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Analysis of mitochondrial m1A/G RNA
modification reveals links to nuclear genetic
variants and associated disease processes
Aminah Tasnim Ali1, Youssef Idaghdour 2 & Alan Hodgkinson 1✉

RNA modifications affect the stability and function of RNA species, regulating important

downstream processes. Modification levels are often dynamic, varying between tissues and

individuals, although it is not always clear what modulates this or what impact it has on

biological systems. Here, we quantify variation in m1A/G RNA modification levels at func-

tionally important positions in the human mitochondrial genome across 11,552 samples from

39 tissue/cell types and find that modification levels are associated with mitochondrial

transcript processing. We identify links between mitochondrial RNA modification levels and

genetic variants in the nuclear genome, including a missense mutation in LONP1, and find that

genetic variants within MRPP3 and TRMT61B are associated with RNA modification levels

across a large number of tissues. Genetic variants linked to RNA modification levels are

associated with multiple disease/disease-related phenotypes, including blood pressure,

breast cancer and psoriasis, suggesting a role for mitochondrial RNA modification in complex

disease.
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RNA modifications are post-transcriptional changes to the
chemical composition of nucleic acids and represent a
means by which RNA function can be fine-tuned1. Sites of

RNA modification are often highly evolutionarily conserved and
are crucial for processes such as development, cell signalling and
maintenance of the circadian rhythm, pointing to a major role for
RNA modification in fundamental cellular processes1. To date,
over 160 different types of RNA modification have been identi-
fied2, occurring on several types of RNA molecule, though they
are found most abundantly on ribosomal and transfer RNAs3.
The exact role of an RNA modification depends on the type,
location and target of the modification. Within tRNAs, for
example, modifications in the anticodon region can increase a
tRNAs decoding capacity, and improve translational fidelity4,
whereas modifications to the core of a tRNA molecule can pro-
mote correct folding and structural stability5. Modifications to
rRNA molecules are largely involved in the stabilisation of the
ribosome structure, but can also facilitate protein synthesis6, and
modifications to mRNA molecules can affect the maturation,
translation and degradation of an mRNA molecule by either
recruiting additional proteins or by altering the secondary
structure of the mRNA7. Importantly, not all modification levels
are fixed; instead, some display a dynamic range of modification
in different cell states and environments8, which may in turn
reflect a dynamic mode of RNA regulation.

Interest in RNA modifications has recently been renewed, due
to the development of high-throughput technologies that can
detect modifications on a transcriptome-wide scale. However,
these studies often consider a small number of samples mostly
limited to specific cell lines, and frequently focus on the detection
of novel modification sites rather than attempt to survey the
dynamic range of modification level across a large number of
individuals9–13. In addition, several studies have used computa-
tional methods to quantify RNA modification levels using stan-
dard RNA sequencing (RNAseq) libraries8,14–16. Within this, we
have previously shown that this approach is particularly effective
for mitochondrial-encoded RNA, where due to its abundance in
cells, we can detect levels of particular types of RNA modification
(N1-methyladenosine and N1-methylguanine, m1A/G) at multi-
ple functionally important positions along the mitochondrial
transcriptome14.

Mitochondria have essential roles in multiple cellular pro-
cesses, including energy production, signalling, ion metabolism
and apoptosis, and mutations in genes associated with mito-
chondrial processes have been linked to multiple different dis-
eases17–19. The mitochondrial genome itself encodes 2 rRNA
genes, 22 tRNA genes, and 13 mRNA genes20, and is transcribed
poly-cistronically before being processed according to the ‘tRNA
punctuation model’21, whereby tRNAs interspersed between
rRNA and mRNA genes form specific secondary degree struc-
tures that are used for recognition and cleavage by nuclear-
encoded proteins to release individual mitochondrial RNA
components16,22–24. Intermediate and mature RNA transcripts
harbour extensive RNA modifications, which impact features
such as transcript structure and stability that can be important for
both processing and function25. Interestingly, steady state levels
of mature mitochondrial transcripts vary substantially from the
1:1 ratio that might be expected from polycistronic transcrip-
tion26, indicating the importance of post-transcriptional pro-
cesses in the maintenance of mitochondrial homoeostasis.

In illustration of this, knockdown of nuclear-encoded mito-
chondrial RNA processing enzymes in mice leads to the accu-
mulation of unprocessed mitochondrial-encoded transcripts,
decreased levels of protein synthesis and altered mitochondrial
respiration rates16,27. Altered modification of mitochondrial-
encoded RNA can have similar consequences (1) methylation

(m1A/G) of bases at the ninth position of certain mitochondrial
tRNAs (henceforth referred to as P9 sites) is understood to have
an impact on the secondary structure and stability of the tRNA,
influencing its ability to more permanently form the cloverleaf
shape that is used for recognition and cleavage by nuclear-encoded
proteins, thus impacting upon downstream levels of processed
mitochondrial-encoded RNA5,28; (2) methylation (m1A) of mt-
RNR2 transcripts at mtDNA position 2617 is believed to provide
stabilising interactions to mature mitoribosomes, and lack of RNA
methylation at this position has been linked to impaired mito-
chondrial protein synthesis29; (3) methylation (m1A) of mt-ND5
transcripts at mtDNA position 13710 varies according to tissue
type11, and interferes with translation through mitoribosome
stalling and leads to decreased protein levels9. In this study,
we focus on quantifying variation in mitochondrial-encoded RNA
methylation levels at these three classes of site on a population
level in 11,552 RNA sequencing samples across 39 different tissue/
cell types. We perform quantitative trait mapping using
mitochondrial-encoded RNA methylation rates in order to iden-
tify nuclear genetic variants and genes that are involved in the
regulation of these processes across tissues, and to unravel their
downstream functional consequences.

Results
Overview. In order to study variation in methylation (m1A/G)
levels of mitochondrial-encoded RNA across multiple tissue
types, we mapped and filtered 13,857 RNAseq samples from 39
tissue/cell types, across 5 independent datasets (see Methods,
Supplementary Table 1), to the human reference genome using a
stringent pipeline optimised for the analysis of mitochondrial
data. After quality filtering, 11,552 samples remained for analysis.
It has previously been shown that the levels of m1A/G mod-
ifications can be inferred at particular positions using the pro-
portion of mismatching bases in RNAseq data8,16,26. The
assumption behind this approach is that chemical modifications
of RNA act to either block the reverse-transcription enzyme
during RNA sequencing library preparation or cause the enzyme
to mis-incorporate nucleotides resulting in mismatched alleles
when compared with the reference nucleotide. The proportion of
mismatches observed at modified sites has been shown to be
systematic and repeatable across experiments (with mismatched
alleles not present in the corresponding DNA)14, and the quan-
titative nature of using the proportion of mismatches as a proxy
for RNA methylation rate was demonstrated by looking at primer
extension rates at sites known to be modified10 (see Methods). As
such, we use this proportion to quantify the level of RNA
methylation at three categories of modified site where RNA
methylation is known to be functionally important (see above);
(1a) methylation at P9 sites of 13 of the 22 different mt-tRNAs
along the mitochondrial genome where methylation levels are
high enough to be detected via this approach, (1b) an average
estimate of methylation level across 11 different mt-tRNA P9 sites
that consistently show variation in whole blood14, under the
assumption that m1A/G levels may be driven by the same shared
mechanism along the mitochondrial transcriptome, (2) methy-
lation at mt-DNA position 2617 within mt-RNR2 and (3)
methylation at mt-DNA position 13170 within mt-ND5.

RNA methylation patterns across tissues. Across the 39 different
tissue/cell types examined, whole blood, brain, muscle and nerve
tissues show the highest levels of inferred RNA methylation
across all tRNA P9 sites combined, with average levels of 11–25%,
7–12%, 11%, and 10%, respectively (ranges shown where multiple
dataset-tissue type pairs are available). In contrast, the lowest
levels of inferred tRNA methylation are observed in cell lines,
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with average levels across P9 sites ranging between 0.3–0.5% in
LCLs and 0.7% in transformed fibroblasts (Fig. 1a, Supplementary
Fig. 1). Inferred RNA methylation levels also vary between
individual tRNA P9 positions along the mitochondrial genome.
For example, across all datasets inferred methylation levels at
tRNA position 3238 have an average value of 0.9%, whereas the
average methylation levels at position 8303 is 12%. To test
whether mt-tRNA P9 methylation levels are similar between
different P9 sites along the mitochondrial transcriptome within
an individual, we measured correlations between inferred
methylation levels at each pair of mt-tRNA P9 sites within each
dataset-tissue type pair. Across all individuals and dataset-tissue
types, all correlation coefficients were significant after Bonferroni
correction (P < 0.05, Pearson correlation), and centred around
0.75 (ranging between 0.18 and 0.95, Fig. 1b), suggesting that
methylation levels at different P9 sites are broadly consistent
along the mitochondrial transcriptome within each individual,
and thus may be driven by shared mechanisms.

Outside of tRNAs, the average inferred methylation level at mt-
rRNR2 (position 2617) and mt-ND5 (position 13710) transcripts
are generally high across all tissues examined (Fig. 1a), with
sample wide average values of 55% and 10%, respectively.
Average inferred mt-RNR2 transcript methylation levels range
between 38% in GTEx Testis and 67% in GTEx Heart (Atrial
Appendage), and average levels of inferred transcript methylation
within mt-ND5 range between 1% in subcutaneous adipose data

from TwinsUK and 23% in whole blood data from the NIMH.
Within dataset-tissue pairs, there is considerable variation in
inferred transcript methylation levels across individuals (Supple-
mentary Fig. 1); for example, at position 2617 in the
CARTaGENE whole blood dataset, inferred methylation levels
vary between 0.48 and 0.72, and between 0.11 and 0.76 in the
Geuvadis lymphoblastoid cell line (LCL) data.

To test if mitochondrial RNA methylation levels (at tRNA
P9 sites, at the mt-rRNR2 site and at the mt-ND5 site) are
correlated across tissue types within an individual, we selected
individuals from the GTEx dataset, where RNAseq data from the
largest number of alternative tissue types were available, and
measured pairwise correlations. For tRNA P9 sites, 11% of
pairwise comparisons were significant after Bonferroni correction
(P < 0.05, Pearson correlation. For significant correlations:
median r= 0.42, range 0.28–0.7, Fig. 1c). At the mt-RNR2
(position 2617) and mt-ND5 (position 13710) sites, 76% (for
significant correlations: median r= 0.49, range 0.24–0.81) and
95% (for significant correlations: median r= 0.59, range 0.3–0.88)
of correlation coefficients are significant after Bonferroni
correction (P < 0.05, Pearson correlations) (Fig. 1c). Collectively,
these results demonstrate detectable variation in mitochondrial-
encoded RNA methylation levels at the individual and population
level, as well as consistency in the levels observed along the
mitochondrial transcriptome and across tissues, suggesting the
presence of shared underlying regulatory mechanisms.

Fig. 1 Inferred mitochondrial RNA methylation levels. a Average RNA methylation levels calculated across datasets and tissue/cell types at three
categories of methylated site: averaged values across 11 mt-tRNA P9 sites, mt-RNR2 (position 2617) and mt-ND5 (position 13170). Bars show 1 standard
deviation from the mean. b Correlation coefficients between inferred tRNA P9 methylation levels within an individual, measured across individuals in all
datasets and tissue types (Pearson correlation, a total of 91 comparisons made between p9 sites using data from N= 11,552 individuals). c Correlation
coefficients between samples with inferred methylation levels measured in multiple tissues, measured at tRNA P9 sites, mt-RNR2 and mt-ND5. Data shown
for significant correlations only (P < 0.05 after Bonferroni correction, Pearson correlation). WBL whole blood, ASU adipose subcutaneous, SNE skin not sun
exposed, LCL lymphoblastoid cell line, AVO adipose visceral omentum, AGL adrenal gland, AAO artery aorta, ACO artery coronary, ATI artery tibial, BAM
brain amygdala, BAC brain anterior cingulate cortex, BCB brain caudate basal ganglia, BCH brain cerebellar hemisphere, BCE brain cerebellum, BCO brain
cortex, BFC brain frontal cortex, BSC brain spinal cord cervical, BSN brain substantia nigra, BHI brain hippocampus, BHY brain hypothalamus, BNA brain
nucleus accumbens basal ganglia, BPB brain putamen basal ganglia, BMT breast mammary tissue, CTF cells transformed fibroblasts, CSI colon sigmoid,
CTR colon transverse, EGJ esophagus gastroesophageal junction, EMUC esophagus mucosa, EMUS esophagus muscularis, HAA heart atrial appendage,
HLV heart left ventricle, LUN lung, MSK muscle skeletal, NTI nerve tibial, PAN pancreas, SSE skin sun exposed, STO stomach, TES testis, THY thyroid.
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Quantitative trait mapping. To identify nuclear genetic variation
associated with inferred mitochondrial-encoded RNA methyla-
tion levels, we obtained genome-wide genotyping data for the
same samples that we had RNA data for, and carried out quan-
titative trait mapping within each of the 39 tissue/cell types for
the level of methylation at functionally important positions
within the mitochondrial genome. This included inferred
methylation levels at (1a) 13 different tRNA P9 sites along the
mitochondrial genome, (1b) an average measure across multiple
tRNA P9 sites (see Methods), (2) position 2617 within mt-rRNR2
and (3) at position 13710 within mt-ND5. For tissues where we
had multiple independent datasets, which includes whole blood,
subcutaneous adipose, skin (non-sun exposed) and LCLs, we then
carried out meta-analyses. Across all datasets, we corrected for
multiple testing by accounting for genome-wide testing, the
number of methylation sites examined and the number of tissues
included in the analysis, resulting in a significance threshold of
P < 6.79 × 10−11.

Across all tissue types and mitochondrial RNA positions where
we quantify methylation levels, we find a total of 47 significant
associations (peak nuclear genetic variant and mitochondria
encoded RNA methylation level pairs). Most associations occur
in tissues for which we have multiple independent datasets, and
thus larger sample sizes (Table 1, Fig. 2); 25 nuclear genetic loci are
significantly associated with inferred mitochondrial-encoded RNA
methylation levels in whole blood, 4 are detected in subcutaneous
adipose, 2 in non-sun exposed skin and 1 in LCLs. In single dataset
tissues, we identify 15 significantly associated genomic regions
across multiple different tissue types: adipose (visceral omentum),
artery (aorta and tibial), nerve (tibial), oesophagus (muscularis and
gastroesophageal junction), transformed cells (fibroblasts) and skin
(sun exposed) (Supplementary Table 2). In total, 17 peak nuclear

genetic variants fall at missense sites, 22 within introns and 8 in
intergenic regions. Across all associated loci, many regions are
overlapping in different tissue types and methylation positions;
removing all regions that overlap leaves a total of 3 unique regions
on the nuclear genome associated with inferred methylation levels
at mitochondrial tRNA P9 sites, 2 unique regions associated with
inferred methylation levels at mt-RNR2, 1 unique region associated
with inferred methylation levels at both tRNA P9 sites and the mt-
RNR2 site and 1 unique region associated with mt-ND5.

To further consider the underlying genetic architecture of
variable mitochondrial RNA methylation levels across indivi-
duals, for sites in mitochondrial RNA where we identify two
independent nuclear loci associated with methylation levels with
the same direction of effect, we tested whether independent alleles
have an additive effect. Under these criteria we consider five
methylated positions in whole blood data, and in all of these
cases, we observe a significant change in inferred methylation
levels associated with carrying two effect alleles (one at each
independent loci) versus carrying only one (Fig. 3, P < 0.05 after
Bonferroni correction, t-tests).

Functional annotation of nuclear genetic variation. In order to
identify the potential genes and mechanisms through which
nuclear genetic variants are associated with mitochondrial-
encoded RNA methylation levels, we tested whether the peak
variant in each region was either a missense variant (and there-
fore potentially functional) or acted via modulation of the
expression of a nearby nuclear gene in cis, which then influences
mitochondrial RNA methylation levels, by performing mediation
analysis (requiring an association between the expression of a
nearby nuclear-encoded gene and the peak nuclear genetic

Table 1 Significant associations between nuclear genetic variation and inferred mitochondrial RNA methylation level for meta-
analysed tissues.

Tissue Mito position rsID CHR BP A1 N BETA P SNP type SNP location Mediator genes

Whole blood 585 rs13874 3 66419956 T 3 0.0204 3.36E−51 Missense SLC25A26 SLC25A26
Whole blood 585 rs1475041 14 35793550 G 4 0.0138 6.21E−21 Intergenic NA –
Whole blood 1610 rs13874 3 66419956 T 3 0.0453 1.50E−65 Missense SLC25A26 SLC25A26
Whole blood 1610 rs11156878 14 35735967 G 4 0.042 4.64E−35 Missense MRPP3 –
Whole blood 3238 rs13874 3 66419956 T 3 0.002 8.77E−15 Missense SLC25A26 –
Whole blood 3238 rs61988267 14 35730799 T 4 0.003 5.05E−20 Intronic MRPP3 –
Whole blood 4271 rs61988276 14 35769451 A 4 0.0086 1.15E−14 Intronic PSMA6 –
Whole blood 5520 rs11156878 14 35735967 G 4 0.0477 3.23E−37 Missense MRPP3 –
Whole blood 7526 rs1084535 3 66360030 A 3 0.0241 4.90E−18 Intronic SLC25A26 SLC25A26
Whole blood 7526 rs140678103 14 35765525 G 3 0.0335 2.36E−21 Intronic PSMA6 –
Whole blood 8303 rs74422990 14 35726093 G 3 0.0501 6.19E−29 Intronic MRPP3 –
Whole blood 9999 rs11156878 14 35735967 G 4 0.0757 1.69E−87 Missense MRPP3 –
Whole blood 9999 rs11085147 19 5711930 T 4 −0.0431 4.68E−15 Missense LONP1 –
Whole blood 10413 rs3820190 1 12033120 C 3 −0.0241 3.11E−12 Intronic PLOD1 PLOD1
Whole blood 10413 rs11156878 14 35735967 G 4 0.082 1.10E−87 Missense MRPP3 –
Whole blood 12146 rs11156878 14 35735967 G 4 0.0659 8.94E−81 Missense MRPP3 –
Whole blood 12146 rs11085147 19 5711930 T 4 −0.0335 1.27E−11 Missense LONP1 –
Whole blood 12274 rs11156878 14 35735967 G 4 0.044 4.32E−69 Missense MRPP3 –
Whole blood 14734 rs11156878 14 35735967 G 4 0.0085 1.03E−22 Missense MRPP3 –
Whole blood 15896 rs11156878 14 35735967 G 4 0.0115 1.45E−55 Missense MRPP3 PPP2R3C, MRPP3
Whole blood Averaged tRNA P9 rs11156878 14 35735967 G 4 0.0459 1.58E−116 Missense MRPP3 –
Whole blood 2617 rs11684695 2 29088450 T 4 0.0233 5.50E−99 Intronic TRMT61B PPP1CB,

TRMT61B, CLIP4
Whole blood 2617 rs2627773 2 55900459 A 4 −0.0083 1.82E−12 Intronic PNPT1 PNPT1
Whole blood 2617 rs13874 3 66419956 T 3 0.0093 2.22E−14 Missense SLC25A26 –
Whole blood 13710 rs10826790 10 30643872 G 4 0.0284 3.34E−28 Intergenic NA –
Adipose 10413 rs200541481 14 35761028 TCA 2 0.0051 4.14E−13 Intronic PSMA6 –
Adipose Averaged tRNA P9 rs11156878 14 35735967 G 2 0.005 4.32E−13 Missense MRPP3 –
Adipose 2617 rs10166861 2 29061111 A 2 0.0471 3.58E−80 Intronic SPDYA TRMT61B
Adipose 13710 rs2247084 10 30620625 G 2 0.0031 6.54E−14 Intronic MTPAP –
Skin 2617 rs10865508 2 29053704 C 2 0.0363 2.91E−67 Intronic SPDYA –
Skin 13710 rs2689214 10 30632228 A 2 0.0106 1.82E−17 Intronic MTPAP –
LCLs 2617 rs55785599 2 29087814 A 3 0.0349 1.13E−51 Intronic TRMT61B –

Alleles presented in the ‘A1’ column represent the minor allele, and the values in column ‘N’ represent the number of studies contributing the meta-analysis, for that row.
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variant associated with inferred mitochondrial RNA methylation,
and then significant mediation of the initial association via
bootstrapping, requiring an average causal mediation effect with
P < 0.05, corrected for the number of tests).

Applying this approach, we identify a number of novel
candidate causal genes (to our knowledge) that may be involved
in modulating mitochondrial tRNA methylation levels. First, we

find a missense variant (rs11085147) in LONP1 that is associated
with inferred methylation levels at mt-tRNA-G (position 9999)
and mt-tRNA-H (position 12,146). LONP1 codes for a mitochon-
drial matrix protein that is involved in degradation of damaged or
unfolded polypeptides, in addition to the maturation of certain
mitochondrial proteins30, and is also thought to directly bind to
mitochondrial DNA and RNA31. Second, an intronic variant

Fig. 2 Relationship between genotype and inferred methylation level at multiple positions on the nuclear genome and mitochondrial transcriptome,
respectively. Methyl groups are represented by red circles along the mitochondrial transcriptome, and inferred methylation levels are shown at three
categories of methylated site: at tRNA P9 sites (blue), at position 2617 within mt-RNR2 transcripts (red) and at position 13170 within mt-ND5 transcripts
(green). Averaged inferred levels of methylation across 11 mt-tRNA P9 sites are additionally shown in the grey shaded box (bottom left). Beta estimates
and P-values displayed are from meta-analysis of four independent whole blood datasets (sample sizes shown in Supplementary Table 1), and methylation
levels and genotypes displayed in boxplots originate from the CARTaGENE dataset.

Fig. 3 Additive effects of independent nuclear genetic variants associated with inferred RNA methylation levels in whole blood data. In each case,
individuals that are heterozygous for the first genetic variant (and homozygous for the reference allele at the second variant) are compared with individuals
that are heterozygous at both sites (t-test, data from the CARTaGENE project, from left to right: N= 373, 377, 377, 360, 333 independent biological
samples).
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(rs3820190) in PLOD1 that is associated with inferred mitochon-
drial RNA methylation levels at mt-tRNA-R (position 10413), is
also associated with the expression of PLOD1 in cis, which in turn
shows evidence of significant mediation of the association between
rs3820190 and inferred mitochondrial RNA methylation (Table 1).
PLOD1 is not currently thought to be involved in mitochondrial
function, however, the expression of MFN2 (a gene involved in
mitochondrial fusion) is also associated with rs3820190, and
although it was not significant in mediation analysis, it remains a
viable candidate for the causal gene in this case due to its
involvement in mitochondrial processes. Third, on top of
replicating previously identified links between missense variants
rs13874 and rs11156878 (within SLC25A26 and MRPP3, respec-
tively) and mitochondrial-encoded tRNA methylation levels using
larger sample sizes in whole blood14, we also detect significant
associations between rs11156878 and inferred tRNA P9 methyla-
tion levels in subcutaneous adipose and nerve tissues (Table 1 and
Supplementary Table 2), showing that these links may be
important in many regions across the body. MRPP3 is part of a
complex responsible for 5ʹ mt-tRNA processing, and thus is
directly involved in processes that may impact RNA methylation.

Outside of mitochondrial tRNAs, we identify an association
between an intronic variant (rs2627773) that is significantly
associated with the expression of PNPT1, which in turn
significantly mediates the original association between the genetic
variant and inferred mitochondrial RNA methylation levels at
position 2617 within mt-RNR2 in whole blood. PNPT1 codes for
an RNA binding protein that plays a role in various different RNA
metabolic processes, and thus may modulate RNA methylation
either directly or through interactions with other proteins. Finally,
we identify intronic variants (rs11684695 and rs10166861) that are
significantly associated with inferred methylation levels at position
2617 within mt-RNR2 (in whole blood and subcutaneous adipose,
respectively) that mediate these associations through the expres-
sion of genes including TRMT61B, a mitochondrial methyltrans-
ferase. The association in whole blood was originally identified in
a previous study14, but the link between TRMT61B and RNA
methylation within mt-RNR2 in subcutaneous adipose we identify
here suggests that this gene may play a more global role in the
regulation of RNA modification.

Cross-tissue analysis. As whole blood made up our largest
dataset (2424 RNAseq libraries across four datasets), we tested
whether nuclear genetic variants associated with inferred mito-
chondrial RNA methylation levels in whole blood operate in a
tissue specific or tissue-wide manner. For each of the 25 sig-
nificant mitochondrial methylation site-variant pairs in whole
blood, we tested for evidence of replication (correcting for the

number of methylation site-variant pairs), with the same direc-
tion of effect in all other tissues. In total, 17/25 position-SNP pair
associations replicate in at least one other tissue type (Supple-
mentary Table 3). rs11156878, which is associated with the
average level of inferred RNA methylation at tRNA P9 sites,
replicates in 22 additional tissues. rs11684695, associated with
inferred RNA methylation levels of position 2617, showed repli-
cation in 25 other tissues, and rs10826790, associated with RNA
methylation at position 13170, is replicated in 6 additional tissues
(Supplementary Table 3). This suggests that certain genetic loci
associated with mitochondrial RNA methylation levels in whole
blood are active in multiple other tissue types, and potentially in a
system-wide manner. Other variants, however, such as rs13874,
which associated with inferred methylation levels at multiple
individual mt-tRNA P9 sites and within mtRNR2 in whole blood,
does not show evidence of association in other tissues, suggesting
that it may either be tissue specific, or that there is insufficient
power to detect the association at smaller sample sizes.

Consequences of variation in mitochondrial RNA methylation.
Methylation modifications at mt-tRNA P9 sites are thought to
stabilise the secondary structure of the corresponding mt-tRNA
sequences within the mitochondrial transcriptome28. Since tRNA
structure is important for post-transcriptional substrate recogni-
tion and cleavage, we tested if inferred methylation levels at tRNA
P9 sites were related to mt-mRNA expression of the adjacent gene
for the 9 occurrences where an mRNA or rRNA gene is found
immediately upstream of a tRNA. Using data from the CARTa-
GENE project, which is the largest, paired-end dataset, we find
that inferred tRNA methylation levels are significantly associated
with the expression levels of genes immediately upstream in 6 out
of 9 cases at P < 0.05 (5 of which show positive relationships,
linear regressions) and 3/6 remain significant after correcting for
the number of pairs tested (Table 2). To test for replication of the
relationship, we used the GTEx whole blood dataset, which is the
second largest, paired-end dataset of unrelated samples. We find
that 2/6 nominally significant relationships show evidence of
replication, with the same direction of effect (P < 0.05 after
Bonferroni correction, linear regressions). These include the
positive association between inferred methylation levels within
mt-tRNA-L1 and the expression of mt-RNR2, and the negative
relationship between inferred methylation levels within mt-tRNA-
G and the expression of mt-CO3 (Table 2).

Overlap with disease associated loci. Finally, to identify potential
links between genetic variants associated with mitochondrial
RNA methylation levels and complex traits and phenotypes, we
looked for overlaps between peak associated nuclear variants

Table 2 Regression analyses between methylation level at mitochondrial tRNA P9 sites and expression of its 5ʹ mRNA, in whole
blood datasets.

CARTaGENE CARTaGENE GTEx GTEx

Mitochondria position 5ʹ mRNA Mitochondrial tRNA Beta coefficient P Beta coefficient P

1610 MT-RNR1 V 0.2201271 3.16E−07 0.09739377 0.4027136
3238 MT-RNR2 L1 2.361507 1.31E−12 2.511323 2.16E−05
4271 MT-ND1 I 0.1560262 0.1780689 0.2212783 0.1716995
5520 MT-ND2 W 0.07553068 0.02423747 0.03422895 0.6816734
8303 MT-CO2 K 0.04620692 0.01972715 0.005807783 0.9465179
9999 MT-CO3 G −0.0476643 0.02866581 −0.1192088 0.04399886
10413 MT-ND3 R 0.09531144 0.000149767 0.05458773 0.31342
12146 MT-ND4 H 0.01657878 0.4552959 0.1370204 0.05093543
15896 MT-CYB T 0.02015266 0.8987243 0.2027844 0.2833017
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(and SNPs in LD, Dʹ ≥ 0.9), and genome-wide significant disease
associated variants in the NHGRI-EBI GWAS Catalogue32. We
find overlaps with blood pressure and atrial fibrillation, glaucoma
and intraocular pressure, breast cancer and psoriasis (Supple-
mentary Table 4).

First, the intronic variant in PNPT1 (rs2627773) that is
associated with inferred methylation levels of mt-RNR2 (position
2617), is in LD with rs1975487, which is associated with diastolic
blood pressure33. Mitochondria have previously been linked to
increased blood pressure, predominantly through mechanisms
involving mitochondrial oxidative stress, however, the exact
mechanisms by which this is the case remain unclear34. We have
previously observed associations between nuclear genetic variants
influencing the expression of certain mitochondrial genes,
mediated through the expression of PNPT135, and the identifica-
tion of the overlap here suggests that RNA methylation level may
also be playing a contributory role in the process. Furthermore,
nuclear genetic variants (rs13874, rs1084535) associated with
inferred methylation levels at multiple mt-tRNA P9 sites and at
mt-RNR2 are in LD with rs34080181, which has been associated
with atrial fibrillation36. High blood pressure is a risk factor for
atrial fibrillation37, however, mitochondrial dysfunction itself has
been implicated with the development of atrial fibrillation,
through the generation of reactive oxidative species and the
alteration of calcium homeostasis and oxygen consumption38.

Second, genetic variants (rs10166861, rs10865508, rs34611659
and rs13033423) associated with inferred methylation levels at
mt-RNR2 in multiple tissue types are in LD with rs4577244,
which has been linked to breast cancer39. The role of
mitochondria in cancer has been debated since the discovery of
the Warburg effect40, and subsequent research has linked many
additional pathways/features of the mitochondria to tumorigen-
esis, including through alterations in its roles in cell death,
metabolism, and oxidative stress41. In previous work, we observed
an increase in the level of tRNA P9 methylation levels in cancer
tumours vs matched normal tissues15; our observation of an
overlap here suggests that methylation levels at mt-RNR2 may
also be involved.

Third, rs2627773, associated with inferred methylation levels in
mt-RNR2 in whole blood, is in LD with rs2627761, which has
been associated with glaucoma42. Age related mitochondrial
dysfunction has been suggested to play a role in development of
glaucoma, through lack of energy availability for repair mechan-
isms in the eyes43. Similarly, genetic variants (rs11685682,
rs34611659 and rs4132617) associated with inferred methylation
levels at mt-RNR2 are in LD with rs147972440, which has been
linked to intraocular pressure44. Intraocular pressure is a risk
factor for glaucoma, suggesting that the mitochondria may
additionally be involved in the development of glaucoma through
its impact on intraocular pressure.

Finally, nuclear genetic variants (rs1475041, rs11156878,
rs61988267, rs74422990 and rs200541481) associated with
inferred methylation levels at multiple different mt-tRNA
P9 sites are in LD with rs8016947, which has been associated
with psoriasis45. Increased levels of mtDNA have been observed
in the serum of psoriasis patients compared with controls, and
mitochondria have been suggested to be involved in psoriasis by
triggering inflammation through reduced mitochondrial apopto-
sis and extracellular leak of mitochondrial DNA, eliciting an
immune response46.

Discussion
RNA modifications represent an additional layer of control in the
regulation of gene expression. They are found extensively
throughout both the nuclear and mitochondrial transcriptome,

where they play important roles in structural stability and
translation efficiency. Using mitochondria as a model system,
we characterise RNA methylation (m1A/G) levels (via RNA
sequencing mismatch proportions) at multiple functionally
important sites on the mitochondrial transcriptome, across a total
of 39 tissues/cell types. We find that RNA methylation levels are
correlated along the transcriptome, but vary between tissues, with
blood and brain tissues showing the highest levels of variation. As
the mitochondrial and nuclear genomes have co-evolved over
evolutionary time, we also link variation in mitochondrial RNA
methylation levels to genetic variation in the nuclear genome.

In total, we associate 6 nuclear genes to fundamental biological
processes taking place in human mitochondria. Within this we
identify, to our knowledge, novel associations between mito-
chondrial RNA methylation levels and a missense mutation in
LONP1, as well as independent non-coding variants that may be
operating through modulating the expression of PLOD1 and
PNPT1. Furthermore, we find that previously identified associa-
tions14, which have been linked to MRPP3 and TRMT61B, occur
in multiple tissue types, which may have important implications
for disease.

MRPP3 codes for the catalytic subunit of mitochondrial RNase
P, a complex responsible for the 5ʹ cleavage of mt-tRNAs22, and is
active only in the presence of its other subunits47, MRPP1 and
MRPP2. The MRPP1 and MRPP2 sub-complex, however, is able
to carry out its methyltransferase activity independently of
MRPP348, so the association between rs11156878 within MRPP3
with methylation of mt-tRNAs is likely detected due to its effect
on cleavage capacity. TRMT61B is a methyltransferase that is
responsible for the methylation of position 58 on certain mito-
chondrial tRNAs, in addition to position 2617 in mt-RNR229. In
the present study, an intronic SNP is associated with increased
levels of methylation at mt-RNR2, as well as increased expression
of TRMT61B, likely explaining the relationship detected here. Of
genes newly implicated with mitochondrial RNA methylation
levels, LONP1 has been shown to degrade MRPP3 as part of the
mitochondrial unfolded protein response49, possibly explaining
its association with methylation level, or alternatively it may
influence methylation levels more directly as it is known to bind
to mitochondrial DNA and RNA. Finally, PNPT1 is involved in
multiple metabolic RNA processes in mitochondria, and reduc-
tion of PNPT1 levels results in impaired mitochondrial processing
and accumulation of large polycistronic transcripts, possibly due
to its connection to the import of RNase P RNA into the
mitochondria50,51, again likely explaining why it is associated
with methylation level in this study.

Interestingly, rs13874, a missense mutation in SLC25A26, tends
to only be associated with tRNAs towards the beginning of the
mitochondrial transcript in whole blood, and does not show
evidence of replicating across tissues. SLC25A26 is a mitochon-
drial carrier protein that is responsible for transporting S-
adenosylmethionine into the mitochondria, which is a methyl
group donor in methylation reactions. The absence of rs13874
replication across tissues may be related to the fact that the
highest levels of methylation are seen in whole blood, in com-
bination with SLC25A26 concurrently having the lowest levels of
expression in whole blood (https://gtexportal.org/home/gene/
SLC25A26). Therefore, the effect of a possible transportation
deficiency may only be observed in tissues where the requirement
for methylation is high. As blood is the tissue in which we detect
the highest levels of methylation, but also the lowest levels of
SLC25A26 expression, this mutation may have particularly
important implications for blood-based processes and diseases.

The downstream functional consequences of altered mito-
chondrial RNA processing are well documented in human cell
lines and model organisms16,52, but here using in vivo data we
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show that natural variation of mitochondrial RNA methylation
levels in ‘healthy’ individuals may influence mitochondrial pro-
cesses (namely changes in mitochondrial gene expression). Dis-
ruption or perturbation of the function of nuclear genes that we
have implicated in mitochondrial RNA methylation can have
serious phenotypic consequences. In humans, for example, a
mutation in PNPT1 has also been linked with impaired import of
RNA into the mitochondria, and leads to combined oxidative
phosphorylation deficiency53 and also autosomal recessive deaf-
ness51; missense mutations in LONP1 have been implicated in
CODAS syndrome, which is a developmental disorder affecting
multiple systems (cerebral, ocular, dental, auricular and skeletal)54

and mutations in SLC25A26 have been linked to combined oxi-
dative phosphorylation deficiency55. Similarly, TRMT61B has
been identified as a differentially expressed gene in a small cohort
of Alzheimer’s disease cases, when compared with matched con-
trols52, and knockdown of the drosophila homologue of MRPP3
leads to the loss of locomotive function in Drosophila, similarly to
what is seen in Parkinson’s disease27.

These examples are phenotypically varied and are the result of
extreme alterations in the function of the corresponding gene.
The genetic variation associated with RNA methylation levels in
this study have less extreme effects, however, they are linked with
changes in post-transcriptional processing and downstream
expression of mitochondrial genes. While this variation might be
tolerated under normal physiological situations, the introduction
of stressful situations, for example, during increased mitochon-
drial damage through ageing, may be enough to push a tissue that
is heavily reliant on appropriate mitochondrial function into
dysfunction. Conversely, altered mitochondrial expression over a
long duration may be enough to lead to negative later life con-
sequences. Impaired mitochondrial gene expression due to the
heterozygous knockout of PTCD1, a mitochondrial RNA pro-
cessing enzyme, for example, has been linked to later-life obesity
in mice52. In this study, we find overlaps between genetic variants
associated with mitochondrial RNA methylation levels and var-
iants linked to blood pressure and atrial fibrillation, glaucoma and
intraocular pressure, breast cancer and psoriasis, suggesting that
altered mitochondrial RNA modification may play a role in
complex diseases. Overall, it will be important to fully disentangle
the genetic and molecular mechanisms underlying post-
transcriptional processes in the mitochondria across a range of
both healthy and diseased states, building on the population level
framework we describe here, since changes in these processes may
dramatically alter mitochondrial function in a multitude of cel-
lular environments.

Finally, our approach makes use of sequence mismatches in
RNA sequencing data as a proxy for m1A/G RNA modification
levels. This approach is semi-quantitative by nature since mis-
incorporation of nucleotides by the reverse-transcription enzyme
at modified sites during RNA sequencing library preparation is
not infallible (see Methods). However, our approach allows us to
survey rates of RNA modification across a large number of
individuals and tissues, drawing power to make important bio-
logical inferences from these data. It is hoped in the future that
other high-throughput approaches (such as Nanopore sequencing
or site-specific mass spectrometry) may have the potential to
more directly quantify RNA modification levels across a wider
range of modification types, and thus allow for an expanded view
on genetic drivers and downstream consequences of dynamic
RNA modification regulation.

Methods
Data description. RNA sequence and genotype data were obtained from five
independent, publicly available projects, including:

CARTaGENE56: A population-based cohort comprised of people aged between
40 and 69, from Quebec, Canada. Whole blood samples were taken for RNA
sequencing and genotyping, producing 100 bp paired-end RNAseq reads and
genotypes from the Illumina Omni2.5M genotyping array. Samples with RNAseq
data from multiple sequencing runs, that passed quality control, were merged
before the alignment stage.

NIMH (National Institute of Mental Health) Genomics Resource57: Whole
blood samples were collected for RNA sequencing and genotyping from the
Depression Genes and Networks study. Individuals were aged 21–60, and are a
case/control cohort. 50 bp single-end RNAseq reads were produced, along with
genotypes from the Illumina HumanOmni1-Quad BeadChip. Mapped RNAseq
reads for duplicate samples that passed quality control were merged for further
analysis, and samples failing QC were discarded.

Geuvadis Project58: LCL samples from the 1000 Genomes cohort were RNA
sequenced to produce 75 bp paired-end RNAseq reads. Mapped DNA sequence
data from phase 1 of the project were downloaded from the 1000 Genomes FTP
site (v5a.20130502).

TwinsUK Project59: Female monozygotic twin pairs, dizygotic twin pairs and
singletons, aged between 38 and 85 were recruited for RNA sequencing and
genotyping. Biopsies from subcutaneous adipose tissue and skin were collected, as
well as peripheral blood samples for additional generation of lymphoblastoid cell
lines (LCLs). 50 bp paired-end RNAseq data were produced from these tissues as
well as genotypes from Illumina HumanHap300 and Illumina HumanHap610Q
genotyping arrays.

GTEx (Genotype-Tissue Expression) Project60: Multiple tissue samples were
collected from deceased individuals for RNA sequence analysis and dense
genotyping, with sample age range varying between 20 and 71. We use a
combination of data from the pilot and midpoint phases of the GTEx project,
where samples were genotyped in the Illumina Omni5M and Illumina Omni2.5M
genotyping arrays, respectively. RNAseq read lengths produced by the project
varied, and we analyse samples with 75-bp long reads only.

Full data accession information, sample sizes and tissue types are described
further in Supplementary Table 1. Informed consent was obtained by the original
studies and the project was approved by each relevant data access committee.

RNAseq mapping. FastQC [v0.11.3] (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) was run on raw RNAseq data, and samples with drops in base
quality below phred 20 or uncalled bases in the middle of reads were discarded.
RNAseq reads were then pre-processed to remove adaptor sequences and low
quality trailing bases (Phred < 20) using TrimGalore [v0.4.0] (https://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/). Poly-A/T sequences >4 bp
were also removed from read termini using PRINSEQ-lite [v0.20.4]61. Remaining
reads with >20 nucleotides were then mapped to the human reference sequence
(1000G GRCh37 reference, which contains the mitochondrial rCRS NC_012920.1)
using STAR [2.5.2a_modified] 2-Pass mapping, allowing ~1 mismatch per 18 bases
per read, rounded down to the nearest integer. STAR soft-clipping was also
allowed. After mapping, FastQC [v0.11.3] was rerun on data, and samples with
median sequence quality scores falling below Phred 20 were removed from further
analysis. SAMtools [v1.4.1]62 was then used to retain only properly paired and
uniquely mapped reads. This stringent step was applied to ensure that analysed
reads originated from the mitochondria, rather than nuclear-encoded fragments of
mitochondrial DNA (NUMTs). Transcript abundances were calculated using the
‘intersection non-empty model’ within HTseq [v0.6.0]63, and gene expression
counts were then quantified according to transcripts per million (TPM). Genes
expressed in all samples with an average TPM value >2 were used to calculate
principal components (PCs) in R and outliers identified from visualisation of PC1,
PC2 and PC3 were excluded. Samples were further excluded for having: fewer than
5,000,000 remaining reads, fewer than 10,000 mitochondrial reads, rRNA content
>30%, RNAseq mismatch percentage >1%, or intergenic read percentage >30%.

Quality control, phasing and imputation of genotype data. QTLtools [v1.0]
(https://qtltools.github.io/qtltools/) was used to ensure sample labelling was con-
sistent between genotype and RNAseq data. Quality control (QC) of genotype data
was carried out using PLINK [v1.90b3.44]64. Duplicate samples, genetic PC out-
liers, samples with unexpected relatedness and samples with outlying hetero-
zygosity rates were removed, in addition to samples with discrepant reported and
genotypic sex information, or ambiguous X chromosome homozygosity estimates.
Samples with >5% missing genotype data were also excluded. SNPs were removed
for violating Hardy–Weinberg equilibrium (HWE) with a P-value <0.001, for
having a genotype missingness >5% or for having a minor allele frequency (MAF)
<1%. SNPs coded according to the negative strand were flipped to the positive
strand. SNPs remaining on autosomal chromosomes were phased using default
settings within SHAPEIT [v2.r837]65, for all datasets with array genotype data.
Phased chromosomes were imputed in 2Mb intervals using default settings within
IMPUTE2 [v2.3.2] using 1000 Genomes Phase 3 individuals as a reference
population66,67. Imputed genotypes were then hard called with a minimum calling
threshold of 0.9 using GTOOL [v0.7.5] (https://www.well.ox.ac.uk/~cfreeman/
software/gwas/gtool.html) and filtered out for having an IMPUTE2 info score <0.8,
MAF < 5%, genotype missingness > 5%, HWE P < 0.001 or for being multi-allelic.
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Datasets genotyped on two different arrays were imputed separately and then
merged.

Quantification of mismatch rate at modified sites. Previous studies have shown
that the proportion of mismatching bases at certain sites on the mitochondrial
transcriptome can be used to represent the level of post-transcriptional methylation
at these sites. During library preparation for RNA sequencing, methylation mod-
ifications on transcripts can interfere with the reverse-transcription process by
causing the reverse transcriptase to randomly incorporate nucleotide bases at the
methylated position8. Though not a direct measurement of methylation level8, it is
thought that this mismatch signature can be used to estimate the level of methy-
lation present on transcripts by measuring the proportion of non-reference alleles
at modified sites14–16,26. In line with this, the following results support the use of
sequence mismatches as a proxy for RNA m1A/G modification level. First, in our
previous work we demonstrated that methylation levels estimated via mismatches
are repeatable across experiments14. To do this we quantified the proportion of
sequence mismatches occurring at modified sites using data generated from Illu-
mina sequencing, and then recalculated these proportions for a subset of indivi-
duals after performing library preparation and sequencing (from stock blood) on
an alternative platform (Ion Torrent), finding that sequence mismatch levels were
significantly correlated across platforms (see Supplementary Fig. 2 in Hodgkinson
et al.14, r2= 0.731, P= 4.89e−5). Second, to follow on from this work, we now
show that sequence mismatch levels at modified sites are repeatable across inde-
pendent Illumina sequencing experiments performed on the same samples. To do
this, we focussed on a subset of samples that were sequenced two independent
times, in each case starting from stock RNA, in the CARTaGENE project
(47 samples). For each of these samples we then compared the proportion of
mismatches occurring at each modified site (where there is >20× coverage), again
finding a high correlation between unique experiments (Supplementary Figure 2, R
= 0.97, P < 2.2e−16, Pearson correlation). Third, Clark et al.10 made a comparison
of samples treated with demethylation enzymes to untreated controls and con-
firmed the presence of methylation at the ninth position of 19/22 mt-tRNA
positions, at similar levels to when measured by primer extension10. Although an
alternative reverse transcriptase enzyme was used in that study (TGIRT), Safra
et al.11 have shown that sequence mismatch levels inferred when using TGIRT
significantly correlate with those inferred when Superscript II (an enzyme used in
many RNA sequencing studies) is used during RNAseq library preparation (r=
0.82, P= 3.57e−26, Pearson correlation, see extended Fig. 1f in that study11).

Here, we consistently detect modification levels at levels ≥1% at 13/19 of these
mt-tRNA sites, which correspond to the following mitochondrial genomic
coordinates: 585, 1610, 3238, 4271, 5520, 7526, 8303, 9999, 10413, 12146, 12274,
14734 and 15896. Of these sites, m1G modifications occur at positions 3238 and
4271, and m1A modifications occur at all other positions10. We also calculate
methylation level at mtDNA positions 2617 and 13710, which correspond to
locations within mt-RNR2 and mt-ND5, respectively; methylation levels at these
sites can also be determined using RNAseq data8,9. In all cases, m1A/G
modifications have been detected at these sites using other high-throughput
approaches based around m1A-seq (Supplementary Table 5).

Positional read coverage at mitochondrial sites were summarised using
SAMtools mpileup and mismatch rate was calculated from sites with a nucleotide
quality score ≥ Phred 13 and coverage ≥ 20×. A site was then considered to show
evidence of being methylated if the average proportion of mismatches within a
dataset was >1%, as below this level, mismatches due to the presence of
methylation is indistinguishable from mismatches due to sequencing error. A
combined measure of methylation level was also calculated by averaging across 11
mt-tRNA p9 sites: 585, 1610, 4271, 5520, 7526, 8303, 9999, 10413, 12146, 12274
and 14734 (where values are present), in order to gain an idea of processes
influencing post-transcriptional methylation overall. These sites consistently show
variation in whole blood data and have previously been used as an estimate of
combined methylation14,15. Inferred methylation values 3 standard deviations from
the mean were masked to avoid association results being driven by extreme values.

Pearson’s correlation coefficients between inferred methylation levels at
different tRNA P9 sites (including averaged levels across P9 sites) were calculated
within individuals, across all datasets and tissue types available. A total of 91
comparisons that were carried out. Pearson’s correlation coefficients between
methylation level at the same position, across multiple tissues, were carried out
using measurements from the GTEx dataset. For a position to be compared
between tissues, we required that both tissues have an inferred average methylation
level of 1% and at least 100 pairs of data points to compare. For tRNA P9 sites,
there are 1657 comparisons, for positions 2617 and 13710 there are 219
comparisons.

Quantitative trait mapping and meta-analysis. Quantitative trait mapping was
carried out for modification positions with an inferred average methylation level ≥
1% variation per dataset. Analyses were carried out separately for each position and
tissue (therefore comparing samples that were generated using the same library
preparation and sequencing protocols), using linear models in PLINK [v1.9]64. For
the TwinsUK tissues, GEMMA [v0.96]68 was used to calculate relatedness matrices
and association tests were carried out using univariate linear mixed models.
Covariates used in the linear model included 5 study specific genetic PCs and 10

PEER factors calculated from RNAseq data using PEER [v1.0]69 for tissues with
≥100 samples or 5 genetic PCs and 5 PEER factors for tissues with <100 samples.
Additional covariates included in the linear model were sex, genotyping array and
RNA-sequencing batch information, where available and where relevant. Tissues
with multiple datasets were meta-analysed using PLINK [v1.9], under a fixed
effects model.

To check for additive effects where mitochondrial RNA methylation levels are
associated with two independent nuclear loci having the same direction of effect
(five cases), we used CARTaGENE data since these criteria were only met in results
from whole blood. For each case we then compared RNA methylation levels for
individuals that were heterozygous at the nuclear loci with the highest minor allele
frequency and homozygous for the reference allele at the other nuclear loci against
RNA methylation levels for individuals that were heterozygous at both sites with a
t-test.

Cis-eQTL identification and mediation analysis. To identify potential genes
through which nuclear genetic variants associated with mitochondrial post-
transcriptional methylation levels were acting, we carried out mediation analysis.
First, for each peak SNP associated with mitochondrial RNA methylation levels, we
identified any nuclear genes within a 1Mb whose expression is significantly
associated with the peak nuclear SNP genotype (correcting for the number of cis-
genes tested for association, per peak SNP), using the same covariates as described
above and quantile normalised TPM values from the corresponding tissue (for
tissues with multiple independent datasets, we use the dataset with the largest
sample size). For nuclear genes/genetic variants that pass these criteria, we then
tested whether the expression of the nuclear gene significantly mediated the rela-
tionship between the peak nuclear variant and associated inferred mitochondrial
RNA methylation levels using 1000 bootstrapping simulations with the ‘Mediation’
package in R, correcting the P-value for the number of cis-genes tested.

Consequences of variation in mitochondrial RNA methylation levels. To test if
methylation levels at mitochondrial tRNA P9 sites have an impact on the
expression levels of immediately upstream mitochondrial genes, we regressed the
expression levels of the upstream gene on the level of methylation at the relevant
tRNA P9 site, including batch, gPC 1–5 and PEER factors 1–10 as covariates in the
model. This analysis was carried out in the CARTaGENE whole blood dataset,
which is our largest, paired-end, long read dataset, and replicated in the GTEx
whole blood dataset.

Overlap with disease. We tested for overlap between peak nuclear genetic variants
associated with inferred mitochondrial RNA methylation levels, and SNPs in LD
(D′ ≥ 0.9) within a 500 kb interval, with genome-wide significant SNPs (P <
5E10−8) associated with disease/disease risk phenotypes reported in the NHGRI-
EBI GWAS Catalogue in March 201932, requiring the GWAS variants to be
identified in studies on European individuals with at least 10,000 cases or quan-
titative measures. We report D′, R2 and MAF values from the largest dataset that is
representative of the tissue in which peak SNPs were initially identified.

Statistics and reproducibility. Sample sizes are outlined in Supplementary
Table 1. Associations between nuclear genetic variants and mitochondrial m1A/G
methylation levels were determined via PLINK and GEMMA, and we report
asymptotic P values generated from the Wald test. Covariates included are listed
above per dataset and p-values were Bonferroni corrected using the number of
methylation sites examined and the number of tissues included in the analyses.
Comparisons of mitochondrial m1A/G methylation levels between methylated sites
and across tissues were made by calculating Pearson’s correlation coefficients. All
analyses are reproducible with access to RNA sequencing and genetic data.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Raw RNA sequencing and genotype data were obtained from five publicly available
projects. For the CARTaGENE project, data were obtained through application to the
data access committee (instructions are available at www.cartagene.qc.ca). For the NIMH
Genomics Resource, data were obtained after application to the data access committee
(through www.nimhgenetics.org). For the Geuvadis Project, RNA sequencing data were
obtained from the European Nucleotide Archive under submission number ERA169774,
and genetic data were obtained from the 1000 Genomes FTP site (v5a.20130502). For the
TwinsUK Project, data were obtained from the European Genome-Phenome archive
(https://ega-archive.org) through study ID EGAS00001000805. For the GTEx Project,
Data were obtained by application to dbGaP through accession number phs000424.v6.p1.
Data underlying each figure is available as Supplementary Data.

Code availability
Code to infer RNA modification levels from RNA sequencing data is hosted at
https://github.com/AJHodgkinson/Mitochondria.
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