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The growth and division of eukaryotic cells are regulated by complex, multi-scale networks. In this process, the mechanism of
controlling cell-cycle progression has to be robust against inherent noise in the system. In this paper, a hybrid stochastic model is
developed to study the effects of noise on the control mechanism of the budding yeast cell cycle. The modeling approach
leverages, in a single multi-scale model, the advantages of two regimes: (1) the computational efficiency of a deterministic
approach, and (2) the accuracy of stochastic simulations. Our results show that this hybrid stochastic model achieves high
computational efficiency while generating simulation results that match very well with published experimental measurements.
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INTRODUCTION

The eukaryotic cell cycle is a complex process by which a growing
cell replicates its DNA and divides into two cells, each capable of
repeating the process. Progression through the cycle is controlled
by networks of genes, mRNAs, and proteins, with interactions that
can be modeled as chemical reaction channels. To unravel the
complex dynamics of multi-scale reaction networks in higher
organisms such as human cells, it is advisable to study single-cell
organisms with molecular regulatory networks that are similar yet
simpler. For instance, experimental studies and mathematical
models of frog eggs'?, fission yeast>”, and budding yeast>® have
shed light on mechanisms of cell-cycle regulation in the cells of
higher organisms. Extensive experimental studies have been
conducted particularly on budding yeast (Saccharomyces cerevi-
siae) to explore gene regulation and signaling pathways of
relevance to cell growth and division’™. Moreover, various
modeling approaches, such as deterministic models'®"'?, Boolean
networks'>™'?, and stochastic models?°°, have been adopted to
explore the roles of different gene and protein interactions in
robust progression through the cell cycle.

Among these models, a deterministic approach is most
common. In this approach, the time-dependent variation of each
molecular species in the biochemical reaction network is
described by a nonlinear ordinary differential equation (ODE), in
which the concentration of the substance is considered as a
continuous quantity that evolves deterministically over time.
However, the time-evolution of molecular species within the
confined volume of a budding yeast cell (about 30 fL at birth) is
not deterministic. Therefore, in spite of being able to reproduce
certain average characteristics of cell-cycle progression in yeast
cell populations, a continuous-deterministic model cannot repro-
duce the cell-to-cell variability observed in wet-lab experi-
ments?’?%, For instance, Di Talia et al.?® have reported that the
coefficient of variation (Cv = standarddeviation) for G time of
budding yeast cells (growing on glucose) is 50%.

To capture such high levels of variability, stochastic models
have been built using different strategies to incorporate intrinsic
and extrinsic sources of noise. In an early stochastic model of the
fission yeast cell cycle proposed by Sveiczer et al.?°, extrinsic noise
was introduced by assuming some sloppiness in the partitioning
of cell volume and nucleus volume to daughter cells at division. A
later model by Steuer®® examined the roles of intrinsic noise in

cell-cycle progression by adding Gaussian noise to reaction rate
equations in a deterministic model. These approaches, however,
do not adequately explain the root source of cell-cycle variability
in yeast cells, which lies in molecular fluctuations at the level of
gene expression®' 3, To capture such molecular-level noise, more
accurate stochastic methods are required to explicitly model
fluctuations in molecular interactions. For this purpose, the best
method to implement fluctuating molecular interactions is the
stochastic simulation algorithm (SSA) proposed by Gillespie®.
Gillespie’s algorithm is a Monte-Carlo approach that numerically
simulates the temporal firing of every single reaction in a chemical
reaction network. An assumption of Gillespie’s method is that the
propensity of every reaction in the model is described by mass-
action kinetics. This becomes an issue for us because most
deterministic models of cell-cycle regulation, such as those
presented in refs >'"'23 incorporate complex rate laws including
Michaelis-Menten kinetics, Hill functions, and ultra-sensitive
switches. These complex phenomenological rate laws are used
in deterministic models to provide sufficient nonlinearity in
reaction kinetics to create bistable switches that flip on and off
during progression through the cell cycle. Converting a determi-
nistic model into a stochastic model suitable for Gillespie’s SSA by
‘unpacking’ complex rate laws into elementary reactions is a
difficult problem fraught with uncertainties®.

To address this challenge, several approaches have been tried.
The simplest approach, used for example by Mura & Csikasz-
Nagy®’, treats all complex rate laws directly as propensity
functions of reactions and then applies the SSA. This approxima-
tion is subject to considerable errors***, For example, Ball et al.”'
found that the variability they observed in wet-lab measurements
could not be generated by this greatly simplified stochastic
approach, unless some unrealistic parameter values were chosen.
Later Kar et al.?® tried to unpack Michaelis-Menten rate laws in a
small (three-variable), deterministic model of the budding yeast
cell cycle®. Unpacking resulted in a much more complicated
system with 19 species and 47 reactions. Although this simple
model (with only a few key cell-cycle genes) could generate noise
levels that match wet-lab measurements for a few key character-
istics of the cell cycle, it is not feasible (in our experience) to apply
this approach to more complex models with substantially more
genes and proteins. Instead, we have pursued an approach in
which the molecular controls of the budding yeast cell cycle are
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modeled directly in terms of elementary reactions (governed by
the law of mass-action)®>°, A great advantage of this approach is
that the newly designed deterministic model can be converted
into its corresponding stochastic version without any approxima-
tion. A disadvantage of this approach is that we cannot re-purpose
our original deterministic models, which had been carefully
designed and parametrized to explain a broad scope of
experimental observations. Furthermore, to model the phosphor-
ylation and dephosphorylation reactions that play such important
roles in cell-cycle progression introduces substantial complexity
into the system. Recently we have considered a new approach
that sidesteps the complications of elementary reactions and
mass-action rate laws and that employs a Langevin-type simula-
tion of noisy gene expression®?. This approach, though promising,
also requires an overhaul of the original deterministic models. In
order to take advantage of existing deterministic models in a
framework that permits accurate stochastic simulations without
‘unpacking’, we explore a particular hybrid approach in this paper.

Gillespie’s SSA simulates every single reaction firing. In general,
the time complexity of this algorithm scales proportionally with
the number of reaction firings. Consequently, SSA-based models
involve substantial computational complexity if a reaction network
involves many fast reactions. To reduce the high computational
cost of the SSA, many optimization methods®**~** and approxima-
tion methods**~*® have been proposed. Among them the hybrid
stochastic approach, originally proposed by Haseltine and Rawling
(HR)*, performs well because it takes advantage of the multi-scale
features common in biochemical reaction networks. The multi-
scale characteristics of reaction networks have led to significant
reductions in the computational cost of solving many types of
stochastic systems. For example, hybrid approaches provide good
approximate solutions for the chemical master equation®®>°.

The main idea of any hybrid approach is to divide the system
into subsystems and solve each subsystem using an appropriate
method. The idea of the HR hybrid approach (that we are using in
this paper) is to partition the dynamical system into fast and slow
reactions, based on the relative time scale of each reaction and
the abundances of the reactants. Fast reactions, which fire
frequently and often involve high-abundance species, are parti-
tioned into the deterministic (ODE) regime. Meanwhile, slow
reactions, which are often found at the gene-expression level, fire
much less frequently and are therefore simulated using the SSA.
This approach was first applied by Liu et al.>? on the simple three-
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variable model of the budding yeast cell cycle, originally studied
by Kar et al.®’. By partitioning all gene-expression reactions into
the slow (SSA) regime and all protein-level dynamics into the fast
(ODE) regime, Liu et al.?* were able to reproduce the noise levels
that Kar et al.?° achieved by unpacking the original system into a
much more complex one. This success motivated us to apply this
approach to the very comprehensive, accurate, and complex
deterministic model of yest cell-cycle controls proposed by Chen
etal'.

Simulation results demonstrate that, while achieving high
computational efficiency, our hybrid model still matches up well
with experimental measurements of the variability of cell-cycle
properties (cycle time, cell size, correlation coefficients), protein
and mRNA abundances, and phenotypes of more than 100 mutant
strains of budding yeast. Moreover, our simulations shed light on
the ‘partial’ viability of mutant strains such as CLB2dbA clb5A.

RESULTS

We develop a hybrid stochastic model of the budding yeast cell
cycle, consisting of 45 proteins and 19 mRNAs. In Section
Methods, we will elaborate the steps for building our hybrid
stochastic model. Building on this model, we use Algorithm 1, that
we introduce in Section Methods to generate sufficiently large
populations of mother and daughter cells to estimate the
statistical distributions of various cell-cycle-related properties of
wild-type cells as well as 122 mutant strains of yeast. We evaluate
our model by comparing numerical simulation results with
experimental observations from the published literature.

Wild-type cell

Figure 1a, b shows a deterministic simulation of several protein
and mRNA species, respectively, in our model of wild-type
budding yeast cells. In early G1 phase, once the cell grows to a
critical size, CIn3 and Bck2 initiate the StarT event, ie. the
activation of transcription factors for CIn2 and Clb5 production.
ClIn2 is the cyclin responsible for bud formation. In addition, CIn2
phosphorylates Sic1 and Cdc6, a pair of cyclin-dependent kinase
inhibitors (CKls). Consequently, Clb5-dependent kinase activity
rises and initiates DNA replication in S phase. As CKls are removed,
Clb2 level rises, because Clb2 activates its own transcription factor,
Mcm1, in an autocatalytic fashion. Clb2-dependent kinase activity
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Deterministic and hybrid stochastic simulations of the model. a, b The temporal dynamics of representative proteins (a) and mRNAs

(b) generated by the deterministic model. The volume of the cell increases exponentially and is divided (at the arrows) asymmetrically
between mother (55%) and daughter cell (45%). ¢, d Stochastic simulation of the same proteins (c) and mRNAs (d) as in panels a and b,
generated by a representative run of our hybrid stochastic model. Similar to the deterministic model, the cell grows exponentially; however, at
the time of division all species in the cell, except for CIn3 and Bck2, are partitioned between daughter and mother cells with a 40:60 ratio,

according to observations by Di Talia et al.?%. CIn3 and Bck2, which are preferentially retained in mother cells

657 are partitioned with a ratio

20:80 between daughter and mother cells. The daughter cell is tracked from division to division in this simulation.
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Table 1. Mean and coefficient of variation (CV) for cell-cycle properties.

Mother cell Daughter cell

Hybrid model Experiment Hybrid model Experiment
Taiv(min) mean + SE 87+0.22 87+1 (116) 111+0.36 112+3 (97)
Te1(min) 18+0.06 16£0.59 (158) 37+0.21 37+2 (202)
Tsam(min) 69+0.20 72+1 (116) 73+0.26 76+2 (97)
Vbirth (fL) 41+0.08 40 27 £0.05 28
Taiv(min) CV+SE 0.26+£0.0017 0.14+0.01 (116) 0.33+£0.0023 0.22+0.02 (97)
Tg1(min) 0.35+0.0024 0.50£0.05 (158) 0.60 +£0.0041 0.50£0.05 (202)
Tsgam(min) 0.30+0.0020 0.17£0.02 (116) 0.36+0.0017 0.2+0.06 (97)
Vpirth (fL) 0.28+0.0014 0.18 0.28+0.0014 0.20
Mean * SE and CV + SE computed from simulation of the hybrid stochastic model are compared with experimental observations reported by Di Talia et al.?®.
The standard errors of the mean are in the same unit of the corresponding characteristic. The number of experimental observations are reported in
parenthesis and the number of simulations used to calculate each quantity is at least 10,000. T4y, Tc1, Tscam, and Vi, are, respectively, cell-cycle duration or
the time between two divisions, time from division to next emergence of bud, time from onset of bud to next division, and volume of the cell at birth.

turns off the transcription factors for CIn2 and Clb5 production
and is responsible for driving the cell into mitosis (M phase). Clb2
level remains high until metaphase, when the proper attachment
of chromosomes to the mitotic spindle activates Cdc20. Cdc20
promotes anaphase (the separation of the two strands of
replicated chromosomes to opposite poles of the mitotic spindle).
At the same time, Cdc20 promotes degradation of Clb2 and CIb5
and activation of a phosphatase, Cdc14. Cdc14 plays a major role
(in budding yeast) in re-establishing the dominance of CKls in G1
phase, and in replacing Cdc20 by Cdh1 (the protein responsible
for Clb2 and CIb5 degradation in G1 phase).

Figure 1¢, d shows the corresponding stochastic trajectories of
our hybrid stochastic model. The stochastic trajectories in panel ¢
correctly simulate the sequence of events predicted by the
deterministic trajectories in panel a. Panel d shows considerable
fluctuations in the numbers of molecules per cell of five mRNA
species: three of which (mClb2, mCdc20, and mCin2) undergo
periodic transcription during the cell cycle, and two of which
(mCdc14 and mNet1) are synthesized continuously throughout the
cell cycle. Such high variability is expected, due to the stochastic
nature of gene expression and the low abundances of mRNA
molecules per cell.

We used our hybrid stochastic model to generate more than
20,000 asynchronous wild-type mother and daughter cells
growing in glucose medium (mass-doubling time about
100 min). These large collections of simulated cells are then used
to estimate the distributions of important characteristics of the
budding yeast cell cycle, including inter-division time, duration of
unbudded phase (G1), duration of budded phase (5-G2-M), and
size at birth. In addition we estimate the standard error (SE) of
mean and standard error of coefficient of variation for these
characteristics. Table 1 compares the computed summary
statistics + SE for all cell-cycle-related properties with experi-
mental data reported by Di Talia et al.*®. The results in Table 1
show that the model accurately reproduces the mean of these
important properties of the wild-type budding yeast cell cycle.
Despite the fact that the coefficients of variation reproduced by
our model are generally larger than what is observed in
experiment, they are in a comparable range. In accord with
experimental observations, G1 phase is the noisiest phase in
cell cycle, the variability in daughter cells is more than mother
cells. The estimated standard errors are significantly smaller
than the experimental observations. In fact, we expect such low
standard errors due to the large number of simulations. We
note that the standard error for volume of a cell at birth is not

Published in partnership with the Systems Biology Institute

reported in column 4 and 6, because cell volume is not
measured directly by Di Talia et al.’®, but rather V(t) is
estimated as a function of time.

Next, we compare our simulations to the observed distributions
of mRNA molecules in wild-type yeast cells. We have 11
unregulated mRNAs (mCdh1, mTem1, mCdc15, mCdc14, mNet1,
mCdc55, mEsp1, mSBF, mMBF, mMcm1, mAPC) and eight
transcriptionally regulated mRNAs (mCIb5, mCin2, mClb2, mSic1,
mCdc6, mSwi5, mCdc20, mPds1) in our model. Figure 2 compares
the histograms of these mRNAs with the distributions measured
by Ball et al.?’”. In the original deterministic model, MBF and SBF
are described by the same algebraic equation since they were
supposed to have the same dynamics''. In adding mSBF and
mMBF to the model, we kept the same assumption and therefore,
the histograms of the two unregulated mRNAs (mSBF and mMBF)
are very similar. For this reason we just include one of them
(mSBF) in Fig. 2. To quantify the difference between a distribution
generated by our model and the corresponding experimental
observations, we use the Kullback-Leibler divergence
(DKL:erxR(X)l‘)g(%)) where R is the distribution from
simulation and Q from experiment. The computed value of the KL
divergence is reported on the top-left corner of each subplot. The
smaller is Dy, the more similar are the two distributions.

Generally, there is a good agreement between observed and
simulated mRNA distributions, except for mCin1 + mCin2 and
mCdc20. As expected, the unregulated transcripts follow Poisson
distributions, which are consistent with experimental measurements.
The value of Dy, computed for these distribution is small. The cell-
cycle regulated transcripts, which follow long-tailed, non-Poisson
distributions, are well-fit by two-component Poisson distributions as
reported by refs >?’. (We note that in our model mClb2 represents
both mClb1 and mClb2, and mCIn2 = mCin1 + mCIn2, whereas in
the experiment these cyclin mRNAs are tracked independently.
Therefore, we do not expect a particularly good match between the
computed and observed distributions for these transcripts. As
expected, the values of Dy computed for these distribution are
large).

Table 2 compares the average abundances of proteins as
observed in ref. °' and simulated by our model. We use a
sufficiently large population of cells from at least 10,000 simula-
tions to calculate the average abundance (number of molecules
per cell) and the standard error of the mean for each protein. Note
that, for the proteins listed in Table 2, only a single measurement
has been made experimentally, so the standard error is not

npj Systems Biology and Applications (2020) 7
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Fig.2 Histograms of mRNAs for a population of wild-type cells growing in glucose medium. The histograms of mRNA molecules generated
from a stochastic run of the hybrid model (in green) are compared with experimental observations?’ (in red and blue colors) for a population
of wild-type cells growing in glucose. (In the simulation the growth rate is set to 0.0072 min~' to reproduce the 96 min mass-doubling time of
wild-type cells growing in glucose culture medium.) U and R in parenthesis indicate, respectively, unregulated and transcriptionally regulated
mRNAs. The histograms in red are reproduced from the experimental data reported by Ball et al.?’. For the last eight transcripts, experimental
data are not available. On the top-right corner the average number of mMRNA molecules is compared with experiment where available. On the
top-left corner the Kullback-Leibler divergence (Dg.) is reported to quantify the difference between the two distributions. Dy, = 0 indicates
that the two distributions in question are identical. In our model mCin2 stands for mCin1 + mCin2. In experiment, however, they are measured
separately. Here, the histograms in red and blue are, respectively, mCIn1 and mCin2. Similarly, in our model mC/b2 describes the abundance of
both mClb1 and mCIb2; however, the histogram reproduced from the experimental data refers only to mCib2.

Table 2. Average abundances of protein molecules per cell.

Protein Average abundance + standard error Protein Average abundance * standard error
Experiment Hybrid model Experiment Hybrid model

CIn3 108 109+2 Swi5r 688 658+6

Cln2;y = CIn1 + CIn2 1589 = 319 + 1270 1647 +18 Tem1 573 544+ 11

Clb57 420 5165 Cdc15 238 257+4

Clb27 693 736+12 Netlr 1590 1579+8

Siclr 768 5117 Cdc55 3170 3357+25

The average abundance + standard error of proteins in molecules per cell, computed by the hybrid stochastic model, are compared with experimental

observations reported in ref. 51 In our model Clb5 stands for Clb5 and Clb6, Clb2 stands for CIb1 and CIb2, and CIn2 stands for CIn1 and CIn2. We are reporting

the total abundance of each protein, which includes protein molecules that are either phosphorylated or unphosphorylated, and that are bound in complexes

or free. That is, Clb5r = Clb5 + C5 4+ C5P + F5 + F5P, Clb21 = Clb2 + C2 + C2P + F2 + F2P, and Sic1t = Sic1 + Sic1P + C2 4+ C2P + C5 + C5P.

available for comparison. Except for the Sic1, the agreement
between simulation results and experimental observations is quite

The same set of rules should also apply to the stochastic model. A
division is considered successful if the aforementioned viability

reasonable.

Mutant cases

Our hybrid stochastic model is used to simulate 122 mutant
strains listed in Table S5 in Supplementary Text. Prior to
presenting simulation results of these mutants, we discuss the
criteria for determining viability in a general stochastic model.

In the original deterministic model, a cell is considered viable if
the following conditions are met:

(1) certain events, listed in ref. >, take place in a proper sequence,

(2) in particular, cell division occurs after budding, and
(3) cell mass does not exceed a predetermined threshold (mass
at division <10).

npj Systems Biology and Applications (2020) 7

criteria are met; otherwise, the cell is considered to be inviable.
From our numerical simulations, the probability of successful
division p is estimated by

B Number of successful divisions

" Number of successful divisions + number of failures

p

Using this metric, we consider a mutant strain viable if p > 0.75,
inviable if p < 0.65, and partially viable otherwise. This viability
criterion is based on the following considerations.

Let Ny be the initial population of cells in an experiment. After
one cycle, the average number of cells that divide is pNo, while
(1 = p)No cells exit the cycle and stop dividing. Thus, after one
cycle, the total population of cells is (1 + p)No, of which 2pN, cells
completed the previous cell cycle and (1 — p)N, cells have ceased

Published in partnership with the Systems Biology Institute



to divide (we call them dead cells). In our simulations, we disregard
the (1 — p)No dead cells; hence, the number of actively dividing
cells in the second cycle is Ny = 2pNy, and the expected number of
actively dividing cells after k cycles will be Ny = (2p)*No.

In cell-viability experiments, colony formation is typically
assessed after 24 h growth of a series of ten-fold diluted inocula.
For wild-type yeast cells (p ~ 1) growing on rich glucose medium
(cycle time = 12 h), each inoculum should increase by a factor of
about 2'2 = 4096. The colony sizes after 24 h growth of ten-fold
serial dilutions would be (4000 Ny, 400 Ng, 40 Ny, 4 No), of which
the first would be too dense to quantify, the last would be too
sparse to see, and the middle two would be used to assess
viability of mutant strains. For a mutant cell with p < 0.5, no visible
colony will grow from the initial inoculum, and the mutant will be
scored ‘inviable’. For mutant strains with 0.5<1, we must consider
how the colony growth assay compares to wild-type cells. For p =
0.8 the initial inoculum grows to 280 Ny, which is comparable to
the first dilution of the wild-type cells, and we would score this
mutant strain as ‘viable’. For p = 0.75 the initial inoculum grows to
130 No, which is denser than the second dilution of the wild-type
cells, and we would score this mutant strain as ‘probably viable’.
For p=0.65 the initial inoculum grows to 23 Ny, which is less
dense than the second dilution of the wild-type cells, and we
would score this mutant strain as ‘hardly viable’. These calculations
suggest that a mutant strain be considered viable if p > 0.75 and
nonviable if p < 0.65. For 0.65 < p <0.75, the strain is identified
as partially viable.

Based on these criteria, we assessed the viability of 122 mutant
strains of budding yeast that were studied in the modeling paper
of Chen et al."". To demonstrate the significant roles of noise in
some of these mutants, we discuss two multiple-mutant strains,
cn1A cIn2A bck2A and cIn3A bck2A multi-copy CLN2 (Fig. 3), in
some detail. Our goal is to illustrate how we assess the viability of
a mutant strain in our hybrid stochastic model. According to
experimental observations, the cln1A cln2A bck2A  strain®? s
viable. However, due to deletion of Start cyclins CIn1 and ClIn2,
the cell requires a longer time than normal to form a bud and
hence grows to a larger size at division, in comparison with wild-
type cells. Figure 3a shows that in the deterministic model the cell
consistently exits mitosis and divides successfully with size larger
than normal, as observed experimentally’®. In the hybrid
stochastic simulation, however, due to the stochastic nature of
the process there is a finite probability that a cell may exit the
cycle and become arrested in some phase of the cell cycle. In Fig.
3b for instance the cell grows too large in G1 phase and never
divides again, while in Fig. 3c, it exits mitosis and divides
successfully. The probability of successful completion of the cell
division cycle, in this case, is computed to be p ~ 0.84. As shown
in Fig. 3d, the total number of cells in our computational culture
increases exponentially, with a number-doubling time (NDT) of
140 min, which is slower than the NDT of a fully viable wild-type
culture (~100 min). Therefore, we conclude that the hybrid
stochastic simulation correctly confirms the viability, but the
reduced growth rate, of the c/n1A cIn2A bck2A strain.

Next we consider the inviable mutant strain c/n3A bck2A multi-
copy CLN2>3. Figure 3e shows that in the deterministic model the
mutant cell is arrested in G1 phase and grows without dividing
until it dies. In the hybrid stochastic simulation, although many of
the cells become arrested in G1 (see Fig. 3f), some cells manage to
exit G1 phase, complete the cell cycle, commence a new cycle and
divide a few times (see Fig. 3g). Nonetheless, according to Fig. 3h
the total number of cells in our computational culture declines
with time, because the probability of cell division is only p ~ 0.40.
Therefore, we conclude that the hybrid stochastic simulation
correctly confirms the inviability of c/n3A bck2A multi-copy CLN2
strain.

Based on our hybrid stochastic simulations of all 122 mutant
strains in Chen’s data base, we find that the model successfully

Published in partnership with the Systems Biology Institute
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reproduces the phenotypes of 103 of these strains. Our results for
all mutant strains are reported in Table S5 in Supplementary Text.

CLB2dbA cIb5A is a mutant with an interesting stochastic
phenotype: it is inviable when grown on glucose medium but
‘partially viable’ when grown on raffinose (a sugar that supports a
slower growth rate than glucose)®. Due to deletion of the
destruction box of CLB2, Clb2 protein is in excess at telophase and
the cell is unable to exit mitosis and divide, even in the absence of
Clb5 protein (due to deletion of the CLB5 gene). When growing on
raffinose, however, many of these mutant cells (approximately
60%-75%) are able to exit mitosis and commence a new cycle,
whereas the remaining cells (25%-40%) are arrested in telophase
and never re-enter the cell cycle21. In fact, the NDT of the double-
mutant cells (250-300 min) is observed to be much longer than
the NDT of wild-type cells (160 min) growing in raffinose
medium?'.

Simulation results of Chen’s deterministic model predict that
CLB2dbA cIb5A cells are inviable on glucose and viable on
galactose and raffinose media. Clearly, we cannot expect a
deterministic model to capture the stochastic properties of such a
‘partially viable’ mutant strain. Our hybrid stochastic model,
however, describes the phenotype in exquisite detail. The
probability of division for CLB2dbA clb5A strain is p ~ 0.68
confirming the partial viability of the mutant according to our
viability criterion. Figure 4a shows the cumulative probability,
P(T), of cycle times for wild-type and CLB2dbA clb5A mutant cells
growing in raffinose. (P(T) is the probability that the cycle time of
a randomly chosen cell is longer than a specified time, T.) As
shown in Fig. 4a, P(T) for the mutant cells levels off at
approximately 35% as T increases, whereas, for wild-type cells,
P(T) drops steadily (below 5%) as T increases beyond 250 min.
Cumulative distributions of cycle times computed by our hybrid
stochastic model (black lines) are in excellent agreement with the
experimental distributions (red-blue-green lines) for both wild-
type and the double-mutant cells.

Another interesting mutant strain is CLB1c/b2A cdh1A, for which
the CLB1 gene is intact and CLB2 and CDH1 genes are deleted.
Due to the mutual antagonism between Clb2 and Cdh1, deletion
of both genes, CDH1 and CLB2, might be consistent with viability
of the double-mutant strain, provided Clb1 is still functional.
Indeed, experimental observations show that CLB1c/b2A cdh1A
cells are poorly viable in glucose medium and viable when
growing on galactose®®. Chen’s deterministic model does not
capture this phenotype; the model predicts the mutant cells to be
viable in both media. However, simulation results of our hybrid
stochastic model (Fig. 4b) can reproduce the observed phenotype.
The probability of division computed for a population of cells
growing in glucose is ~0.62, which suggests poor viability. In
galactose the corresponding probability of division is ~0.79,
which indicates that the mutant grows well in this medium. Figure 4b
confirms a faster increase in cell number in the slower growth
medium (galactose), which is in agreement with experimental
observations.

DISCUSSION

In this paper we present a hybrid stochastic model of the
molecular mechanism controlling progression through the bud-
ding yeast cell cycle. Our model provides a good match with
experimental observations of many important characteristics of
the budding yeast cell cycle, including inter-division time, cell size,
and the phenotypes of more than 100 mutant strains. Compared
with other approaches to stochastic modeling, our hybrid
stochastic approach has several advantages. In a multi-scale
regulatory network such as cell-cycle controls, the major source of
intrinsic noise can be attributed to low copy numbers of mRNA
species in the gene-protein regulatory network. In fact, in budding
yeast cells there are only 5-10 copies of each mRNA species
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Fig. 3 Comparison of deterministic and stochastic trajectories of two different multiple-mutant strains. a Deterministic trajectories of
cIn1A cIn2A bck2A; the cell consistently exits mitosis and divides (the divisions are indicated by arrows). b, ¢ Stochastic trajectories of
cIn1A cIn2A bck2A from two independent runs. In panel b the cell becomes arrested in G1 phase while in panel ¢ the cell divides successfully.
d The total number of cells as a function of time; we start each simulation with one cell and count the total number of cells over time for
2000 min. The probability of division is calculated as p ~ 0.84 which indicates that the c/n1A cIn2A bck2A strain is viable according to our
definition. The semilog plot in panel d shows that the number of cells increases exponentially (NDT ~ 140 min) in our computational culture.
e Deterministic trajectories of c/n3A bck2A multi-copy CLN2; the cell arrests permanently in G1 phase. f, g Stochastic trajectories of c/n3A bck2A
multi-copy CLN2 from two independent runs. In panel f the cell becomes arrested in G1 phase after one cycle, while in panel g the cell exits
mitosis and divides successfully several times. h The total number of cells as a function of time; we start the simulation with 1000 cells and
count the total number of viable cells over time for 2000 min. The probability of division is calculated as p ~ 0.40 which indicates that the
cIn3A bck2A multi-copy CLN2 strain is inviable. The semilog plot in panel h shows that the total number of cells decreases exponentially in our
computational culture.

encoding the production of corresponding proteins at levels of
500-5000 molecules per cell. In such circumstances, small
fluctuations in the population of mRNAs will result in substantial
fluctuations in the corresponding protein levels. With this in mind,
the key idea of the hybrid scheme is to partition the dynamics of
MRNA species into the stochastic regime, in order to capture the
major effects of random fluctuations in mRNA numbers, and to
keep the protein dynamics in the deterministic framework, to
achieve greater simulation efficiency. In addition, in this scheme it
is not necessary to reformulate the complex rate laws governing
protein interactions as elementary mass-action rate laws, which is
a great advantage from a modeling standpoint.

npj Systems Biology and Applications (2020) 7

In this paper, we have applied our hybrid stochastic method to
a detailed molecular mechanism of cell-cycle controls in budding
yeast''. To apply our scheme to Chen’s model, which is a
deterministic model of protein interactions, we first had to extend
the model to include mRNA species that are transcribed from cell-
cycle genes and translated into proteins. Then we carried out
comprehensive simulations of wild-type yeast cells and more than
100 mutant strains, using both the deterministic and hybrid ODE/
SSA models. Our stochastic model predicts the statistical proper-
ties of many different cell-cycle variables, including inter-division
times, size at birth, and the abundances of specific mRNAs and
proteins, and our stochastic simulations are in accord with most
experimental observations, including detailed phenotypic
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Fig. 4 Stochastic phenotypes of two more mutant strains. a Comparison of wild-type and CLB2dbA clb5A mutant cells growing in raffinose.
The probability that a cell divides with a cycle time longer than a specific time T is plotted for wild-type cells (solid lines) and mutant cells
(dotted lines). The black lines are generated by our hybrid stochastic model and the red-blue-green lines are the results of three independent
experimental runs by Ball et al.". To model growth on raffinose medium in our simulation, the specific growth rate of cells is set to 0.00433
min~" (MDT = 160 min). b Comparison of cell proliferation for colonies of CLB1 c/b2A cdh1A cells growing in glucose (blue) or galactose (red).
The probability of division in our computational culture is given in the boxes next to each simulation. To mimic growth in glucose and
galactose media, respectively, the specific growth rates are set to 0.0072 and 0.004621 min~’, i.e.,, MDT = 96 and 150 min, respectively.

characteristics of 103 out of 122 mutant cases. (Although Chen'’s
deterministic model may seem to ‘score’ better on the ‘viability’ of
mutant strains, it is not so highly constrained as our stochastic
model by consideration of the statistical properties of these
mutant cells, especially the characteristics of ‘partially viable’
mutants.) In addition, our results prove that our hybrid approach
to stochastic/deterministic simulations can achieve a good trade-
off between accuracy and efficiency of numerical simulations.
FORTRAN code takes about 15 min to simulate 10,000 cell cycles
on an Intel i7-3770 processor with 16G memory running a Linux
environment. A similar system using a fully stochastic model may
take more than one day (for example, when the FORTRAN code of
Barik et al.%® is run using the same work station, it takes more than
30 h to generate a population of 10,000 yeast cells).

METHOD
Deterministic model

A comprehensive continuous-deterministic model of the budding yeast
cell cycle was developed by Chen et al.'’ in 2004. By integrating the
findings of decades of experimental studies, Chen’s model provides an
accurate mathematical description of the cell division cycle of budding
yeast. The protein regulatory network of Chen’s model focuses primarily on
the mutual antagonism between mitotic B-type cyclins (Clb1-6) and G1
phase stabilizers (Cdh1, Sic1, and Cdc6). During the growth and division of
yeast cells, this antagonism leads to transitions between two coexisting
steady states called Start (G1— S) and Exit (M— G1). A detailed description
of the budding yeast cell-cycle model is given in Supplementary
Information.

Chen’s mathematical model reproduces the average cell-cycle proper-
ties (including cycle time, G1 duration, and cell size at division) of wild-type
budding yeast cells and the variant cell-cycle phenotypes of more than 100
mutant strains. Our goal is to develop a hybrid (stochastic-deterministic)
version of this large regulatory network, in order to quantify the
variabilities observed in cell-cycle characteristics and mutant phenotypes
within a computationally efficient framework.

Since Chen’s model is formulated in terms of normalized (dimensionless)
concentrations of proteins, the first step to this goal is to convert the state
variables of Chen’s model into integer numbers of molecules per cell. This
conversion facilitates comparison of our numerical simulation results with
observed data from single-cell experiments. Furthermore, it is necessary
because, in Gillespie’s SSA, state variables are discrete (species popula-
tions) rather than continuous (species concentrations). Since a hybrid
model involves both SSA and ODEs, it is important that we assure
consistency between units of state variables in both the stochastic and

Published in partnership with the Systems Biology Institute

deterministic regimes. Therefore, we calculate S;, the number of molecules
of species i in a cell, from the corresponding normalized concentration,
[Si], by (1):

Si(t) = Na - [Si](t) - V(t) =0.6 - C; - [Si],,(t) - V(1), (1)

where [S;] is the actual concentration of species i (in nanomoles/liter =
107° mol/L), C; is the ‘characteristic’ concentration of species i (used to
convert between actual concentration and ‘normalized’ concentration),
V(t) is the volume of the cell (in femtoliters = 107" L), and Np = 0.6 is
Avogadro’s number (when concentration is expressed in nM and volume
in fL). One simplifying assumption made in published models®'?* is to use
a constant volume for the size of cell. However, this unrealistic assumption
introduces errors into the model because cell size (V) increases
exponentially during a cycle (V(t) = V(0)eks!, where kq is the specific
growth rate of yeast cells).

Second, we extend the protein regulatory network in Chen’s model to
include the dynamics of 11 regulated and eight unregulated mRNAs. This
extension is necessary because the major source of intrinsic noise in yeast
cells is the small number of mRNA molecules per cell per gene?.
Experimental observations?® in yeast cells with increased dosage of genes
suggest that the dominant source of variability with respect to cell-cycle
time and cell size at division is the low copy number of mRNA and protein
molecules in a cell, specifically in G1 phase. However, Chen’s model did not
incorporate the turnover of mRNA molecules, and thus it cannot account
for fluctuations stemming from transcriptional noise. For these reasons,
Chen’s original model must be supplemented with appropriate synthesis
and degradation rates for each mRNA, as well as realistic rates of
translation from mRNA to protein. In our model, based on experimental
observations in>°, we assigned half-life times for mRNAs in the range of
5-10 min, except for mCIn2 and mClb2, which were assigned shorter half-
lives (3 and 2 min, respectively). The synthesis rate of each mRNA was then
estim2a7ted to match the mRNA average-abundance measurements in Ball
et al.”’.

Third, we modified Chen’s model by introducing ODEs for the
concentrations of CIn3 and Bck2 proteins. In Chen’s original model, the
normalized concentration of CIn3 and Bck2 were assumed to be given by
steady-state algebraic equations (2) and (3),

Co - Dp3 - mass

n3] =————— 2
[CIn3], Jn3 + Dp3 - mass’ @)

[Bck2], = By - mass, (€)
where Cy determines the maximum concentration of CIn3, D3 is the

dosage of the CLN3 gene, Jy3 and By are constants, and mass is the
‘size’ of a cell. We replaced the algebraic equations (2) and (3) by ODEs
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in (4) and (5).

]
dzﬁzhm-WmA«MYGﬂ, 4)
dBck2

dcl' =ksyz - Vz(t) — kd,kZ - Bck2. (5)

The synthesis (ks n3, ksk2) and degradation (kqns3, kqk2) rate constants
were estimated so that the half-lives and average abundances of these
proteins match with experimental data®'. The reason for this change is to
model the unbalanced partitioning of CIn3 molecules between daughter
and mother cells at cell division. According to experimental observations,
the concentration of CIn3 in a new-born daughter cell is about three times
less than its concentration in the mother cell’®*, indicating that mother
cells get more than their ‘fair share’ of CIn3 molecules at cell separation. As
a consequence of this unequal partitioning of CIn3 between mother and
daughter cells at division, the G1 time of mother cells is much shorter and
the G1 time of daughter cells is much longer (on average) than would
otherwise be expected. By including CIn3 and Bck2 as state variables in the
model, we can apply an asymmetric partitioning rule with ratio of 20:80 to
daughter and mother cells at cell division. We note that this ratio is set to
40:60 for all other proteins and mRNAs, according to observations in%%,

Finally, we comment that the quadratic dependence of CIn3 and
Bck2 synthesis rates on cell size is introduced to account for the major
influence that these two proteins have on cell size at the G1/S
transition®®*°. Because the rate of synthesis of these two proteins
increases quadratically with cell volume, there is a strong size control on
the G1/S transition in our model.

In summary, the variables, equations, parameter values and reaction
propensities in our model are provided in Tables S1-S4 in
Supplementary Text.

Hybrid stochastic model

As we mentioned in Section 1, the regulatory network of the budding
yeast cell-cycle is a multi-scale system: both the numbers of molecules of
mRNAs and proteins and the propensities of individual reactions vary by
orders of magnitude. For instance, in budding yeast cells, there are
500-5000 copies of each protein encoded by only 5-10 copies of the
corresponding mRNA. Furthermore, the synthesis and degradation of
mRNA species occur much less frequently than the phosphorylation and
dephosphorylation of proteins in the cell. The Haseltine and Rawling (HR)
hybrid method leverages these large scale differences to improve the
efficiency of stochastic simulations without sacrificing accuracy of the
computations. The HR method divides the system into subsystems, each
including species and reactions with similar scales, and applies an
appropriate simulation method to each subsystem. This partitioning is
done by using predefined thresholds for propensities of reactions and
abundances of reactants. In this way the system is divided into four disjoint
regions: (1) slow reactions with low-abundance reactants, (ll) slow reactions
with high-abundance reactants, (lll) fast reactions with low-abundance
reactants, and (IV) fast reactions with high-abundance reactants. Then an
appropriate simulation method is chosen for each region®**%“¢, We follow
the strategy proposed Liu et al.>> where the dynamics of all mRNAs (region
1) is simulated by SSA, and the other three regions (Il, lll, and IV) are
modeled with ODEs. We shall refer to this partitioning as the ‘Liu strategy’.
We notice that the partitioning thresholds in Liu strategy are predefined
and static. That is, while it is not guaranteed, the fast and slow sets are
assumed to remain the same during the simulation.

In order to demonstrate the scale difference in our partitioning strategy,
we approximate the propensity function of every reaction by its
corresponding rate law function (obtaining a stochastic model with 145
reactions) and track the firing frequency of each of these reactions in a test
run of Gillespie’s SSA. Of 18 million reactions fired in one cell cycle, only
about 34,000 (0.2%) involve mRNA turnover, and 99.8% represent fast
reactions of protein post-translational modifications. Based on this test run,
we estimate that our HR hybrid scheme will run at least 100 times faster
than a brute-force Gillespie simulation of a fully stochastic model. In
section 3 we show that our hybrid stochastic model, using the Liu strategy,
still generates accurate results that agree well with experimental
observations.

Algorithm 1. Proposed in Liu et al.?? describes the hybrid ODE/SSA

algorithm adopted in this paper, which is a variant of the original HR
hybrid method*®. Our hybrid stochastic simulation code that implements
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Algorithm 1 (a FORTRAN file) is available in Supplementary Code.
Algorithm 1 Hybrid Stochastic Simulation Algorithm
HYBRID(Rfast: 7?'slow)

e t—0

While t < T do

® (alculate the propensity function, a;, for all reactions in slow subset
i=1, ..k

® (Calculate total propensity function: ao(s,t) = Zf:,a,-(s, t).

Generate two uniform random variables ry and r; in U(0, 1).

® Integrate the ODE system until an event occurs at time t + T such that

t+1
/ ao(s,x)dx + In(ry) = 0. ©)

t

® Select the smallest u such that: Y4, a(s,t) > rado(s,t).
Update the state variables according to py, reaction in Rjow-
® end While

Hybrid stochastic simulation algorithm: Consider a well-stirred system
with N species in a set S that interact with each other through M reaction
channels in a set R. The reactions in R are partitioned into two disjoint
subsets of fast and slow reactions denoted by Rty and Ryjow, respectively.
The subset Rgow includes k reactions, which are simulated using SSA, while
the remaining M-k fast reactions in Ry, are governed by ODEs. Let a;(s, t)
be the propensity function of the j-th reaction in Rgow, Where s=
(S1(t), ..., Sn(t)) is the state vector with each element S;(t) representing the
number of molecules of species i at time t. In addition, let v; = (vj1, ... ,vjy)
be the state-change vector of the j-th reaction, where v;; denotes the change
in the population of species i when reaction j fires. Let T be the jump interval
to the next slow reaction and u be the index of the reaction that fires. The
algorithm only needs to simulate the firings of slow reactions, while
integrating the fast subset of ODEs simultaneously in Eg. (6). When a slow
reaction fires, the corresponding state variables are updated. In this way the
hybrid algorithm generates trajectories of state variables as the system
proceeds in time. More details on implementation can be found in refs %62,

Reporting summary

Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY

Supplementary information includes two files: one for the Supplementary Text and
one for the Supplementary Code. In the Supplementary Text, we present more details
for the cell-cycle model used in this paper. Tables S1-S4 in Supplementary Text list
the time-dependent variables, differential equations, reactions and propensity
functions, and parameter values. In Table S5 in Supplementary Text we compare
simulation results of 122 mutant strains with the observed phenotypes in
experiment. The Supplementary Code file includes our hybrid model code in
FORTRAN and statistical analysis code in MATLAB. The experimental datasets used in
Fig. 2 and Fig. 4a are available from the corresponding author upon request.

CODE AVAILABILITY

The datasets generated and analyzed during the current study are reproducible using
the FORTRAN and MATLAB codes provided in the Supplementary Code.
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