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This brief report serves as an introduction to a supplement of the Journal of Infectious Diseases entitled “Next-Generation Sequencing 
(NGS) Technologies to Advance Global Infectious Disease Research.” We briefly discuss the history of NGS technologies and de-
scribe how the techniques developed during the past 40 years have impacted our understanding of infectious diseases. Our focus 
is on the application of NGS in the context of pathogen genomics. Beyond obvious clinical and public health applications, we also 
discuss the challenges that still remain within this rapidly evolving field.
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Deoxyribonucleic acid (DNA) was first discovered and isolated 
in 1869 by Friedrich Miescher [1]. Nevertheless, the signif-
icance of this discovery remained unnoticed for decades, be-
cause it was generally believed that proteins were the molecules 
that held the genetic code of life. This all changed in 1944, when 
DNA was shown to encode hereditary properties, initiating a 
search to decode the information carried within it [2]. In 1953 
came the discovery of the structure of DNA [3], and, since then, 
we have witnessed an explosion in technological advances that 
have facilitated both the manipulation and reading of nucleic 
acid sequences. These include tools such as polymerase chain 
reaction, molecular cloning, Sanger sequencing, and, more re-
cently, CRISPR/Cas editing and next-generation sequencing 
(NGS). These techniques, taken together, have enabled major 
discoveries and breakthroughs in medicine and public health.

The rapid development of sequencing approaches (Figure 
1), together with concomitant innovations in bioinformatics 
methods and algorithms, have ushered in an era of fast and rel-
atively inexpensive sequencing and big data analysis. The first 
semi-automated platform for DNA sequencing was reported 
in 1986 [4], only 10 years after the development of the Sanger 
method [5] (first-generation sequencing). A year later, in 1987, 
the first completely automated sequencer hit the market [6]. By 
1996, pyrosequencing was reported as the first-ever method 
for massively parallel DNA sequencing [7] (second-generation 
sequencing, or NGS). The first commercially available NGS 

platform arrived in 2005, followed by exponential improve-
ments in sequencing speed and accuracy, and rapid drops in 
sequencing cost and platform size. As a result, NGS is now more 
affordable and widely distributed than ever, revolutionizing the 
way we explore biological questions and enabling applications 
that were previously unfathomable. Today, we have portable 
NGS platforms that fit on the palm of the hand and can be run 
on batteries in remote locations away from the controlled en-
vironment of a traditional research laboratory [8]. We are also 
now entering the era of third-generation sequencing, where 
additional technological advances facilitate sequencing of ex-
tremely long fragments of DNA, several kilobases in length [9].

The developments of the past 40 years have had a very sig-
nificant positive impact on our understanding of infectious 
diseases. Next-generation sequencing has been used to study a 
wide range of medically important viruses, bacteria, parasites, 
fungi, and other pathogens. In this supplement of the Journal of 
Infectious Diseases, we present a compilation of reviews and orig-
inal research articles that highlight a few exciting applications of 
NGS in the context of pathogen genomics. Although these arti-
cles cover just a fraction of the pathogens and pathogen-induced 
diseases that have been studied by NGS, they complement each 
other by collectively touching on the major considerations per-
tinent in moving NGS from the bench to the bedside, from the 
laboratory to the field, from single pathogen genome character-
ization to an understanding of disease epidemiology and evolu-
tion, and from journal publications to public health and clinical 
decision making. The supplement has received input from NGS 
scientists, developers, users, and other stakeholders. Authors 
include basic and applied scientists, bioinformaticians, evolu-
tionary biologists, clinical microbiologists, physicians, epidemi-
ologists, and those in the public health workforce. Therefore, 
their perspectives and conclusions encompass individual patient 
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care, laboratory research, local, national and international public 
health control, and global epidemic response.

The pathogens and infections covered herein include medi-
cally important respiratory RNA and DNA viruses and bacteria, 
enteric viruses and bacteria, cosmopolitan and tropical parasites, 
mosquito-borne viruses, prosthetic joint infections, undifferen-
tiated meningoencephalitis, and pandemic agents. The scope of 
studies ranges from the use of NGS to rapidly identify patho-
gens directly from uncultured clinical and surveillance samples, 
to understanding the functional and epidemiological patterns 
of antimicrobial resistance, and to dissecting host genomic re-
sponses to infections from a systems biology perspective. In 
many cases, these are directly relevant to the design and evalu-
ation of vaccines, therapeutics, infection control, and a range of 
nonmedical public health countermeasures for epidemics. From 
a technical standpoint, the supplement discusses the application 
of NGS techniques such as shotgun metagenomics, RNAseq, ri-
bosome profiling, targeted sequencing, and minor variant re-
construction, as well as a broad suite of post-pipeline analyses 
that unifies various combinations of genomic, clinical, epidemi-
ological, and ecological data. When applied to specific pathogen 
research, these may require development of additional ad hoc 
technical solutions or improvements at various levels, including 
the experimental, sequencing, and bioinformatics realms. As 

such, the supplement constitutes a platform from which the 
complexities of these techniques, in regard to their application 
to pathogen research, can be put forth for analysis, discussion, 
and improvement.

Beyond the clinical and public health applications, scien-
tific advances, and technical updates described, much of the 
supplement examines the challenges that still prevent NGS 
from achieving its full translational impact on patient care and 
public health. These challenges remain considerable. Among 
what we estimate to be just a partial list, we have identified 
the following: the technical demands of conducting NGS-
enabled research in public health laboratories around the 
world; the importance of, and increased need for, training and 
quality-control mechanisms to conducting, analyzing, and 
interpreting NGS platform outputs; the complexity of clin-
ical validation and regulatory requirements for microbial di-
agnostic metagenomic NGS technologies; the integration of 
pathogen NGS into existing clinical and public health frame-
works; and the equitable and timely access to NGS data and 
analysis during outbreaks and epidemics. Yet, when possible, 
contributors also explore pathways toward overcoming many 
of these obstacles. Collectively, we remain optimistic about the 
current and future prospects for precision medicine and preci-
sion public health in this new era of pathogen NGS.
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Figure 1. Timeline of scientific discoveries and technological advances that have enabled the rapid development of sequencing approaches. DNA, deoxyribonucleic acid; 
PCR, polymerase chain reaction; rRNA, ribosomal ribonucleic acid.
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