchoring proteins. Such phosphorylated anchoring proteins are phosphorylated by
a priming kinase, most frequently CDK1-Cyclin B or PLK1 itself. (c): An overview of the centrosome-localized PLK1 anchoring proteins:
Gravin and Cep192 simultaneously bind PLK1 and AURKA. Whilst Gravin interacts with PLK1 following priming phosphorylation by
CDK1, the Cep192-PLK1 interaction is thought to rely on PLK1-dependent phosphorylation of Cep192. Cenexin is another example of
a centrosome-localized CDK1-dependent PLK1 anchoring protein. (d): An overview of kinetochore-localized PLK1 anchoring proteins:
Bub1, CLIP-170 and Dynactin promote PLK1-recruitment to kinetochores in a CDK1-dependent manner. (e): An overview of central
spindle-localized PLK1 anchoring proteins. During metaphase CDK1 activity is high, and CDK1-Cyclin B phosphorylates PRC1 on
Thr470 and Thr481 to inhibit the association of PRC1 with PLK1. During anaphase, CDK1 activity is reduced, and PLK1 can
phosphorylate PRC1 on Thr602 to promote the PRC1-PLK1 interaction, and concurrent recruitment of PLK1 to the central spindle.
MKLP2 is another central spindle protein that anchors PLK1 to the central spindle, following PLK1-dependent phosphorylation of
MKLP2 on Ser528. Created with BioRender.com.
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target protein, which generates the phosphoepitope
onto which the PBD binds, can be mediated by
different protein kinases, allowing for wider crosstalk
between different kinases during mitosis, but is most
frequently performed by CDK1 or PLK1 itself [98–
101] (Figure 2b). In cases where the phosphorylated
PLK1-anchoring proteins are localized to cellular
structures, such as kinetochores and centrosomes,
PBD-mediated binding also imparts spatial control
on PLK1 [102–105]. To date, many such PBD-
binding proteins have been identified [106]. In the
absence of a phosphoepitope to bind to, the PBD is
thought to associate with the kinase domain of
PLK1, thereby impeding its kinase activation and
substrate binding [99]. However, upon PBD-
phosphoepitope association, the kinase domain is
thought to be released from the PBD, and together
with T-loop phosphorylation by upstream kinases,
PLK1 achieves maximal activation. Simultaneously,
the PBD-phosphoepitope association determines
where within the cell PLK1 is localized, and hence
where its activity is utilized [99]

In both interphase and mitosis, PLK1 localizes to
centrosomes, and centrosome-localized PLK1 in
mitosis has been reported to be critical for spindle
pole formation, and positioning of the mitotic spindle
[107,108]. Interestingly, following inhibition of PLK1,
monopolar spindles form due to defective centrosome
separation, and cells arrest inmitosis [107,108].Whilst
the exact PLK1-dependent substrate landscape is
not fully elucidated, many proteins involved in cen-
trosome function and microtubule dynamics have
been reported to be PLK1 targets [106,109].
Recently, the pericentriolar material-localized protein
Gravin was shown to be a PLK1 anchoring protein in
cells [110] (Figure 2c). In vitro studies suggested that
PLK1 associated with Gravin only when Gravin was
phosphorylated on Thr766 [111], suggesting
a canonical PBD-mediated mode of interaction. Loss
of Gravin in primary prostate cancer cells was asso-
ciated with elevated micronuclei formation, and
a redistribution of active PLK1 to different protein
complexes within centrosomes [110]. Interestingly,
Gravin was also shown to interact with AURKA
[112], suggesting that Gravin may act to streamline
AURKA-PLK1 signaling at centrosomes, similar to
the Bora protein discussed earlier (Figure 2c). The
Gravin-PLK1-AURKA complex was shown to be
down-regulated in human testicular seminoma

[112], suggesting that disruption of this signaling
axis may contribute to the disease. In a similar vein,
it is also interesting to note that the centrosome-
localized coiled-coil protein Cep192 was also shown
to act as a scaffold protein for bothPLK1 andAURKA,
and this macromolecular complex was critical for
centrosome maturation [113] (Figure 2c). However,
the phosphoepitope-generating residue of Cep192,
Thr46, that facilitates PLK1 binding through its
PBD, does not conform to a CDK1 consensus motif
and is thought to be phosphorylated by PLK1 itself
[113]. As Gravin and Cep192 appear to act in similar
capacities, it will be interesting to decipher the centro-
somal PLK1/AURKA substrates that are dependent
on, and unique to, each anchoring protein.
Interestingly, the mother centriole-associated protein
Cenexin has also been shown to associate with PLK1,
following phosphorylation of Cenexin at Ser796 by
CDK1 [114] (Figure 2c). The PLK1-Cenexin interac-
tion was shown to be required for recruitment of
pericentriolar material proteins, and thus maturation
of centrosomes [114].

In mitotic cells undergoing the metaphase-to-
anaphase transition, PLK1 also localizes to kineto-
chores, the centromere-associated protein complexes
to which microtubules attach [89,102]. Kinetochores
can sense when K-fiber microtubules are unattached
to chromosomes, and even a single unattached chro-
mosome can trigger a checkpoint mechanism known
as the Spindle Assembly Checkpoint (SAC) [115]. The
localization of PLK1 to kinetochores thus suggests
a role for PLK1 in kinetochore assembly, regulation
of kinetochore-microtubule connections, and/or
modulation of the SAC. A number of kinetochore-
localized proteins have been implicated in the recruit-
ment of PLK1 to kinetochores. For example, the SAC
protein Bub1 was shown to bind PLK1 in a CDK1-
dependent manner, and depletion of Bub1 with
siRNA was accompanied with a reduction in PLK1
at kinetochores [116] (Figure 2d). In line with this,
overexpression of wild-type Bub1, but not the Bub1-
T609A mutant that cannot be phosphorylated by
CDK1, restored PLK1 localization in Bub1-silenced
cells [116]. Additionally, the outer kinetochore-
associated protein CLIP-170 (Cytoplasmic Linker
Protein 170) was shown to be required for PLK1
kinetochore association, again following CDK1-
mediated phosphorylation of CLIP-170 to promote
the PLK1-CLIP-170 interaction [117] (Figure 2d).
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Depletion of CLIP-170 resulted in chromosome con-
gression defects and kinetochore microtubule
instability [117]. The dynein-associated protein
dynactin was also found to facilitate PLK1 targeting
to kinetochores, again in a CDK1-dependent manner
[118] (Figure 2d). Thus, the recurring theme in the
kinetochore recruitment of PLK1 appears to be
CDK1-mediated phosphorylation of a target protein
that then recruits PLK1 through PBD binding.
However, whether this holds true for all PLK1-
recruiting proteins remains to be determined.
Indeed, PLK1 is also reported to be localized to the
midbody [119]. As CDK1-Cyclin B activity would be
abolished at this stage of mitosis, there is scope for
other mitotic kinases, and for PLK1 itself, in promot-
ing PBD-dependent recruitment of PLK1 at the latter
stages of cell division.

During anaphase, PLK1 also localizes to central
spindle microtubules. The PLK1 anchoring protein
PRC1 (Protein Regulating Cytokinesis 1), which
facilitates PLK1 recruitment to the central spindle,
was discovered in a proteomic screen of anaphase-
arrested HeLa cells [120] (Figure 2e). At this point
in mitosis, CDK1 activity is vastly reduced com-
pared to the CDK1 activity present in metaphase,
so it was speculated that CDK1 was not the kinase
responsible for generating the phosphoepitope on
PRC1 to promote PLK1 binding. Indeed, it was
determined that PLK1 itself creates the phosphoe-
pitope on PRC1, by phosphorylating Thr602 [120].
Interestingly, CDK1 appears to phosphorylate
PRC1 on Thr470 and Thr481 in the earlier stages
of mitosis, to inhibit the PLK1-PRC1 interaction
until anaphase [120] (Figure 2e). The kinesin-6
protein MKLP2, discussed earlier in the context
of recruitment of the CPC to central spindle
microtubules, also appears to direct PLK1 to the
central spindle in anaphase, following its phos-
phorylation on Ser528 by PLK1 (Figure 2e) [101].
Thus, in the latter stages of mitosis when CDK1
activity is diminished, the importance of PLK1 in
generating the phosphoepitope on its anchoring
proteins to facilitate its PBD binding appears to
be much greater.

The vast array of diverse PLK1 anchoring proteins
raises the question of why the cell has evolved somany
diverse PBD-binding proteins. Is it that PLK1 activity
at centrosomes, kinetochores and the central spindle is
required at spatially distinct protein complexes within

those mitotic structures? Or is there simply more to
the PBD-substrate association relationship, and each
PLK1 anchoring protein is also a PLK1 substrate
whose phosphorylation by PLK1 is critical for centro-
some and spindle dynamics? Regardless, targeting
PLK1 anchoring proteins in specific mitotic contexts
would allow the disruption of selective PLK1 mitotic
functions, whilst targeting PLK1 kinase activity would
be predicted to disrupt all PLK1-dependent mitotic
processes. Such a targeted approachmayprove power-
ful when researching the biology of specific PLK1-
containing protein complexes.

In the case of PLK4, two centrosomal scaffold pro-
teins, Cep152 and Cep192, have been shown to be
required for PLK4 recruitment to centrosomes, as
well as for correct centriole duplication [121,122].
PLK4 differs from PLK1 in that PLK4 harbors
a single polo-box at its C-terminus, in addition to a so-
called cryptic PBD within the central region of the
protein [123]. This cryptic PBD, composed of two
pseudo-polo boxes [123], is both necessary and suffi-
cient for PLK4 targeting to centrosomes, and has been
proposed to mediate the interaction between PLK4
and its binding partners [123,124]. Indeed, it was the
cryptic PBD that was found to bind both Cep192 and
Cep152 in a competitive manner, in order to regulate
the recruitment of PLK4 to centrosomes [121,122].
Interestingly, both the PLK4-Cep192 and PLK4-
Cep152 interactions were shown to be regulated in
a spatiotemporal manner [121]. However, the mole-
cular basis for these interactions remains to be deter-
mined. That said, it is clear that PLK4 does not adopt
the phosphoepitope-binding mechanism that PLK1
employs to bind its targets. It will be interesting to
determine how this cryptic PBD mediates PLK4
recruitment, and if there are more PLK4 anchoring
proteins within the centrosome or other mitotic sites.

Assembling the Mitotic Checkpoint Complex:
all eyes on KNL1

Named by Lester Sharp in the 1930s, kinetochores are
the power-generating business-ends of chromosomes
during mitosis [125]. In their capacity to bridge spin-
dle microtubules to chromosomes, kinetochores are
key focal points of phosphorylation-mediated regula-
tion, for both the SAC and cell cycle progression
[126,127]. The kinases CDK1, PLK1 and AURKB
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have all been implicated in the regulation of the SAC
and subsequent attachment error correction [127].
However, other kinases have critical roles in the
SAC, which are discussed further herein.

The transition to anaphase is triggered by the E3
ligase Anaphase-promoting Complex/Cyclosome
(APC/C), which acts to ubiquitinate inhibitors of
mitotic exit (Cyclin B) and of chromosome segrega-
tion (Securin), thereby marking them for proteolysis
[29,128]. Thus, when an attachment error is created,
the SAC acts to inhibit the APC/C, and in doing so,
prevents the metaphase-to-anaphase transition. The
kinetochore-localized multi-protein complex that is
responsible for the inhibition of APC/C in response
to attachment error is called the mitotic checkpoint
complex (MCC) [127]. The MCC assembles on unat-
tached kinetochores, and following its assembly, is free
to diffuse throughout the cell to inhibit the APC/C
[127]. MCC assembly is coordinated by the kinase
monopolar spindle 1 (Mps1), andMps1 activity drives

the recruitment of SAC proteins such as the kinase
budding uninhibited by benzimidazoles 1 (Bub1), the
regulatory proteins Bub3, mitotic arrest-deficient 1
(Mad1), Mad2, and the pseudokinase Bub-related 1
(BubR1) [129–132]. Mps1 thus acts as the master
regulator of the SAC.

Mps1 is activated by autophosphorylation upon its
localization to kinetochores, which is regulated by
AURKB activity, again illustrating some of the cross-
talk evident between mitotic kinases [133–135]. Mps1
is then in a prime position to efficiently recruit the
MCC, including the Bub1 kinase. The importance of
Bub1 is perhaps best showcased in experiments in
yeast, where deletion of BUB1 in S. pombe increased
the rate of chromosome missegregation, and deletion
of BUB1 in S. cerevisiae caused slow growth and
chromosome loss [136,137]. Bub1 is also required for
the kinetochore localization of Mad1 and Mad2, fol-
lowing its recruitment by Mps1 [138].

a b

Figure 3. KNL1 facilitates the spindle assembly checkpoint by anchoring the mitotic checkpoint complex.
(a): After sensing an unattached kinetochore, the kinase Mps1 phosphorylates MELT repeats on KLN1 to promote downstream
assembly of the mitotic checkpoint complex. (b): Following MELT repeat phosphorylation, Bub1 and Bub3 bind to KNL1, and Bub1
functions to recruit the other Mitotic Checkpoint Complex (MCC) components Mad1, Mad2 and BubR1 to trigger the Spindle
Assembly Checkpoint (SAC). The SAC signal inhibits chromosome segregation until all chromosomes are correctly attached and
biorientated. Loss of KNL1 leads to mislocalisation of all SAC proteins, with the exception of Mps1. Created with BioRender.com.
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Central to the coordinatedMCC assembly on unat-
tached kinetochores is the scaffold protein KNL1
(Kinetochore Scaffold 1) (Figure 3). Through
a variety of conserved functional domains and motifs
[139], KNL1 essentially acts as the SAC assembly plat-
form. Following phosphorylation of KNL1 by Mps1
(Figure 3a), Bub1 and Bub3 directly associate with
KNL1 [140–143], and subsequently Bub1 acts to
recruit Mad1, Mad2 and BubR1 to the kinetochore
[138,144] (Figure 3b). Thus, loss of KNL1 disrupts the
localization of all SAC proteins, with the exception of
Mps1. Crucially, disruption of Mps1-dependent
KNL1 phosphorylation attenuates the binding of
Bub1 and Bub3 to KNL1, and is accompanied with
chromosome congression and SAC signaling defects
[141–143]. Mechanistically, Mps1 phosphorylates so-
called MELT repeats in KNL1, and these phosphoepi-
topes facilitate the binding to Bub1 and Bub3. Bub1
then acts as a scaffold to assemble the remainder of the
SAC proteins. Thus, despite being a kinase, the major
role of Bub1 in the SAC appears to be its protein
anchoring function, and not its catalytic activity.
However, Bub1 has been linked to the phosphoryla-
tion and subsequent inhibition of Cdc20, thereby pro-
viding a potential mechanistic insight into how the
SAC acts to inhibit theAPC/C following chromosome
attachment error [145,146]. In line with such a central
role in SAC signaling, KNL1 depletion in HeLa cells
was shown to disrupt SAC-induced mitotic arrest
following exposure to microtubule poisons [147].
KNL1 is also required for silencing of the SAC signal
to enable the metaphase-to-anaphase transition once
all kinetochores are engaged, although this is beyond
the scope of this review and has been reviewed else-
where [148].

Delivery of a pleiotropic kinase to the mitotic
spindle: CK1α sets the bar

The Casein Kinase 1 (CK1) family forms its own
distinct branch of the kinome tree [149], and consti-
tutes one of the first Ser/Thr protein kinase families to
be discovered [150]. The CK1 branch includes the
CK1 isoforms, and the closely-related Vaccinia-
related kinases (VRKs), and Tau Tubulin Kinase 1
(TTBK1)members [149,151]. Todate, sixmammalian
CK1 isoforms, namely α, γ1, γ2, γ3, δ and ɛ, and their
associated splice variants, have been reported based on

their high degree of homology within the kinase
domains [152–154].

The absence of isoform-selective CK1 inhibitors
has led to confusion regarding exactly which CK1
isoform represents the physiological kinase for each
of the identified substrates. The kinase domains of
CK1 isoforms (sequence-wise and structurally) are
very similar, and all CK1 isoforms are thought to be
constitutively active in vitro, capable of phosphorylat-
ing substrate residues conforming to identical motifs
[152–154]. Due to most cellular proteins harboring at
least one CK1 consensus phospho-motif, it is perhaps
not surprising that hundreds of CK1 substrates have
been reported. Added complexity arises when consid-
ering the cellular environment. Indeed, the substrate
specificity of CK1 isoforms in vitro is thought to be
largely different from that observed in vivo, and dif-
ferent isoforms are known to impact distinct biologi-
cal processes, suggesting tight regulation of distinct
isoforms in cells [152–154]. This difference in the
in vitro versus in vivo substrate specificity is attributed
to intracellular regulatory mechanisms involved in
modulating CK1 isoforms, such as functional binding
partners and post-translational modifications.
Furthermore, as the kinase domain of CK1 isoforms
constitutes the vast majority of the protein sequence,
regulatory domains that are prevalent in many other
kinases are very small, if not completely absent, inCK1
isoforms. This adds further merit to the need for
additional regulatory CK1-binding partners in cells.
These attributes have prompted researchers to ascer-
tain the precise molecular mechanisms by which the
activities of specificCK1 isoforms toward their cellular
substrates are governed.

The S. cerevisiae orthologue of CK1 was among
the first kinases identified to have a role in the
regulation of cell cycle progression [155]. In mam-
mals however, where there are multiple CK1 iso-
forms present, the precise contribution of each
isoform to the regulation of the cell division cycle
is not well understood. CK1δ has been found on
centrosomes, and displays high affinity toward
microtubules in response to DNA damage, suggest-
ing a possible checkpoint role for CK1δ in cell
division [156,157]. Furthermore, inhibition of
CK1δ/ɛ using the CK1δ/ɛ-specific inhibitor IC261
is accompanied by cell cycle arrest [156]. In addi-
tion to CK1δ, CK1α has long been suggested to
have a role in mitosis. Early immunostaining efforts

CELL CYCLE 515



identified CK1α on mitotic spindles [158], and
morpholino-mediated knockdown of CK1α trig-
gered mitotic arrest and chromosomal alignment
defects in mouse oocytes [159]. However, CK1α
has also been implicated in many other, diverse
signaling processes (Figure 4a).

Recently, the FAM83 family of proteins have
emerged as central regulators of CK1 isoforms in
cells [160–162]. In the context of cell division, the
selective CK1α-binding protein FAM83D was shown
to be absolutely required for CK1α to localize to mito-
tic spindles [163] (Figure 4b). Cells devoid of
FAM83D, or those harboring a CK1-binding deficient
F283A mutant of FAM83D, failed to recruit CK1α to
the spindle apparatus [163]. Concomitantly, these cells
presented with spindle misorientation phenotypes,
and exhibited a delay in the metaphase-to-anaphase
transition [163]. CK1α was shown to regulate the
process of spindle positioning, which is critical for
both accurate development and maintenance of
healthy adult tissues, in a manner dependent on its

delivery to the spindle by FAM83D [163]. As CK1α is
known to regulate many diverse signaling processes,
from Wnt signaling to circadian rhythm [153,164],
targeting FAM83Dhad the added benefit of impacting
only one CK1α-specific process, whilst seemingly not
affecting other aspects of CK1α biology – a feat impos-
sible to achieve with CK1α knockdown or its inhibi-
tionwith smallmolecules (Figure 4c). Indeed, the gene
encoding CK1α, CSNK1A1, appears to be an essential
gene required for cell viability [165], and the fact that
FAM83D knockout cells are viable would argue that
the essential CK1α functions remain intact following
FAM83D ablation.

Interestingly, a recent phosphoproteomic
study reported that roughly 50% of all cell
cycle-regulated phosphopeptides conform to
the predicted CK1 consensus substrate motifs
[6]. Thus, whilst CK1α is only beginning to be
considered as a mitotic kinase, there is huge
scope for future efforts aimed at identifying
the physiological CK1α substrates in mitosis,

a

c

b

Figure 4. Isolating the mitotic kinase activity of a promiscuous kinase.
(a): CK1α is a Ser/Thr protein kinase involved in many diverse cellular processes. (b): Selective recruitment of CK1α to spindle
microtubules by FAM83D: In interphase, the FAM83D-HMMR complex cannot associate with CK1α. During mitosis, the FAM83D-
HMMR complex localizes to spindle microtubules, and, through as of yet unidentified mechanisms, FAM83D binds CK1α and recruits
it to the mitotic spindle to coordinate proper spindle positioning. CK1α phosphorylates FAM83D, but the exact relevance of this
phosphorylation event is still to be determined. (c): CK1α is a pleiotropic kinase with critical roles in both interphase and mitosis.
Thus, pan-cellular inhibition or knockdown of CK1α will affect all of these processes, and specific mitotic effects will be hard to infer.
Targeting FAM83D, on the other hand, may present a means to selectively disrupt the mitotic functions of CK1α, without impacting
its other physiological roles. Created with BioRender.com.
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and deciphering how CK1α exerts its regulation
on spindle positioning at the molecular level. It
is also noteworthy that, like many cell-cycle
regulated anchoring proteins such as Cyclins
and TPX2 [18,166], FAM83D transcripts and
protein levels are regulated during the cell
cycle, with levels rising during mitosis and fall-
ing upon mitotic exit, whereas those of CK1α
remain unchanged throughout [163].

FAM83D itself relies on the non-motor,
microtubule-associated protein HMMR (aka
RHAMM) for its recruitment to spindle micro-
tubules [108,163]. Thus, cells devoid of HMMR
phenocopy cells devoid of FAM83D, and present
with spindle positioning defects [108,163]. This
model would therefore suggest that CK1α
requires both FAM83D and HMMR for its spin-
dle localization, and therefore its mitotic func-
tion. Why would the cell evolve such a two-
pronged mechanism to recruit CK1α to spindles?
Whilst this question still requires some work in
terms of mechanistic and structural insights, it is
interesting to note that HMMR has also been
reported to direct the TPX2-AURKA complex
to spindle microtubules in mitosis [55]. HMMR-
silenced cells presented with a reduction in both
TPX2 and active AURKA at mitotic spindles,
and could not establish spindles of the correct
length [55] – a phenotype common to cells in
which the AURKA-TPX2 interaction is compro-
mised [58]. Mechanistically, HMMR is thought
to participate in the Ran-GTP-dependent micro-
tubule nucleation pathway, and serves to anchor
NEDD1 (Neural precursor cell Expressed
Developmentally Down-regulated protein 1) to
promote TPX2-AURKA recruitment to sites of
microtubule assembly, where AURKA phosphor-
ylates NEDD1 on Ser405 [167–169]. PLK1-
dependent phosphorylation of NEDD1 regulates
the recruitment of NEDD1 [170,171], and
HMMR in turn regulates PLK1 activity [108],
implying the potential existence of an HMMR-
dependent feedback loop to coordinate spindle
assembly. The AURKA- and CK1α-containing
HMMR complexes are likely distinct, as neither
TPX2 nor AURKA were detected in endogenous
FAM83D immunoprecipitations subjected to
mass spectrometric analysis [163]. Thus, it may
transpire that HMMR acts as a central

scaffolding protein to which anchoring proteins
like FAM83D and TPX2 associate in order to
direct their associated kinase cargos to distinct
locations along the mitotic spindle.

Conclusions and future perspectives

Here, we set out to review the diverse modes of reg-
ulation bestowed on mitotic kinases by anchoring
proteins. Through the regulation of protein kinase
localization, activity, stability and/or substrate accessi-
bility, mitotic kinase anchoring proteins have evolved
as critical regulators ofmitosis in cells.Whilst research
has primarily focussed on the roles and regulation of
the conventional mitotic kinase families mentioned
above, it is beginning to be appreciated that these
kinase families alone cannot account for the full extent
of protein phosphorylation that is evident during
mitosis [6,7,172,173]. Interestingly, a recent phospho-
proteomic study sought to identify and assign cell
cycle-regulated phosphopeptides to known kinases,
based on the optimal consensus motifs present within
the phosphopeptides [6].Whilst CDKs andPLKswere
identified within the top ten kinase families, the vast
majority of phosphopeptides conformed to the pre-
dicted motifs for CK1, Casein kinase 2 (CK2), Protein
Kinase A (PKA) and Glycogen Synthase Kinase 3
(GSK3) [6].Whilst predictedmotifs do not necessarily
point to direct roles of the aforementioned kinases per
se, it is interesting to note thatmitotic roles for some of
these kinases, and others such as Protein Kinase
C (PKC) and the NIMA-related kinases (NEKs),
have already been reported [174–177]. In some cases,
these kinases have been shown to localize to key
mitotic sites, such as the spindle apparatus and kine-
tochore. For example, CK2α was shown to localize to
mitotic spindles in both a phosphorylation and PIN1
(Peptidyl-prolyl cis-trans Isomerase NIMA-
interacting 1)-dependent manner [178].

Pleiotropic kinases, which are active throughout
the cell cycle, are often more challenging to study
compared with their pure mitotic kinase counter-
parts, as their inhibition or knockdown will have
consequences beyond just their mitotic functions.
In this context, the identification of specific anchor-
ing proteins that underpin their mitotic roles will be
of paramount importance in understanding pre-
cisely how these kinases contribute to the regulation
of the cell division cycle. Indeed, taking the
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FAM83D-CK1α interaction mentioned earlier as an
example, being able to manipulate FAM83D-bound
CK1α, rather than pan-cellular CK1α activity,
afforded the key advantage of allowing the selective
investigation into the role of CK1α in cell division,
whilst seemingly unaffecting the non-mitotic CK1α
functions [163]. Uncovering key anchoring proteins
that control the subcellular distribution and/or
activities of protein kinases during mitosis will
undoubtedly hold promise for differentiating their
mitotic roles from their other non-mitotic func-
tions. Furthermore, in cases such as CDKs,
Aurora kinases, PLK1, and CK1α, for which there
are multiple anchoring proteins already identified,
being able to target each anchoring protein in turn
will shed light on complex-specific functions of
these key mitotic kinases.

The coordinated cross-talk evident betweenmitotic
kinases, acting in concert to orchestrate a successful
cell division, highlights the importance of kinase sig-
naling networks in driving the cell cycle. Critical for
the success of such finely-tuned cross-talk events are
the many anchoring proteins that serve to spatiotem-
porally direct the mitotic kinases to their correct sites
of action. For example, and as discussed above, Bora
serves to direct AURKA to centrosomes, where the
AURKA-Bora complex activates PLK1, leading to
a whole plethora of downstream responses, including
the degradation of Bora through PLK1-mediated Bora
phosphorylation. As a direct consequence, AURKA,
now no longer bound to Bora, is free to bind TPX2 on
spindle microtubules and regulate spindle microtu-
bule dynamics. Furthermore, coupling Histone H3
dephosphorylation and reduced CDK1 activity to the
redistribution of the CPC from chromatin to the cen-
tral spindle in anaphase, is a great example of how
cooperative phosphorylation events can regulate the
subcellular localization of anchoring proteins, and
hence the associated mitotic kinase. Another example
stems from the inhibitory phosphorylation of PRC1
by CDK1 in the earlier stages of mitosis, to inhibit the
PRC1-PLK1 interaction until anaphase when CDK1
activity is reduced.

Anchoring proteins can also facilitate mitotic
kinase cross-talk by acting as the physical bridge
between two or more mitotic kinases and their sub-
strates. In the case of Gravin and Cep192, these
anchoring proteins can bind both PLK1 and AUKA,
suggesting that perhaps Gravin and Cep192 require

phosphorylation inputs from both PLK1 and
AURKA. Alternatively, Gravin and Cep192 may act
to localize both PLK1 and AURKA in proximity to
common substrates, that function in response to dual
phosphorylation from both kinases to coordinate cen-
trosome maturation. Furthermore, if the latter
hypothesis is correct, such phosphorylation inputs
do not necessarily need to be synergistic. These phos-
phorylation events could be antagonistic or hierarch-
ical, in order to fine-tune the downstream biology. In
the case of HMMR, although there is no evidence that
HMMR can simultaneously bind both the FAM83D-
CK1α andTPX2-AURKAcomplexes, the sheer spatial
proximity of two HMMR complexes (one containing
HMMR-FAM83D-CK1α and the other containing
HMMR-TPX2-AURKA) on the spindle, may be suffi-
cient to allow cross-talk between CK1α and AURKA
on shared substrates.

Given such evident cross-talk between mitotic
kinases, targeting mitotic kinase anchoring proteins
for inhibition may lead to disruption of entire mitotic
signaling networks, as opposed to the ablation of
a single specific mitotic kinase complex and its asso-
ciated function. As such, anchoring proteins present
themselves as novel therapeutic targets in disease.
Recent years have seen the development of so-called
PROteolysis TArgeting Chimeras (PROTACs), which
serve to degrade proteins of interest within the cell by
directing them to endogenous E3 ubiquitin ligase
machinery [179,180]. The fact that some mitotic
kinase anchoring proteins, such as Cyclins and
FAM83D, are quickly turned over following mitotic
exit, whereas their interacting kinases are not, not only
provides insights into their importance in controlling
protein kinase function during mitosis, but suggests
that their premature proteolysismay act as an effective
means of inhibiting mitotic kinase function. Clearly,
such information can be harnessed to target key
anchoring proteins for degradation prior to mitosis,
which may facilitate effective disruption of the asso-
ciated kinase function during mitosis. Such strategies
potentially offer alternative opportunities for thera-
peutic intervention in diseases such as cancer, in
which control of the cell cycle is compromised.
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