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Extreme cavity expansion in soft solids: Damage 
without fracture
Jin Young Kim1, Zezhou Liu2, Byung Mook Weon1, Tal Cohen3, Chung-Yuen Hui3,  
Eric R. Dufresne4, Robert W. Style4*

Cavitation is a common damage mechanism in soft solids. Here, we study this using a phase separation technique in 
stretched, elastic solids to controllably nucleate and grow small cavities by several orders of magnitude. The ability 
to make stable cavities of different sizes, as well as the huge range of accessible strains, allows us to systematically 
study the early stages of cavity expansion. Cavities grow in a scale-free manner, accompanied by irreversible bond 
breakage that is distributed around the growing cavity rather than being localized to a crack tip. Furthermore, 
cavities appear to grow at constant driving pressure. This has strong analogies with the plasticity that occurs sur-
rounding a growing void in ductile metals. In particular, we find that, although elastomers are normally considered 
as brittle materials, small-scale cavity expansion is more like a ductile process. Our results have broad implications 
for understanding and controlling failure in soft solids.

INTRODUCTION
Cavitation plays a key role in the failure of solids. This has long been 
appreciated in ductile metals, where void/cavity nucleation, growth, 
and coalescence govern the initiation of fracture and fatigue [e.g., (1–4)]. 
Thus, there is an extensive body of literature devoted to the topic [e.g., 
(5–7)]. Cavitation also occurs in highly elastic materials, such as rub-
ber (8–10). In these systems, cavitation underpins processes ranging 
from fracture and the failure of adhesives (8, 10, 11) to traumatic brain 
injury (12, 13). Furthermore, cavitation by the injection of fluid is 
emerging as a method to characterize soft materials (3, 14, 15).

However, understanding soft-solid cavitation has not been a sim-
ple question of extending results from the ductile metal literature. 
Researchers have typically treated cavitation in soft solids and ductile 
metals as separate problems, as these materials have very different 
properties. Metals are orders of magnitude stiffer than elastomers and 
gels. Ductile metals yield plastically at low strains, while soft solids 
can often stretch elastically to many times their original length before 
irreversible bond breakage occurs. Furthermore, metals are ductile, 
while elastomers are generally considered as being brittle.

Thus, while void growth in metals is well understood, there is still 
a lack of consensus on the mechanisms governing soft-solid cavitation 
[e.g., (16–19)]. As a singular event in space and time, cavitation pushes 
theory and experiment to their limits. Theoretical challenges arise 
primarily from the enormous deformations around the expanding 
cavity, which lead, among other difficulties, to a lack of valid, reli-
able constitutive models. Experimental challenges revolve around the 
fact that cavity growth typically occurs unstably (i.e., fast) and at very 
small scales. Thus, it is difficult to achieve sufficient spatial and tem-
poral resolution to resolve cavity inflation and the separation of elastic, 
inelastic, and viscous contributions.

Here, we resolve some of these experimental difficulties by con-
densing liquid droplets in soft materials (20). This approach allows 

us to slowly and systematically grow and shrink liquid-filled cavities 
inside unfilled elastomers, without initial defects due to injection. 
Breaking symmetry with a macroscopic strain, we are able to easily 
visualize growth-induced damage. We find that small-scale cavity growth 
has much more in common with ductile metal cavitation than ex-
pected. In particular, at these scales, cavity growth in soft solids is 
rather similar to a ductile process, as bond breakage (stress softening) 
is distributed around the surface of the cavity, instead of being local-
ized to a well-defined crack tip. This has important implications for 
understanding and controlling failure in soft solids.

RESULTS
Volume-controlled cavity growth
We nucleated and grew liquid inclusions in silicone gels using the 
technique shown schematically in Fig. 1(A and B) (20). We created 
silicone gel samples by mixing silicone polymer chains with differ-
ent amounts of cross-linker to produce gels with a range of Young’s 
moduli from E = 71 − 800 kPa. The resulting gels are highly elastic, 
showing no evidence of a Mullins effect up to the point of failure in 
tensile tests consisting of repeated loading/unloading cycles of in-
creasing amplitude (see the Supplementary Materials). The gels were 
immersed in a fluorinated oil (Fluorinert FC-770, Fluorochem) that 
is partially soluble [ ∼ 3 volume % at room temperature (20)] in silicone 
and then incubated at 40°C for several hours to allow sample satura-
tion. Upon slow cooling to room temperature (23°C), phase separation 
occurs, causing nucleation and growth of fluorinated-oil droplets 
within the silicone gel over a time scale of tens of minutes (e.g., Fig. 
1C). By controlling temperature, we effectively have direct control 
of droplet volume. Depending on various parameters (chiefly E and 
the cooling rate), the droplets can grow as large as several tens of 
micrometers in radius (20). They are then stable until diffusion of 
the oil out of the edges of the sample eventually causes them to shrink 
and disappear. Note that E will change slightly during cooling, as de-
scribed by rubber elasticity theory, but this will be at most a few per-
cent in the range of temperatures that we use.

We confirm that the polymer network is rejected from the droplets 
with coherent anti–Stokes Raman scattering (CARS) microscopy 
at a wave number of 2912 cm−1 (Fig. 1D). This is a spectroscopic, 
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confocal technique that can detect the vibrational signature of sili-
cone. The figure shows a typical, fully grown droplet, displaying the 
lack of silicone signal inside the droplet. We find no significant dif-
ference between the intensity in such droplets and in pure fluorinated 
oil, suggesting that the network is fully excluded (see the Supple-
mentary Materials).

Self-similar, spheroidal droplet growth
Droplets grown in stress-free gels are always observed to be spherical 
[see Fig. 1 (C and D) and (20)]. However, if we prestretch the sam-
ple with a uniaxial strain ϵx, and this stretch is held constant during 
the entire incubation, nucleation, and growth process, spheroidal 
droplets form with their long axis parallel to the stretch direction 
(Fig. 1, E and F). As described below, this symmetry breaking gives 
us information about how damage occurs.

For all our experiments, droplets grow with a fixed, spheroidal 
shape. Figure 2(A and B) demonstrates the shape evolution of droplets 
(length, l, and width, w, during growth) in experiments with different 
E and ϵx. All of the droplets maintain the same aspect ratio,  = l/w, as 
they grow (the see the Supplementary Materials for more examples).

We see that there is a strong, linear correlation between  and ϵx, 
with highly elongated droplets forming in the most stretched samples 
(Fig. 2C). The aspect ratio also varies with stiffness: Droplets grow-
ing in the stiffest sample, E = 800 kPa, remain much more spherical 

than droplets in the two softer samples at the same stretch. There is a 
nonmonotonic dependence of  on E, which suggests that the shape 
of the droplets is controlled by material parameters beyond E (i.e., 
either nonlinear elastic or failure properties).

The pressure for droplet growth
We gain useful insight by comparing measured values of  to simple 
elasticity theory. For example, Eshelby’s inclusion theory (21) predicts 
that an initially spherical, incompressible, liquid inclusion, embedded 
in a linear-elastic solid, will deform as  = (6 + 10ϵx)/(6 − 5ϵx). How-
ever, it markedly overpredicts measured values (Fig. 2). Droplets actu-
ally appear “stiffer” than the silicone gel: If we take a uniform piece of 
material and apply a uniaxial stretch, then its aspect ratio will change 
to  = (1 + ϵx)/(1 − ϵx/2). However, the measured value of  is even 
smaller than this (Fig. 2). One explanation is that there is a signifi-
cant surface tension, ϒ, of the droplet interface. However, we expect 
this to be negligible, as solid capillarity should only play a role when 
w, l ≲ ϒ/E (22, 23). We estimate ϒ = 4.4 mN/m by using the surface ten-
sion of uncured polymer chains against the fluorinated oil, as measured 
with the pendant-droplet method [e.g., (24)]. This gives a value of ϒ/E 
that is much smaller than all the droplets observed (see Table 1).

These simple expressions fail because the elastic network resists 
droplet growth. A significant pressure, Pc, inside the droplet drives 
growth, accompanied by large nonlinear deformations. If this iso-
tropic stress is large in comparison to anisotropic stresses from the 
macroscopically applied strain, the droplet shape will remain relatively 
spherical. We can demonstrate this effect with a simplified model. 
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Fig. 1. Droplet growth via phase separation in silicone gels. (A and B) Schematics 
showing how droplets are formed. Silicone gels are submerged at 40°C in fluorinat-
ed oil for several hours, until the gels are completely saturated. Upon slow cooling 
to room temperature, droplets appear. (C) A droplet growing in unstretched silicone 
with E= 280 kPa. (D) A similar droplet in silicone with E = 333 kPa, imaged with 
CARS microscopy, which visualizes the presence of the silicone network. This is 
clearly excluded from the growing droplet. (E and F) When a silicone gel is held 
with a constant, uniaxial stretch during the phase separation process, droplets grow 
as spheroids.
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Fig. 2. Droplet shape evolution during growth. (A and B) Droplet growth in dif-
ferent stiffness samples with different applied strains all grow in a scale-free way. 
Different colors correspond to different droplets. (C) The aspect ratio of growing 
droplets increases linearly with stretch. Dashed lines are lines of best fit, assuming 
that (ϵx = 0) = 1 (20). For all plots, we include the predicted shape evolution of 
droplets from Eshelby theory (21) and for a volume of solid material that stretches 
with the surrounding solid. Inset: The aspect ratio of inflated spherical inclusions in 
an incompressible, neo-Hookean solid that is stretched with strain ϵx. Different lines 
correspond to different inflation pressures, Pc/E.
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Consider an initially spherical hole in a stretched, nonlinear elastic 
solid, with far-field strain ϵx (Fig. 2D). We inflate the hole with a pres-
sure Pc and measure the resulting shape. For simplicity, we take the 
solid to be an incompressible, neo-Hookean material with small-strain 
elastic modulus E (see the Supplementary Materials for details of the 
solution procedure).

The simplified model captures many features of the experiments. 
(see Fig. 2C and the Supplementary Materials). In particular, it 
demonstrates how increasing Pc/E results in rounder droplets, with 
aspect ratios comparable to our measured results. Furthermore, a 
comparison with the data suggests that the value of Pc/E in droplets 
is different for the various samples, with the stiffest sample having the 
highest relative pressures. However, although it is useful for qualitative 
insight, it should not be used for quantitative comparison. Because 
of the well-known cavitation instability (7), there are no stable solutions 
that match the  versus ϵx data for the sample with E = 800 kPa. Thus, 
the model ignores some key physics—especially damage to the poly-
mer network during growth. Damage is expected, as the polymer 
mesh size of the gel is O(10nm) [e.g., (25)], so cavities enlarge by a 
few orders of magnitude during growth. Thus, the resulting strains 
far exceed the failure strains that are observed in macroscopic ten-
sile tests [e.g., (26)].

Damage during droplet growth
We rule out purely elastic growth by examining the irreversibility of 
droplet growth and shrinkage in a stretched sample. As a first test, 
we apply a temperature cycle to a stretched sample (ϵx ≈ 20%) in a 
thermal stage (Instec TSA12Gi). This causes both l and w to cycle 
with time, as shown in Fig. 3A. Plotting l versus w (Fig. 3B) then im-
mediately shows evidence of irreversibility: During initial growth, 
droplets grow in a self-similar way. However, if we then shrink the 
droplets and regrow them, the shape of the droplet during regrowth is 
more elongated (see also images in Fig. 3D). If we continue to grow 
the droplet larger than the size it previously attained, then it returns 
to the same, constant-aspect-ratio growth line that it initially grew 
along. This shows that the network undergoes damage between initial 
and subsequent growth, although our silicone gels display no sign of 
inelasticity before failure in macroscopic tests. Apparently, the damaged 
network leads to a lower pressure in the droplet upon regrowth, and 
this results in a higher aspect ratio (see inset of Fig. 2C).

Although droplets grow by a damage mechanism, they differ 
from brittle fracture in that bond breakage appears to be distributed 
around their surface rather than being localized to a crack tip. Fig-
ure 3C shows a typical, fully grown droplet in a stretched sample. 
After droplets have finished growing, the sample is cut to release 

stress, and we observe droplet shrinkage, as shown in the subsequent 
images. During this shrinkage, the droplet remains approximately 
spherical. This is inconsistent with localized damage, as in that case, 
we would instead expect the droplet to close with a lenticular, crack-
like shape. Instead, damage appears to be distributed much as it would 

Table 1. Measured material properties for the different stiffness 
silicone gels. ϒ is taken as 4.4mN/m, the surface tension of uncured 
silicone against fluorinated oil. 
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Fig. 3. Irreversible droplet growth and shrinkage indicates bond breakage. 
(A) The programmed stage temperature (dotted track) and droplet length and 
width versus time for a typical droplet in a gel with E = 333 kPa and ϵx ≈ 20%. No 
droplets nucleate or disappear during the whole cycle. (B) The same data plotted 
with l versus w. The black, dashed line shows constant aspect ratio growth. Insets 
show the same data, split apart to highlight the cycling behavior. (C) Left: A fully 
grown droplet in a stretched silicone. Right: The sample is cut to remove the stretch, 
and a droplet is imaged as it shrinks. Scale bar, 20 m. (D) l and w for a selection of 
droplets as they grow and shrink in silicone with E = 333 kPa and ϵx = 60%. Shrinkage 
is driven by evaporation of fluorinated oil from the sample sides. Different colors 
correspond to different droplets. Inset: When l and w are rescaled by the maximum 
size that a droplet grows to (lmax and wmax), all tracks collapse onto a single hysteresis 
curve. The images show how a typical droplet grows and shrinks.
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be in a ductile material. Unfortunately, we are unable to directly de-
termine the form of this damage—for example, microcrack forma-
tion or distributed chain breakage. However, we believe that is likely 
due to the latter, as this is known to occur in unfilled gels at large 
strains (27).

We can infer further information about how the damaged zone 
around droplets grows by comparing growth and shrinkage curves 
for different sized droplets. Figure 3D shows the typical evolution of 
the shapes of various droplets that grow and shrink (due to slow dif-
fusion out of the side of the sample) in silicone with E = 333 kPa and 
ϵx = 60% (c.f. supplementary movies). If we scale droplets’ growth 
trajectory by their dimensions at their maximum size, wmax and lmax, 
all of the data collapse onto a single trajectory, as shown in the inset. 
This collapse shows that the whole growth process is self-similar and 
thus that the process zone must grow with the droplet, as shown 
schematically in Fig. 4A.

DISCUSSION
Cavity growth is independent of the fracture energy
The experiments show several key features: (i) cavities grow as 
smooth-walled spheroids, (ii) they grow in a self-similar manner, and 
(iii) growth is accompanied by damage that is distributed around 
the cavity surface rather than being localized to a crack tip. These 
are all at odds with crack-like growth.

We can rule out a dependence of cavity growth on the silicone’s 
brittle fracture properties with a simple dimensional argument. From 
above,  during initial growth is independent of the droplet’s size. 
Thus it only depends on ϵx and the silicone’s material properties de-
scribing elasticity (e.g., E), fracture (the fracture energy, ), and dam-
age (e.g., the stress at which inelasticity sets in, i)

	​  = f(​ϵ​ x​​, , E, ​​ i​​…)​	 (1)

 has units of pressure × length, while the other material proper-
ties are either dimensionless or have units of pressure. Thus, there is 
no dimensionally consistent way that  can depend on , so growth 
must be independent of . This is intuitive as  describes the frac-
ture process where damage is localized to a crack tip—which does 
not occur here.

Growth at constant pressure ∼E
As well as showing that growth is independent of , self-similar, 
nonbrittle growth also shows that Pc is constant during growth. This 
matches previous theoretical results from the ductile void-growth 
literature, which showed that self-similar void growth occurs in 
elastic-plastic materials at constant driving stress [e.g., (1, 28, 29)]. 
This also explains the stability of droplets in our experiments. If Pc 
changes as droplets grow, then we would expect transport of fluori-
nated oil between droplets of different sizes—i.e., ripening—even when 
the temperature is held constant. However, in recent work, we observed 
no evidence of this (20).

The magnitude of the constant growth pressure is O(E). This has 
been shown in multiple cavitation experiments [e.g., (14, 17)] and is 
supported by a comparison between the model and data in Fig. 2C. 
However, the exact value of Pc will be determined by the constitutive 
relationship of the material at very large deformations, including in-
elastic and nonlinear elastic contributions. In particular, the fact that 
Pc depends on damage to the material could explain why cavitation 

experiments in soft gels do not always give good agreement with the 
long-established limit for elastic cavitation in incompressible neo-
Hookean solids: Pc/E = 5/6 (8, 9, 14, 15, 17).

Different regimes of cavity growth behavior
Our results suggest that there are different regimes of pressure re-
quired to open a flaw in a gel/elastomer, as shown in Fig. 4A. For 
small cavities, growth is scale free, with Pc ∼ E constant. For large 
cavities, growth is known to be crack-like, with damage localizing to 
a crack tip (15, 18). Then, linear elastic fracture mechanics gives that 
​​P​ c​​  ∼ ​ √ 

_
 E / w ​​ [e.g., (30)].

We can naïvely predict the transition point between these two 
regimes by equating the two expressions for Pc to find a crossover at 
w ∼ /E (see Fig. 4A). This explains why we never see fracture in 
our phase-separation experiments. In Table 1, we report measured 
values of /E. For all the experiments, w ≪ /E, so we expect self- 
similar growth.
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To explore the transition to fracture, we use a modified technique, 
shown schematically in Fig. 4B. We cure small, sodium chloride crys-
tals inside the silicone (salt is insoluble in silicone and does not alter 
the cross-linking process) (31). Subsequently, we immerse the un-
stretched silicone in deionized water. This diffuses through the silicone, 
dissolves the salt, and swells the inclusions (Fig. 4, C and D). Initially, 
all inclusions swell, becoming more spherical. However, larger in-
clusions suddenly develop a crack tip and subsequently grow to form 
lenticular cracks, as expected in the fracture regime.

These results are consistent with the behavior predicted above. 
For example, in Fig. 4D, inclusions grow in a silicone gel with /E = 
73 m. Over the course of the experiment, the two largest inclusions 
both expand by the same amount—to approximately four times their 
original size. Although this growth is probably not in the scale-free 
regime, the strains experienced around growing inclusions are much 
larger than the macroscopic failure strains (∼50%; see the Supple-
mentary Materials), and it is likely that some chain breakage occurs. 
However, only the larger inclusion (with a final radius of 165 m ≫ 
/E) develops a crack tip, while the second inclusion (with a final 
radius 75 m) does not. This is true in general: We find that large 
inclusions always develop into cracks, while small inclusions always 
stay rounded.

The cross-over point, /E, is interesting, as this elasto-adhesive 
length is known to play an important role in soft fracture (10). In 
particular, it represents the effective process zone size at the tip of a 
large crack (10, 11). Thus, our results can be interpreted physically, 
showing that scale-free growth is expected at scales much smaller 
than this characteristic process zone size.

This is completely analogous to metal cavitation. Voids in duc-
tile metals expand when Pc ∼ y, where y is the yield stress (c.f. the 
Supplementary Materials) (32). Large cracks will also fail by brittle 
fracture when ​​P​ c​​  ∼ ​ √ 

_
  E / w ​​. Equating these, we find a crossover when 

​w  ∼  E / ​​y​ 2​  ≡ ​ L​ p​​​. This is a well-established transition length scale 
in ductile materials (33) and also the size of the plastic process zone 
for large cracks (34).

The main difference between the two types of material is in terms 
of scale. Lp in metals is typically macroscopic (e.g., Lp ∼ 1 cm in steel) 
(10). Thus, even macroscopic flaws in metals often grow in a ductile 
way, and void growth can be observed directly in experiments—for 
example, by postexamination of yielded samples. Hence, metals are 
commonly considered as ductile materials. However, in soft materi-
als, /E is microscopic (see Table 1). Thus, these soft materials also 
exhibit nonbrittle behavior, but this is more difficult to observe as it 
takes place at much smaller scales. By the time a cavity grows to a 
macroscopic size, it is in the brittle, crack-like regime where it will 
typically grow in a fast, unstable manner. Hence, elastomers are typi-
cally considered as having a brittle failure response.

CONCLUSIONS
Every crack and cavity starts small. Thus, understanding their nucle-
ation and early growth is crucial to understanding how they develop. 
Here, we have developed a method that allows us to grow and 
shrink microscopic cavities in soft materials with precise volume 
control, revealing the key physics underlying cavity growth in soft 
materials. We find that elastomers are not completely brittle materials, 
as commonly assumed. Instead, small, growing cavities appear to have 
much more in common with void growth in ductile metals, being 
accompanied by distributed damage around the surface of the cavity 

and growing at constant inflation pressure. This rationalizes a num-
ber of experimental observations, including measurements of “flaw- 
insensitive” rupture in soft materials (35). We hypothesize that this 
scale-free, inelastic behavior occurs in soft materials at scales small-
er than the material length scale /E—provided that surface tension 
effects are negligible (23).

The mechanism that we describe opens up many interesting di-
rections for future work, including fundamental questions about the 
behavior of small flaws in soft materials. In particular, it will be im-
portant to develop further experimental and theoretical techniques 
to probe transitions between behaviors at different length scales. For 
example, we anticipate that one can extend cavitation techniques [e.g., 
(3, 14)] to measure the critical cavitation pressure, Pc, as a function 
of cavity size during growth and thus to fully explore the hypothesis 
in Fig. 4A.

Experiments like these could also be used to extract useful infor-
mation about the large-strain behavior of materials. Normally, this is 
difficult to do with macroscopic experiments, as large samples break 
before they reach very high strains, but our approach allows us to 
stably induce very large strains without fracture. Thus, it could be 
possible to use measurements of Pc and the shapes of growing and 
shrinking droplets (like those in Figs. 2 and 3) to measure otherwise 
inaccessible material damage properties such as i. This will require a 
more detailed understanding of how damage occurs around a grow-
ing cavity, but this is seemingly an ideal topic for cutting-edge ex-
perimental techniques for imaging damage [e.g., (36)] and numerical 
simulations including stress softening or damage models. Ultimately, 
a knowledge of how materials fail at high strains will give us insight 
into the structure-property relationships that determine how materials 
fail, paving the way to allowing us to design novel, tough materials 
[e.g., (37–39)].

MATERIALS AND METHODS
Our silicone gels consisted of a mixture of vinyl-terminated, sil-
icone polymer chains (DMS-V31, Gelest) cross-linked with a 
methylhydrosiloxane–dimethylsiloxane copolymer (HMS-301, Gelest) 
with ratios of 69:1, 49:1, and 39:1 by mass (22). Respectively, these 
had E = 71,333 and 800 kPa. Cross-linking was achieved by mixing 
in a small amount of Karstedt’s catalyst (SIP6831.2, Gelest)—
approximately 0.01% of the total mass of the sample. Once mixed, 
degassed, and poured into molds, samples were kept at 40°C for 
24 hours to ensure complete cross-linking.

We measured E for the gels by indenting bulk samples (at least 
10 mm in depth) with a 1-mm radius, cylindrical indenter on a texture 
analyzer with a 500-g load cell (TA.XTPlus, Stable Micro Systems). We 
assume sample incompressibility (a good assumption for soft gels and 
elastomers) and then extract E from the initial slope of the force- 
indentation curve [e.g., (22)].

We measured ϵx in stretched samples using placing marks on the 
samples. ϵx was then calculated by comparing the distance between 
marks during stretch and after subsequent stretch release.

We measured  using the Rivlin-Thomas pure shear test. Gel sheets 
(100-mm-wide, 2-mm-thick) were clamped between two long, straight 
clamps, with a distance of 20 mm between the clamps. We then ex-
tracted  by comparing the loading behavior of cracked and crack-
free sheets, following (38) (see also the Supplementary Materials).

CARS microscopy was performed on a confocal Leica TCS SP8 
microscope equipped with a tunable CARS laser (picoEmerald S, 
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APE Berlin) and a nondescanned external detector (600 to 725 nm; 
Leica HyD). We used a 25× water immersion objective (Leica HC 
FLUOTAR L 25×/0.95 W VISIR). We visualized the silicone signal 
at a wave number of 2912 cm−1, using a 1032-nm Stokes beam and 
a 793.8-nm pump beam.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/13/eaaz0418/DC1
Section S1. Further experimental information
Section S2. Numerical simulations
Section S3. The pressure of a growing void in an elastic-plastic solid
Fig. S1. Cyclical tensile testing of silicone samples.
Fig. S2. The evolution of droplet image during growth in silicone gel with E = 71, 333 and  
800 kPa and at three different applied strains.
Fig. S3. CARS microscopy images of fluorinated oil droplets in silicone gels of different stiffnesses.
Fig. S4. Results of a numerical model of cavity growth.
Fig. S5. The evolution of the shape of a droplet in a neo-Hookean, incompressible solid, as the 
solid is uniaxially stretched.
Fig. S6. A schematic showing the geometry used in calculating the critical pressure for growth 
in an elastic/perfectly plastic solid.
Movie S1. Typical droplet growth in a stretched silicone gel.
Movie S2. A close up of a single droplet growing in a stretched silicone gel.
Movie S3. Droplets growing and shrinking in a stretched silicone gel.
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