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O P T I C S

Three dimensions, two microscopes, one code: 
Automatic differentiation for x-ray nanotomography 
beyond the depth of focus limit
Ming Du1, Youssef S. G. Nashed2, Saugat Kandel3, Doğa Gürsoy4,5, Chris Jacobsen4,6,7*

Conventional tomographic reconstruction algorithms assume that one has obtained pure projection images, in-
volving no within-specimen diffraction effects nor multiple scattering. Advances in x-ray nanotomography are 
leading toward the violation of these assumptions, by combining the high penetration power of x-rays, which 
enables thick specimens to be imaged, with improved spatial resolution that decreases the depth of focus of the 
imaging system. We describe a reconstruction method where multiple scattering and diffraction effects in thick 
samples are modeled by multislice propagation and the 3D object function is retrieved through iterative optimi-
zation. We show that the same proposed method works for both full-field microscopy and for coherent scanning 
techniques like ptychography. Our implementation uses the optimization toolbox and the automatic differentia-
tion capability of the open-source deep learning package TensorFlow, demonstrating a straightforward way to 
solve optimization problems in computational imaging with flexibility and portability.

INTRODUCTION
Depending on the photon energy used, x-rays are able to penetrate 
into samples with a thickness ranging from micrometers to centi-
meters. At the same time, x-ray microscopes are beginning to be 
able to deliver images with the sub–10-nm spatial resolution (1, 2). 
However, combining these characteristics is complicated by the fact 
that any imaging method with spatial resolution r has a depth of 
focus (DOF) limit (3, 4) of

	​ DOF  = ​   2 ─ 
​0.61​​ 2​

 ​ ​ ​​r​ 
2​ ─ 


 ​  ≃  5.4 ​​ r​​ ​ 
​​ r​​ ─ 


 ​​	 (1)

This is straightforward to understand in lens-based imaging sys-
tems. However, even when lensless imaging methods involving 
wavefront recovery are used, the DOF limit of Eq. 1 gives the axial 
distance over which features can be considered to all lie within a 
common transverse plane before subsequent wavefield propagation 
effects are taken into account. That is, Eq. 1 represents the limit of 
validity of the pure projection approximation, within which a 
depth-extended object can be treated as producing a simple pure 
projection image when viewed from one illumination direction. For 
objects thicker than the DOF limit, one must instead account for 
wave propagation effects within the specimen. This will be especial-
ly important for fully exploiting the marked increases in coherent 
x-ray flux that the next generation of synchrotron light sources will 
provide (5).

One approach to simulate wave propagation in a complex object 
is the finite difference method (6). While it fits equally as the for-
ward model in our reconstruction scheme, we use here another 

wave propagation method named multislice propagation for our 
work. Multislice wave propagation (7) is a historic, simple, yet power-
ful method allowing one to account for wave diffraction in an in-
homogeneous medium. The multislice simulation method subdivides 
the problem into a series of slab-wise refractive modulation and 
propagation operations and accounts for the change of the probe 
wave throughout the object instead of assuming a constant probe. 
Hence, it can provide accurate numerical results for propagation 
through a complicated object and remains valid over a much larger 
object thickness compared with diffraction tomography models 
assuming single scattering (8). The incorporation of multislice prop-
agation provides a reliable strategy for the reconstruction of beyond-
DOF objects.

We describe here an approach for imaging objects that extend 
beyond the DOF limit and within which multiple scattering might 
take place. We formulate the three-dimensional (3D) object recon-
struction problem as a minimization problem that incorporates a 
data fidelity term (the L2 norm of predicted and measured data) and 
a regularization term (the L1 norm of the object and its gradient), 
where multislice wave propagation is used to accurately model 
the exit wave leaving the object. Because the new model better cap-
tures the wave-object interactions for any object size, the same 
model can be applied to reconstruct either near-field imaging with 
propagation phase contrast or ptychography (Fig. 1), without the 
need for any modification. We use the Adaptive Moment Estima-
tion (Adam) optimizer that is implemented in TensorFlow, which is 
Google Brain’s open-source software library. The automatic differ-
entiation (AD) capability in TensorFlow allows us to solve for the 
two imaging methods with modest code branching. With this ap-
proach, we are able to use one computer code for two different types 
of microscopes to reconstruct 3D objects beyond the DOF limit.

It is worthwhile noticing that while there exist several multislice-
based reconstruction methods, which have proven success in several 
imaging scenarios (9–12), our method differs from them in a few 
aspects. Our implementation provides both a ptychography mode 
and a full-field mode, while the above methods are concerned 
with ptychography alone. In addition, instead of requiring planes 
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that are axially separated by 1 DOF or more, in our method, the 
spacing between slices can be equal to the lateral pixel width, which 
allows for an isotropic voxel size. Last, the method for updating the 
object function is different. In (9), slices are updated sequentially 
using an update function that resembles the modulus replacement 
operation in ePIE (extended ptychographic iterative engine), a re-
construction engine for 2D ptychography. In (10), the first method 
described is similarly based on modulus replacement, while the sec-
ond method involves the minimization of a loss function that has a 
similar form of ours. However, in our approach to full-field micros-
copy, the loss equation is constructed also with a sparsity constraint, 
and non-negative and finite support constraints are applied to the 
object function throughout the minimization process. This also dis-
tinguishes our work from prior studies (11). Last, our use of AD 
through the widely used software package TensorFlow renders the 
implementation highly accessible on various computing platforms. 
Building upon prior work in 2D-phase retrieval using AD (13, 14), 
our results reinforce the vast potential of AD for a large variety of 
computational imaging tasks.

Imaging beyond the DOF limit
Present-day x-ray nanotomography is usually performed within the 
DOF limit of Eq. 1, such as with 1-m resolution at 25 keV (giving 
 = 0.050 nm and DOF = 110 mm) or 20-nm resolution at 6.2 keV 
(giving  = 0.20 nm and DOF = 11 m). In these cases, one can ob-
tain measurements that represent a pure projection through the 
specimen at each rotation angle using standard-phase retrieval 
methods such as those based on the inversion of the transport-of-
intensity equation (15); one can then use standard tomographic re-
construction algorithms such as filtered back-projection (FBP). For 
objects that are thicker and/or interact more strongly, the complete 
solution of the wave function of electromagnetic wave within an in-
homogeneous scattering potential field results in an recursive equation. 
With the first iteration, one arrives at the first Born approximation, 
which physically accounts for single scattering within the sample. 
On this basis, one can approximate the imaging of thicker speci-

mens by acknowledging the fact that the far-field diffraction pattern 
of an object provides information on the surface of the Ewald sphere 
corresponding to the beam energy and viewing direction (16). This 
remapping of Fourier space information from a plane (pure projec-
tion), to the surface of the Ewald sphere, is used in filtered back-
propagation algorithms in diffraction tomography (8). It has been 
applied in tomographic diffractive microscopy with visible light 
(17) and has been demonstrated in x-ray coherent diffraction imag-
ing (18).

One approach that has been developed for imaging beyond the 
DOF limit is multislice ptychography (9). In standard ptychography 
(19), one scans a finite-sized coherent beam with overlap across a 
planar sample, records the set of far-field diffraction patterns, and 
separates or factorizes the probe from the optical modulation at 
each scan position. Multislice ptychography is based on utilization 
of the multislice method (7) to propagate a beam through a thick 
object, where the refractive effect of the first thin slab of the object 
is applied to the incident wavefield, the wavefield is free space prop-
agated to the next slab position, and the process is repeated until 
one obtains the exit wave leaving the object (which can then be free 
space propagated to a far-field detector, for example). If the object 
is, in fact, composed of a series of discrete planes separated axially 
by 1 DOF or more, then one can factorize the probe from both 
transverse positions and axial planes. One can also account for vio-
lation of the Born approximation, in that the object-modulated exit 
wave from the upstream plane is propagated to the next axial plane 
in a recursive manner through all planes. This approach has been 
used with success in ptychography using visible light (20), x-rays 
(10, 21, 22), and electrons (23). It has also been used for tomographic 
imaging of more continuous specimens by assuming that the object 
could be represented by discrete axial planes separated by the DOF 
(24). However, this assumption is only approximately true, since 
one can often see image contrast variations with defocus settings of 
less than 1 DOF (or the separation of the slices), especially in phase 
contrast, which is the dominant contrast mechanism in transmis-
sion x-ray microscopy (25). In that case, variation of features along 
the beam axis between each two adjacent slices will not be captured.

Therefore, it can be advantageous to use reconstruction methods 
that use a forward model of multislice propagation in a continuous 
object and retrieve directly the refractive indices of the object in-
stead of the phase of the exiting waves. This allows multiple scatter-
ing effects to be included and avoids a separate phase unwrapping. 
We have previously proposed an analytical model on the estimation 
of the degree to which multiple scattering alters the recorded data 
[see page 301 of (26)]. Using this model, it can be shown that one 
must begin to account for multiple scattering effects at a specimen 
thickness of a few micrometers in soft x-ray imaging at 0.5 keV and 
a few tens of micrometers in hard x-ray imaging at 15 keV. The 
need for the inclusion of multiple scattering effects is well known in 
optical diffraction microscopy (17), and we have shown that this 
approach can be used for x-ray microscopy as well (11). What we 
describe below is a new approach that is different from the above: It 
uses the method of AD to carry out the reconstruction, which offers 
greater flexibility on imaging method and for incorporating various 
constraints on the object as numerical optimization regularizers.

Formulation of the image reconstruction problem
Our approach is to treat image reconstruction of objects beyond the 
DOF limit as a numerical optimization problem. That is, we wish to 

A Near-field propagation phase contrast
d

B Far-field ptychography

s

Fig. 1. Schematic representation of the two different microscope types used 
in our demonstration. In the full-field mode (A), phase contrast is incorporated by 
allowing the wavefield leaving the object to undergo Fresnel propagation over a dis-
tance d before that plane is imaged by a lens (with 1/f = 1/s + 1/s′) onto a detector. In 
ptychography (B), a small coherent beam spot (probe) is scanned through the object, 
and the far-field diffraction intensities are recorded for each probe position. The sche-
matic here shows Fresnel zone plates as lenses for quasi-monochromatic x-ray beams.
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find the optimal parameter set n0 of the forward model f by mini-
mizing an objective function L, leading to a solution of

	​​ n​ 0​​ = ​arg min​ 
n
​  ​ L [ f(n ) , y ] , subject to n ∈ ​	 (2)

where the observable y is the set of experimental measurements 
(near-field images or far-field diffraction patterns) and  is the 
manifold of constraints that n is subject to. The parameter set n will 
be defined in Eq. 10 below to be proportional to the x-ray refractive 
index distribution within the object’s voxel grid positions r. This 
refractive index is written as

	​ n(r ) = 1 − (r ) − i(r)​	 (3)

where the values of  and  for various materials are readily ob-
tained from tabulations (27). Except at photon energies right near 
x-ray absorption edges where anomalous dispersion effects can appear, 
 and  have small positive values (typically  ≃ 10−4 and  ≃ 10−5 
to 10−6) so a positivity constraint can be applied to their solution. 
One can also apply a sparsity constraint for objects that are relatively 
discrete in space (28), and in most cases, tomography experiments 
are designed so that the object fits within the field of view so one can 
also apply a finite support constraint on the solution of n(r).

Because the size of the optimization problem is large, efficient 
mechanisms must be used to find gradients for each iteration of the 
first-order solver used in optimizing Eq. 2. If one is always consid-
ering one type of imaging experiment, then one can calculate deriv-
atives of the cost function, and this approach has been used with 
success for simulations of x-ray ptychographic reconstruction of 
objects beyond the DOF limit (11). However, if one wishes to be 
able to treat multiple imaging methods (so as to compare or bench-
mark their properties and performances, for example) and include 
a variety of regularizers, then other approaches that place the burden 
of finding minimization strategies on a computer rather than a sci-
entist can have advantages. One approach is to represent multislice 
propagation with a computational architecture resembling a convo-
lutional neural network and use mathematical formulations that are 
common in machine learning to solve for the object that matches 
the observations, as has been demonstrated for diffraction micro
scopy using visible light (29). AD (30) provides another approach 
that was suggested for use in phase retrieval problems (31) and then 
successfully implemented for x-ray ptychography (13). More re-
cently, the adaptability of AD to a variety of coherent diffraction 
imaging methods has been demonstrated (14), and a variety of soft-
ware toolkits are now available to implement this method (spurred 
on by their use for constructing the trainer module in supervised 
machine learning programs). We use this AD approach to recon-
struct beyond-DOF imaging in two successful imaging methods 
and, thus, gain insight on their relative advantages and complications.

As noted above, in x-ray ptychography, one scans a finite-sized 
coherent beam through a series k of overlapping probe positions 
across the specimen and collects the far-field diffraction pattern 
from each. Because the extent of the far-field diffraction pattern is 
determined by the scattering properties of the object rather than the 
spatial resolution of the probe, one can obtain reconstructed x-ray 
images with a spatial resolution far finer than the size of the probe 
(32). In contrast, point projection x-ray microscopy (33), where an 
object is placed downstream of a point source of radiation, provides 
geometric magnification of the object with a penumbral blur limit 

given by the source size and diffraction blurring that can be com-
pensated for by near-field wave back-propagation (34, 35). Because 
near-field diffraction blurring is localized to a region given by the 
finest reconstructed feature size times the propagation distance di-
vided by the wavelength, one can make use of illumination with a 
coherence width equal to this region rather than the entire illumi-
nation field as required for ptychography and, thus, make more 
complete use of partially coherent sources. Since the advancing of 
x-ray imaging instruments has granted considerable potential to both 
techniques in their imaging applications for thick samples with high 
resolution, it is of interest to understand the beyond-DOF imaging 
properties of both of these approaches.

We term our approach Adorym (Automatic Differentiation-based 
Object Retrieval with dYnamical Modeling). In Adorym, we wish to 
compare the present guess of the detected magnitude of ∣f(n, , k, 
z, d)∣ against the square root ​​√ 

_
 ​y​ ,k​​ ​​ of the measured intensity at 

each angle  and each scan position k in the experiment, with slice 
spacing z, and a free propagation distance d to the intensity mea-
surement plane (d → ∞ for ptychography). Then, a loss function 
gauging their disparity, which is expressed as

	​​
L  = ​   1 ─ ​N​ θ​​ ​N​ p​​ ​N​ k​​ ​ ​∑ 

θ,k
​ ​​ ​‖∣  f(n, θ, k, Δz, d ) ∣  − ​√ 

_
 ​y​ θ,k​​ ​‖​2​ 2​+

​    
​α​ δ​​  ∣ ​ n​ δ​​  ∣ ​ ​​ 1​​ + ​α​ β​​ ​|​n​ β​​|​ 1​​ + γTV(​n​ δ​​)

 ​​	
(4)

is minimized. That is, the solution of the object function should be 
given by

	​​n​ 0​​  = ​ arg min​ 
n
​  ​ (L) subject to ​n​ w​​  =  0 for ​n​ w​​  ∉  and ​n​ w​​  ≥  0 for ​n​ w​​  ∈ ​	

(5)
Further detail on the formulation of the forward model f(n, , k, 

z, d) is provided in Materials and Methods. In Eqs. 4 and 5, y, k is 
the measured intensity at orientation angle , N is the number of 
projection angles, Np is the number of pixels in each y, k, Nk is the 
number of probe positions for each projection angle (Nk = 1 for full 
field), and  and  are the scalar normalizing coefficients added to the 
L1-norm regularization terms for the  part and  part of n, re-
spectively. The separated regularization for the two parts of the ob-
ject is necessary since (r) and (r) of the same material typically 
differ by a few orders of maginitude. Together, these two L1-norm terms 
enhance the sparsity of the object function, which is useful when the 
object is spatially discrete or contains a lot of empty space (such as 
a dispersion of cells or a hollow structure). Moreover, the anisotropic 
total variation TV(n), weighted by coefficient , enhances the sparsity 
of the spatial gradient of the object function, which suppresses noise 
and unwanted heterogeneities (36). This regularizer is expressed as

	​ TV(n ) = ​ ∑ 
l,m,n

​​​ [∣​x​ l+1,m,n​​ − ​x​ l,m,n​​∣+ ∣​x​ l,m+1,n​​ − ​x​ l,m,n​​∣+ ∣​x​ l,m,n+1​​ − ​x​ l,m,n​​∣]​	

(6)

where l, m, and n are indices along the three axes of n. The TV regular-
izer is only applied to n because it usually carries higher contrast 
and better structural information than n when hard x-rays are used. 
Last,  in Eq. 5 is a set corresponding to the 3D finite support 
constraint, which is explained in more detail in Materials and Methods.

RESULTS
Our Adorym approach was tested in simulations of thick objects that 
would normally involve multiple scattering along the beam path. 
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Two virtual samples were investigated: one hollow silicon cone with 
TiO2 nanoparticle decoration that is described below (the details of 
the sample design are listed in Materials and Methods) and a pro-
tein sample that is presented in the Supplementary Materials. The 
reconstructions of the silicon cone sample shown here were per-
formed on the computing cluster Cooley at the Argonne Leadership 
Computing Facility. Each node of this cluster is equipped with two 
2.4-GHz Intel Haswell E5-2620 v3 central processing units (CPUs) 
(12 cores in total) and 384-gigabyte random access memory. Be-
cause of limits in graphics processing unit (GPU) memory, we did 
not use GPU acceleration on this machine. TensorFlow version 1.4.0 
was used as the computational engine for our routine. For the Adam 
optimizer built with TensorFlow, we used a step size of  = 10−7 and 
first and second moment exponential decay rates of 1 = 0.9 and 2 = 
0.999, respectively.

In x-ray full-field imaging, a variety of methods are available 
to obtain a phase-contrast image from detected intensities, but 
propagation-based phase contrast is the simplest to achieve experi-
mentally. We therefore assumed that the x-ray wavefield exiting the 
object propagates downstream by a sample-detector distance d of 
1 m before the resulting wavefield is imaged without loss by a 1-nm 
resolution lens onto a detector, as shown in Fig. 1. This is beyond 
the state of the art with present-day x-ray optics, but as noted above, 
we chose parameters so as to substantially exceed the DOF limit 
within a small array size. Within this optical configuration, we sim-
ulated the recording of 500 images over a single-axis rotation range 
of 360° in one case and 180° in another case. The purpose of distin-
guishing the 360° and 180° rotations is that when diffraction is present 
in the sample, the images obtained at , as well as  + 180, can be 
different, unlike in conventional tomography. To acquire high-quality 
results, we conducted a series of experiments to determine that the 
optimal values for the regularizer weights in Eq. 4 were  = 1.5 × 
10−8 for the stronger phase-shifting part of the x-ray refractive in-
dex, and  = 1.5 × 10−9 for the weaker absorptive part. The total 
variation minimization regularizer term of Eq. 6 was made small by 
setting  = 1 × 10−11. The x-ray refractive index grid was initialized 
to a Gaussian distribution with a mean of  = 8.7 × 10−7 and  = 5.1 × 
10−8 with SDs of about a 10th of the mean. These values are lower 
than the expected values but gave better reconstruction starts than 
values of zero; the reconstructions were not sensitive to the exact 
nonzero initialization values. In TensorFlow, we used a minibatch 
size of 10 and set the iterator to stop automatically once the incre-
mental decrease in the total loss function of Eq. 4 fell below 3%. 
Parallelized with four threads, using three levels of multiscaling, 
and running on CPUs, the full-field reconstruction finished with 
10, 10, and 6 epochs for the three passes with 4×, 2×, and 1× (original 
resolution) downsampling. The entire computation took approxi-
mately 5.0 hours of wall clock time and 120 core hours.

For ptychography, we assumed that an x-ray optic was used to 
focus a beam on the entrance of the object volume with a Gaussian 
profile beam profile with x = y = 6 nm and a maximum probe 
phase of 0.5 rad. A total of 23 × 23 = 529 probe positions were used 
to illuminate the specimen from each viewing angle, as shown in 
Fig. 1. The sparsity and smoothening constraints in ptychography 
are relaxed by probe overlap, so that a different set of regularizer 
values for Eq. 4 were used, with  = 1 × 10−9,  = 1 × 10−10, and  = 
1 × 10−9. The x-ray refractive index grid was initialized in the same 
way as the full-field case. The minibatch size was set to 1 rather than 
10 so as to allow all data from one projection angle to fit in the com-

puter memory. For this larger dataset with far-field diffraction in-
tensity recordings, the reconstruction was parallelized with 20 threads 
and required four epochs to yield a high-quality result over a wall 
clock time of 46 hours or 16,500 core hours.

Figure 2 shows the true object in row (A) and the reconstruction 
results for these various approaches in rows (B) through (E). In the 
360° full-field reconstruction shown in row (B) and the 360° pty-
chographic reconstruction shown in row (D), the object boundaries 
are sharp, and features within the object are nicely reproduced. This 
is decidedly not the case for the error reduction (ER) + FBP or con-
ventional tomographic reconstruction shown in row (E), where the 
small spheres on the outside of the object are poorly reproduced in 
the surface view of the fourth column, and the projection images of 
columns 2 and 3 do not accurately reproduce the true object. In visual 
appearance, one can argue that the ptychography reconstruction 
shown in row (D) is slightly sharper and has less “ghost” structure 
present in what are supposed to be empty voids inside the cone 
compared with the full-field reconstruction shown in row (B). This 
may be due to the fact that the large number of spatially separate 
illumination patterns used in ptychography help limit the regions 
that contribute scattering signal to each of the 529 individual data 
recordings acquired per rotation angle. On the other hand, the pty-
chographic reconstruction shows some slight fringe artifacts at the 
bottom of the cone, which might arise from the fact that the data are 
recorded in the far field rather than the near field. More quantita-
tive comparisons will be presented below, using the Fourier shell 
correlation (FSC) method (37), which measures the consistency be-
tween images as a function of spatial frequency (resolution in the 
Fourier transform).

In conventional tomography within the pure projection approx-
imation, projections obtained 180 apart are identical after projec-
tion reversal, so that data collected over a 180° range are sufficient 
for an accurate reconstruction. This is not the case when diffractive 
effects come into play, as has long been known in diffraction to-
mography (8) and as was observed in our previous study of pty-
chographic reconstructions of an object with DOF effects included 
(11). Modulations on the wavefield can be produced both by Fresnel 
diffraction from upstream features and refractive modulation from 
features at downstream planes; one cannot unambiguously distin-
guish between these two effects using a single viewing angle. To il-
lustrate this, we have carried out a simulation of full-field imaging 
where the same 500 rotation angles used in the 360° case were in-
stead distributed over a 180° angular range, giving the results shown 
in row (C). This leads to the presence of a number of voids in the 
reconstructed refractive index distribution, presumably because of 
the ambiguity noted above; the voids remained in the same position 
even if the 180° illumination angles were shifted to a different range, 
and they are not related to the shrink wrapping of the finite support. 
By removing the positivity constraint on the refractive index distri-
bution and examining the intermediate object function as it was 
updated after each minibatch, we noticed that the values in the void 
regions became negative and kept decreasing. We therefore speculate 
that the voids might arise as the optimizer attempts to compensate 
for the rise of the loss function under information deficiency. The 
resolution of the 180° and 360° full-field reconstructions was evalu-
ated using the FSC between two independent reconstructions with 
the same parameter settings, and the result shown in Fig. 3 shows 
the loss of resolution that results from using the same number of 
projection angles distributed over 180° only.
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To understand the robustness of our reconstruction method in 
the presence of noise due to limited exposure, we carried out full-
field reconstructions where the recorded diffraction intensities were 
modified to incorporate noise. [Other studies have considered the 
noise robustness of simple coherent diffraction imaging against zone 
plate imaging (38) or against near-field imaging (39) with somewhat 
differing conclusions; we leave a comparison of full-field imaging 

and ptychography for future work.] This was performed by setting 
a quantity nph to be the total number of incident photons that inter-
sect the object support with the object at each of the 500 projection 
angles. The object support is characterized by an area overdetermi-
nation ratio (AOR) of

	​​ ​ AOR​​  = ​   ​N​​ 2​ ─ ​N​ support​​
 ​​	 (7)

where N2 is the number of pixels in the 2D object projection array 
and Nsupport represents the total number of pixels within the finite 
support (40). The Gaussian-blurred “shrink wrap” procedure de-
scribed above led to AOR ≃ 57% for the simulated cone object. 
With these factors considered, the number of photons Npix, incident 
on each of the N2 = 2562 pixels is given by

	​​ N​ pix,​​  = ​  
​n​ ph​​
 ─ 

​​ AOR​​ × ​N​​ 2​
 ​​	 (8)

for each of the N viewing directions such that nph = 1 × 109 cor-
responds to Npix, = 2.7 × 104. The detected intensity images at each 
of the N angles, generated by a normalized plane incident wave 
with unity magnitude, were scaled by Npix, before Poisson noise 
was applied to them. We then obtained reconstructions from the 
Poisson-degraded datasets (Fig. 4) and compared them using the 
FSC method (37).

Given the normalized image intensity one would expect from a 
feature-present versus a feature-absent voxel, one can estimate the 
exposure required to see that object with a specified signal-to-noise 
ratio (SNR). Using the phase-contrast imaging expression of Eq. 39 
of (26) for t = 1-nm-thick Si at 5 keV, we obtain an exposure estimate 
of Npix, = 5.0 × 107 for SNR = 5 imaging. Dose fractionation (41) 
tells us that this dose can be distributed over all N viewing angles 
as 3D object statistics are built up from tomographic projections, so 
one would expect that to achieve full resolution at SNR = 5, one 
would require Npix,/N = 1.0 × 105, which, from Eq. 8, translates to 
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Fig. 2. Cone object used for computational experiments in beyond DOF x-ray 
imaging. The inset between columns 2 and 3 shows an example near-field diffraction 
image used in full-field reconstruction. The object (top row) and various recon-
structed images (subsequent rows) are shown, displaying only the phase-shifting 
part  of the x-ray refractive index since it provides higher contrast than the ab-
sorptive part . In keeping with the convention of most synchrotron tomography 
experiments, the object is assumed to be rotated around the vertical or y axis. The 
first column shows a single-plane section of the object in the yz plane, with the loca-
tion of the section indicated by the green dashed lines in the third column. The 
second column shows a projection or summation through the 3D grid in that same 
direction, while the third column shows a projection or summation through the 3D 
grid viewed from above. The fourth column shows the surface of the object, as 
rendered using Vaa3D (61). Row (A) shows the images of the ground truth. Both 
the full-field (B) and the ptychography (D) reconstructions of data acquired over a 
360° rotation angle range reproduce the object with high fidelity. In the full-field 
reconstruction from 180° rotation data (C), voids appear where there is supposed 
to be material within the cone (in this case, the illumination was incident from top, 
to right, to bottom in the perspective of the third and fourth columns, although 
the same type of behavior was observed with different 180° illumination ranges). In 
the pure projection tomographic reconstruction shown in the bottom row (E), one 
obtains an image with lower resolution and greater differences from the true ob-
ject: The fine TiO2 spheres on the outside of the cone object are blurred out, and 
the reconstruction shows spurious material inside the cone. These images are all of 
a 256 × 256 nm2 field of view. In the Supplementary Materials, we show the absolute 
value difference images between the yz cross section of column 1 for the true object 
and each experiment and reconstruction scheme.
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same full-field recording dataset.
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nph = 3.7 × 109 per viewing angle. Because this exposure scales as 
SNR2, reducing nph from 3.7 × 109 to 1.0 × 109 corresponds to a de-
crease in SNR from 5 to ​5 / ​√ 

_
 3.7 / 1.0 ​  =  2.6​. Alternatively, because 

the radiation dose that must be necessarily imparted to a specimen 
for imaging at a specified SNR scales as the inverse fourth power of 
spatial resolution (26), a decrease in nph from 3.7 × 109 to {1 × 107, 
1 × 108, 1 × 19} would be expected to correspond to a reduction in 
spatial resolution from 1 to {4.4, 2.5, 1.4} nm. If one translates this 
into a fraction of the Nyquist sampling limit, the corresponding 
fractions are {0.23, 0.41, 0.72}. These fractions of the Nyquist sam-
pling limit are shown via dashed lines in Fig. 5, and they are consis-
tent with an FSC in the range of 0.5 to 0.6 as a measure of the spatial 
resolution limit.

DISCUSSION
We have shown here an approach (which we call Adorym, as noted 
above) whereby one can use AD and a multislice propagation for-
ward model to reconstruct 3D objects in two different microscope 
types, with only minor branch points in one computer code base. 
Our approach has the following characteristics that are shared with 
another related non-AD approach (11), as well as with other multi
slice learning (29) and optimization-based (28) approaches:

1) In standard diffraction tomography approaches, one assumes 
that the 3D object can be decomposed into volume gratings so that 
data from one viewing angle are projected not onto a flat plane in 
Fourier space (as would be the case for a pure projection image) but 
onto the surface of the Ewald sphere. These assumptions are valid 
for the case where there is no multiple scattering in the specimen, 
but it can be shown [for example, see Figs. 2 and 3 in (26)] that 

multiple scattering can play a role in x-ray imaging of thick speci-
mens. That is, the illumination of downstream planes can be affected 
by the presence of strong features in upstream planes. Because our 
approach involves a full multislice forward calculation along each 
viewing angle, it can incorporate these effects correctly.

2) In previous multislice ptychography approaches (9), it has 
been assumed that the object can be decomposed into a set Na of 
planes along the illumination direction with those planes separated 
by a DOF distance or more. This separation is required for allowing 
the combination of propagated probe and discrete object plane to 
be decomposed into sufficiently different results along the propaga-
tion direction. By allowing for an isotropic forward model where 
the plane separation distance can be the same as the transverse res-
olution distance, our approach is better able to represent the subtle 
contrast variations that occur in imaging over distances that are a 
reasonable fraction of the DOF. It should also be noted that the use 
of multislice methods to reconstruct Na planes along the illumination 
direction means that one can reduce the number of illumination 
angles used (42) from what one might have expected based on the 
Crowther criterion (43).

3) Since refractive indices are being reconstructed directly in the 
proposed method, one can use additional constraints on the solu-
tion to address the phase unwrapping problem in reconstructions, 
so that a separate phase unwrapping process may become unneces-
sary. If the material is known, then this may be implemented by 
constraining the numerical range of n and n. Alternatively, one 
can use an alternating direction method of multipliers (ADMM)–
type solver for the joint optimization problem (44) that allows one 
to incorporate off-the-shelf phase unwrapping algorithms.

One would expect these characteristics to allow for the recon-
struction of beyond-DOF 3D objects with greater fidelity than one 

Noise free 1 × 109 1 × 108 1 × 107

Fig. 4. Evaluation on the noise robustness of the proposed algorithm. Near-
field propagation images as would be recorded by the camera in Fig. 1A (top 
row) and reconstructed images (middle and bottom rows) in the presence of sim-
ulated Poisson noise with a total number of photons nph used in data recording. 
The middle row projection images correspond to the second column image of 
Fig. 2B, while the bottom row slice images correspond to the first column image of 
Fig. 2B. As can be seen, reducing the number of photons nph within the object (and, 
thus, the incident number of photons per pixel per viewing angle Npix, as given by 
Eq. 8) leads to a decrease in image fidelity and signal-to-noise ratio (SNR) at the 
single-pixel level. One can also evaluate this as a loss of spatial resolution with de-
creasing exposure, as shown in Fig. 5.
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Fig. 5. The FSC for the full-field results with varying photon exposure nph as 
shown in Fig. 4. For each exposure, two different datasets were generated with 
different Poisson-distributed random noise, after which the same reconstruction 
algorithm with the same parameters was applied to each noisy dataset before per-
forming the FSC. As discussed in the main text, one would expect the SNR to de-
cline at normalized spatial frequencies of {0.23, 0.41, 0.72} times the normalized 
spatial frequency for photon exposures of nph = {1 × 107, 1 × 108, 1 × 109}. The 
dashed lines at these normalized spatial frequencies are all at roughly consistent 
decreases in the FSC to about 0.5 to 0.6 for the respective exposures, correspond-
ing to a spatial resolution estimate of {4.4, 2.5, 1.4} nm.



Du et al., Sci. Adv. 2020; 6 : eaay3700     27 March 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

7 of 12

would have with multislice ptychographic tomography approaches; 
exploration of this hypothesis could be the topic of future work.

Our use of AD in a numerical optimization approach has several 
features:

1) For ptychography, it lets one phase the far-field Fourier magni-
tudes as was first suggested (31) and then demonstrated (13) in prior 
work. For near-field imaging, it avoids the approximations of uni-
form material type implicit in one commonly used approach (45).

2) It allows one to easily switch between different imaging modes 
(in this example, both near-field imaging and ptychography) within 
the same code framework, and it lets one explore different types of 
loss functions and regularizers without needing to rebuild the opti-
mizer. This can be very useful for benchmarking different imaging 
and reconstruction techniques.

3) Several software packages that provide AD capabilities (such 
as TensorFlow and Autograd) are already built for parallelized 
operation on large compute clusters. As an example, an automated 
differentiation–based ptychography reconstruction code was 
demonstrated in (13). We carried out a direct test of our TensorFlow-
based AD approach for ptychography against our previous result 
(11) using manual differentiation of the cost function and imple-
mentation in C++. The approach used here took 8.25 core hours per 
iteration per angle compared with 6.48 core hours per iteration 
per angle. One pays a modest penalty in computer time in this ex-
ample but arguably uses less researcher time because AD does not 
require one to recalculate derivatives as the cost function is modified.

4) It also allows one to trivially compare and switch between 
synchronous and asynchronous schemes of optimization. In the 
synchronous scheme, object functions are broadcasted and syn-
chronized among all threads for each several iterations. In the asyn-
chronous scheme, each thread does the optimization on its own, 
and the object functions contained by them are only combined at 
the end. In the example discussed in (13), the synchronous approach 
took slightly longer to complete but gave more accurate results. The 
default scheme that we used to generate the above demonstrative 
data is a variant of the synchronous approach. Here, each thread 
keeps its own object function, but the gradient obtained by a thread 
is broadcasted and averaged along with the results of all other 
threads before being used to update the object function. The above 
stated characteristics have led to increasing attention to AD in the 
optics community. Other works have explored the use of AD for 
several other coherent diffraction imaging modalities (14).

In some cases, because of the special geometry of some samples, 
the range of rotation angles achievable in an experiment can be lim-
ited. We have shown that there is an improvement in reconstruc-
tion quality if one uses 360° rather than 180° rotation. We also plan 
on investigating other limits on rotation, such as a range from −70° 
to +70° and then +110° to −110°, which would be required for sam-
ples mounted on a flat substrate, as well as the alternative of lami-
nography-type tilt and rotational sampling [see, for example, (46)] 
in a future study. In the cases where artifacts emerge due to miss-
ing rotation angles, regularizers can be easily added to suppress 
these unrealistic density concentrations.

Another point needing attention is that while the full-field mode 
and the ptychography mode are different in terms of acquisition 
method and processing wall time, the results they give are sometimes 
not equivalent as well. This is most obvious for diffusive features 
without clear boundaries, as in the case demonstrated in fig. S1. In this 
test case, a protein molecule (originally acquired using electron micro-

scope tomography) was numerically reconstructed by our algorithm 
using both full-field mode and ptychography mode. The result shows 
that the full-field reconstruction “throws away” the diffusive halo 
around the molecule (47), which, on the other hand, is correctly 
restored by ptychography reconstruction. Furthermore, we found that 
the reconstruction qualities of full-field and ptychography modes 
respond differently to changes in reconstruction hyperparameters 
(e.g., , , , and step size). For the cone phantom, the ptycho
graphy mode is more robust to parameter changes and can provide 
good results even when the sparsity constraints and the TV regu-
larizer are totally removed. The full-field mode is, however, more 
sensitive to parameter settings. With the sparsity weight  set always 
10 times smaller than , the value of  is good within half an order 
of magnitude around the setting used in the paper (1.5 × 10−8). A 
value that is too low led to artifacts emerging around the contained 
particles (in the region not covered by the initial finite support mask), 
and a value that is too high caused the shrinkage of the recon-
structed object. Even without noise in the raw data, the TV regular-
izer still helps suppress unreal heterogeneity inside the object’s features 
due to the systematic error of the algorithm, but a too-high setting 
renders the result to be blocky. Hence, redetermination of the pa-
rameters might be necessary for different types of samples especially 
when one uses the full-field mode. While one can use a progressive 
strategy (optimize one parameter with others fixed and then move 
to the next one) to search the hyperparameter space, there are also 
dedicated packages for parameter searching such as DeepHyper (48).

While the proposed method has been implemented for both full-
field microscopy and for ptychography, a special note should be given 
to the former. In the absence of the oversampling constraint in ptycho
graphy, we explored the use of finite support constraint and sparsity 
constraint in 3D space, which would provide more insights to the iter-
ative retrieval of a bounded 3D object by solving an underdetermined 
system. The algorithm, when combined with nonscanning high-
resolution imaging techniques, can potentially become the launchpad 
for a high-throughput imaging pipeline for measuring thick samples 
with sub–100-nm resolution. One of these possible paths is to apply 
the algorithm to point-projection microscopy (33, 49). While far-
field diffraction patterns suffer a loss of speckle contrast as one goes 
from fully coherent to decreasingly partially coherent illumination 
(with the best results obtained when the coherence width of the 
beam equals the size of the object array), with near-field wave prop-
agation, one only needs to have the spatial coherence match the 
distance z/(x) over which one has the ability to record near-field 
fringes. Thus, point-projection near-field imaging is able to make use 
of a greater fraction of partially coherent sources, such as today’s 
synchrotron light sources. At the same time, if one does have full 
spatial coherence, then the separation of subregions of the object into 
separate experimental recordings (diffraction patterns from limited-
size illumination spots) gives reconstructions with better fidelity even 
with a more relaxed imposition of regularizers. Moreover, application 
of the proposed method to detection methods beyond x-rays—for 
example, broadband radiation used for atmospheric transmission 
(50)—might also be exploited to better model the dynamic diffrac-
tion of waves propagating in complicated media over long distances.

CONCLUSION
We have developed and demonstrated a novel 3D reconstruction 
algorithm for objects beyond the DOF limit. The algorithm uses 
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multislice propagation as the forward model and retrieves the refrac-
tive index map of the object by minimizing a loss function containing 
the squared difference between the amplitudes of the forward-
propagated wavefront and the measured signals at all viewing 
angles. We implemented the algorithm for both full-field and pty-
chography imaging and compared them in terms of computation 
wall time and reconstruction fidelity. Investigation on the full-field 
version allowed us to explore the constraint requirements for re-
constructing of bounded 3D objects with nonscanning imaging 
techniques, where sparsity and finite-support constraints are used 
to ensure a successful reconstruction. Another novelty of our method 
lies in the use of AD, which not only replaces the laborious manual 
differentiation involved in numerical optimization but also makes 
the computational model extremely adaptable and flexible. Numerical 
studies of the algorithm using simulated objects indicate that the 
proposed method is capable of recovering a thick object with high 
spatial resolution and good accuracy. Further validation of the ap-
proach with experimental data will be our subsequent step, which 
would examine the capability of the method in handling noise and 
help us identify practical challenges such as probe alignment (51). 
The ultimate goal is to combine the algorithm with high-resolution 
imaging techniques, which, for full-field imaging, could be point-
projection microscopy. The combination of the two could poten-
tially lead to the development of a realistic approach for imaging 
thick samples at high resolution.

MATERIALS AND METHODS
The forward model
We use the multislice method (7) to calculate the wave exiting the 
object, since it incorporates multiple scattering while also accounting 
for effects such as waveguide phenomena (52) (with the sole lim-
itation of ignoring backscattering, which is negligible for all cases 
except Bragg diffraction from perfect crystals or synthetic multilay-
ers). As illustrated in Fig. 6, in multislice propagation, the object is 
divided into J slices along the beam axis.

The wavefield j, k(x, y, zj) from probe position k (for full field, k = 0 
for the first and only probe position) entering the jth slice with 
thickness z is modulated by the slice to yield a wavefield ​​​ j,k​ ′  ​(x, y, ​z​ j​​)​ of

​​
​​ψ​ j,k​ ′ ​ (x, y, ​z​ j​​) = ​ψ​ j,k​​(x, y, ​z​ i​​ ) exp​[​​− ​ 2πΔz ─ λ  ​ i [ 1−δ(x, y, ​z​ j​​ ) − iβ(x, y, ​z​ j​​ ) ] ​]​​​

​    
​ = ​ψ​ j,k​​(x, y, ​z​ i​​ ) exp​(​​ − ​ 2πΔz ─ λ  ​ i​)​​exp(​n​ j​​)​

 ​​	
(9)

with

	​​ n​ j​​  = ​  2(z) ─ 


  ​ [ i(x, y, ​z​ j​​ ) − (x, y, ​z​ j​​ ) ]​	 (10)

The actual implementation of Eq. 9 usually drops the constant 
phase factor exp ( −2z/) as we are only interested in the intensity 
that the detector collects. We will denote the refractive index distribu-
tion of the entire object by vector n in the following text.

The wavefront is then free space propagated to the next slice ac-
cording to the Fresnel diffraction integral given by

	​​ ​ j+1,k​​(x, y, ​z​ j+1​​ ) = ​​ j,k​ ′  ​(x, y, ​z​ j​​ ) ∗ ​h​ z​​(x, y)​	 (11)

where ∗ denotes the convolution operator and hz(x, y) is the Fresnel 
propagator given by

	​​ ​h​ z​​(x, y ) = exp​[​​ −i ​   ─ 
z ​ (​x​​ 2​ + ​y​​ 2​ ) ​]​​ ​​	 (12)

This process is repeated for all J slices until one obtains the exit 
wave leaving the object.

Here, the slice thickness z can be equal to the transverse pixel 
size x, or for computational speed, one can combine multiple 
slices from the 3D volume together, provided one satisfies the condi-
tion of

	​ z  ≤ ​  2​   n ​Q ─   ​ ​ ​(x)​​ 2​ ─ 


  ​​	 (13)

where ​​ ~ n ​​ is the mean refractive index, ∆x is the pixel size, and Q is 
the Klein-Cook parameter for which values of Q ≲ 1 represent the 
case of plane grating rather than volume grating diffraction (53).

Multislice propagation is only one of several steps that must be 
combined in the forward model of tomography beyond the DOF 
limit. Tomography acquisition requires the illumination of the object 
from multiple rotation angles . Our approach is to rotate the object 
onto a constant wave propagation direction rather than to rotate the 
illumination; this is performed with a rotation operator R. After 
carrying out the sequence of J multislice propagation steps through 
the rotated object, we then need to apply the operator Pd to take the 
exit wave J, k from the object to the plane of the detector, either 
using free space propagation as described by J, k * h(x, y, d) for 
near-field propagation of distance d, or a simple Fourier transform 
for far-field propagation (in the Fraunhofer approximation). This 
leads us to a combined forward operation of

	​ f(n, , k, z, d ) = ​P​ d​​ ​M​ n,,z​​ ​​ 0,k​​​	 (14)

In Eq. 14, Mn,,z is the multislice propagation operator (Eqs. 11 
and 12), which is a function of the 3D object and the incident probe. 
Mn,,z describes the exit wave that leaves the depth-extended spec-
imen and is equivalent to the recursive equations in Eqs. 9 and 11. It 
can be compactly written as

	​​ M​ n,,z​​  = ​ ∏ 
j
​ 

J
  ​​ ​P​ z​​ ​A​ n,,j​​​	 (15)

1 2 ...... j ...... J

P  z

Propagation direction

Fig. 6. Illustration of multislice propagation. 
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with

	​​ A​ n,,j​​  =  exp [ diag(​S​ j​​ ​R​ ​​ n ) ]​	 (16)

where Sj is a matrix that samples the jth slice of column vector Rn. 
If the total number of voxels of the object function is Nv and the 
number of pixels in the detector is Np, then n is a Nv × 1 column 
vector, R is a Nv × Nv square matrix, and Sj is in the shape of Np × 
Nv, so that it yields an Np × 1 column vector, which is of the same 
size as the wavefront 0, k. Multiplying diagonal matrix An,,j with 
the wavefront vector 0, k is exactly the wavefront modulation given 
in Eq. 9. This forward model is used in the loss function of Eq. 4; the 
latter also includes sparsity and TV regularizers, and the minimiza-
tion of loss function (Eq. 5) also involves the use of a finite support 
constraint, which will be explained in the next subsection.

Constrained loss function minimization
It has been pointed out for conventional 2D coherent diffraction 
imaging that since only magnitude information is available in the 
detected far-field diffraction pattern, a reconstructable object should 
be spatially isolated, with prior knowledge about the geometry of 
the object incorporated into the reconstruction through zeroing out 
pixels out of the object boundaries. This is known as a “finite support” 
constraint (54). Ptychography does not require a finite support con-
straint applied in object space because the bounded probe itself is 
already a form of finite support constraint, and furthermore, the 
overlap between adjacent probe positions supplies sufficient infor-
mation to solve for all object unknowns.

In our work where a 3D object is retrieved, the same criteria are 
followed. As shown in Results, the ptychography reconstruction of 
the object using our algorithm does not need prior knowledge about 
the spatial extent of the sample. However, a finite support con-
straint was found to be necessary for the full-field case. The initial 
finite support mask is determined following the procedures below. 
First, single-distance near-field phase retrieval (45) is applied to all 
projection images to obtain a first guess of the weak phase contrast 
projection through the object. We then use the tomographic set of 
these projections to obtain a rough guess of the object support using 
the standard FBP tomographic reconstruction algorithm. The re-
constructed volume is then Gaussian filtered to remove noise and 
local discontinuities. A Boolean mask is subsequently obtained by 
thresholding the filtered object, which yields a support mask denoted 
by set . During the iterative reconstruction process, the finite sup-
port is contracted to exclude low-value pixels for every epoch, a 
technique known as shrink wrap in conventional CDI (coherent 
diffraction imaging) processing (55). The successful retrieval of n 
requires the simultaneous pixel-wise update of it, guided by ∇nL, 
which is the gradient of loss function L in the parameter space of n.

We use TensorFlow (56), a deep learning package first initiated 
by Google but now available as an open-source toolkit, for carrying 
out our AD reconstruction. It provides a user-friendly Python ap-
plication programming interface and the ability to write a recon-
struction code of relative simplicity and with easy implementation 
on a variety of computing platforms. The AD algorithm uses the 
so-called “back-propagation” method to derive the partial derivatives 
in a semianalytical fashion (30). Here, the loss function L is first 
evaluated in the forward direction using Eq. 4, during which the 
intermediate variables produced by every algebraic operation are 
computed and stored. After that, the algorithm calculates the deriv-

ative of L with regard to the intermediate variables immediately be-
fore L using the values saved in memory. This is repeated back 
through the entire computation model, and the gradient of L with 
regard to n, ∇nL, is then found on the basis of the chain rule of dif-
ferentiation. Compared with symbolic differentiation that attempts 
to acquire the closed-form expression of ∇nL before doing any nu-
merical calculation, AD is free from the problem of expression swell 
when the forward model is complicated. On the other hand, AD is 
also more accurate than the finite difference method, which ap-
proximates ∇nL = (∂f/∂x1, …, ∂f/∂xn) with ∂f/∂xi ≈ [f(n + hei) − 
f(n)]/h for a small h (30). We use the well-established optimization 
algorithm Adam to update n (57). A brief description of the algo-
rithm is provided in the Supplementary Materials.

Computational performance enhancements
Similar to conventional tomography, the dataset acquired for re-
construction would generally involve a large number of rotation 
angles N [although in multislice reconstruction methods one can 
reduce N from below the number one would have expected from 
the Crowther criterion (42)]. The large value of N can lead to the 
use of considerable computation power in the iterative update of n. 
To reduce this, we note that the first term in Eq. 4 is essentially 
an expectation value of error per pixel, and it can be adequately 
approximated by calculating the error over a subset of N. This 
technique, known as “minibatching” [or “ordered subsets” in the 
tomography literature (58)], can speed up the convergence of 
the algorithm by several times. For each minibatch, the subset of N 
to be processed is chosen randomly without replacement, so that the 
entire collection of N will be fully gone through after a certain num-
ber of minibatches are completed. We hereafter refer to this process 
as an “epoch,” using terminology drawn from the machine learning 
community.

In an actual experiment, the presence of noise typically induces 
uncertainty in the “sub-loss function” obtained from each mini-
batch. In this case, a true global minimum is ill-defined, which causes 
n to dangle at the late stage of the optimization and, thus, prevents 
a stable convergence. For this reason, users of TensorFlow have the 
option to aggregate the gradients calculated from several mini-
batches and apply them to the optimizer after the completion of all 
of these minibatches. The larger sample amount for gradient calcu-
lation reduces the statistical fluctuation induced by noise and guar-
antees a more stable solution.

A multiscale technique is also used in this work to further im-
prove reconstruction speed and accuracy. While the algorithm re-
quires that n has the same number of lateral pixels as the measured 
data, instead of directly reconstructing the object with the same pixel 
size as the acquired projections, both n and y, k are downsampled 
by a factor of 2m, where m is an integer so that the lateral dimension 
of n is not larger than 64 pixels. The voxel size of the object is, thus, 
accordingly enlarged by 2m times. A first pass reconstruction of n is 
therefore computed rapidly. The result is upsampled by a factor of 
2 and then used as the initial guess for the next pass, where the scale 
of the object and projections are doubled. This process is repeated 
until the object is reconstructed with the acquired voxel size. By ini-
tializing n with the result from a coarse pass for a higher-resolution 
pass, the optimization begins at a location closer to the global min-
imum in the parameter space of L, so that fewer iterations are 
required to converge. This may also reduce the chance for the opti-
mizer to get trapped in a remote local minimum.
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Parallelization
In view of the huge number of unknowns (3.4 × 107 for a 2563 object 
because of the presence of both the  and  parts of the refractive 
index) to be solved in our algorithm, parallelized computation is 
necessary to guarantee a reasonable computational wall time (within 
a few hours for a 2563 object). We use a TensorFlow add-on called 
Horovod (59) to implement distributed parallelization using the 
message passing interface (MPI) standard for inter-rank (or inter-
process) communication, rather than the TCP/IP protocol used by 
native TensorFlow (MPI is faster on tightly bound high-performance 
computer clusters). Each thread (or worker) initializes and keeps its 
own object function and processes a minibatch simultaneously with 
other threads. When a rank finishes its minibatch, it waits for oth-
er threads to finish theirs, after which the gradients obtained by all 
threads are averaged. The averaged gradient is then used to update 
the object functions in all threads. Since the volume of samples used 
for gradient calculation is effectively enlarged by a factor that equals 
the number of threads nthrds, this means that the actual learning rate 
(57) for the Adam optimizer is multiplied by nthrds.

The code used in this work has been made publicly available on 
GitHub in the repository named “Adorym.”

Reference reconstructions
To compare the outcomes of the proposed algorithm with methods 
that are conventionally used for phase retrieval, the full-field data 
demonstrated in this work are also processed and reconstructed by 
first performing an iterative 2D phase retrieval method termed ER 
[widely used in coherent diffraction imaging (54)] for every projec-
tion image. The workflow of ER can be summarized as follows:

1) Propagate the initial guess of the exit wavefront 0 to the de-
tector plane as
	​​ ​ 0​ ′ ​  = ​ P​ d​​ ​​ 0​​​	

2) Replace the magnitude of the wavefront with the modulus of 
the measured intensity I as

	​​ ​ 0​ ″​  = ​   ​​ 0​ ′ ​ ─   ∣​​ 0​ ′ ​∣ ​ ​ √ 
_

 ​I​ ​​ ​​	

3) Backpropagate the wavefront to the exiting plane as

	​​ ​ 0​ ‴​  = ​ P​ −d​​ ​​ 0​ ″​​	

4) Mask out the pixels of the wavefront that do not belong to the 
finite support 2 by doing

	​​ ​ 1​​  =  {​​​ 0​ ‴​(r ) ,​ 
0,

  ​​r  ∈ ​ ​ 2​​​ r  ∉ ​ ​ 2​​ ​​	

5) The above processes are then repeated until the mean square 
error between the calculated intensity and the measured intensity 
converges.

The FBP tomographic reconstruction method is then applied to 
phase-retrieved images to obtain a 3D reconstruction result. This 
ER + FBP approach will be subsequently referred to as “pure projec-
tion tomography.”

Phantom object design
We carried out computational experiments on a cone object created 
using the optical simulation package XDesign (60). To exceed the 
DOF limit within a moderate array size, we chose to create a (256)3 

voxel grid with 1-nm voxel size and to use 5-keV x-ray beam energy. 
As a result, the x-ray wavelength was 0.248 nm, and the DOF given 
by Eq. 1 was 21.8 nm. (Present-day x-ray microscopes achieve a spa-
tial resolution of more typically 15 to 30 nm as noted in the intro-
duction, but 1 nm represents a goal for the future). Therefore, the 
reconstruction grid was almost 12 times larger than the DOF, so the 
object significantly exceeds the DOF limit. Within this grid, a hollow 
cone of silicon was computationally created so as to resemble a thin-
walled capillary heated and then pulled. The tube has a top diameter 
of 80 nm and a bottom diameter of 200 nm, so that neither end fits 
within the DOF limit. To examine the algorithm’s capability to re-
store fine details, we also placed 50 TiO2 nanospheres with radii 
ranging from 2 to 4 nm on the outer wall of the tube, as well as 
10 larger spheres (5 to 13 nm in radius) inside the tube. The refractive 
indices of both materials were generated using tabulated data (27). 
In addition, we added spherical bubbles or “grains,” whose refrac-
tive indices fluctuate within 30% of the original material, into the 
cone’s body as a means to test the ability of the algorithm to retrieve 
internal structure. These grains also served as marks in assessing the 
influence of photon noise on ptychography results as will be dis-
cussed below. The phase-shifting part  of the x-ray refractive index 
for this computationally created object is shown in the top row of 
Fig. 2.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/13/eaay3700/DC1
Section S1. Linear algebraic notation of the forward model
Section S2. Studies on a protein sample
Section S3. FSC plots for all reconstruction results of the cone phantom
Section S4. Absolute error on the vertical cross section shown in Fig. 2
Fig. S1. The nucleosome assembly protein (NAP) object sectioned from the two xz planes 
(columns 1 and 2) marked by yellow dashed lines in the xy cross section (column 3).
Fig. S2. Line profiles across the phase-shifting part of the refractive index  for the NAP protein 
sample.
Fig. S3. FSC plots for all reconstruction results of the cone object, including 360° full field, 180° 
full field, 360° ptychography, and ER + FBP.
Fig. S4. Absolute error on the vertical cross section shown in Fig. 2.
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