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Abstract

As one of the most popular approaches in artificial intelligence, deep learning (DL) has attracted a 

lot of attention in the medical physics field over the past few years. The goals of this topical 

review article are twofold. First, we will provide an overview of the method to medical physics 

researchers interested in DL to help them start the endeavor. Second, we will give in-depth 

discussions on the DL technology to make researchers aware of its potential challenges and 

possible solutions. As such, we divide the article into two major parts. The first part introduces 

general concepts and principles of DL and summarizes major research resources, such as 

computational tools and databases. The second part discusses challenges faced by DL, present 

available methods to mitigate some of these challenges, as well as our recommendations.

1. Introduction

Artificial intelligence (AI) refers to the intelligence achieved by computer systems. 

Developing and employing AI techniques to solve important problems has become a central 

topic of many disciplines. Within the broad scope of AI, machine learning (ML) has been a 

popular topic for decades because of its capability of solving practical problems by learning 

from data. Over the past few years, Deep learning (DL), a subcategory of ML, has achieved 

remarkable performance surpassing traditional ML approaches across a wide spectrum of 

different areas as a consequence of the availability of large-scale datasets, innovative DL 

technologies, advanced model training algorithms, as well as rapidly growing computing 

powers. In the classical image classification problem, a deep neural network (DNN) 

evaluated on the ImageNet 2012 classification dataset achieved an error rate of 3.57% (He et 
al., 2016a), even lower than the human classification error rate of 5.1% (Russakovsky et al., 
2015). In the context of the Go game, AlphaGo (DeepMind Technologies Limited, London, 

UK) armed with DNNs successfully defeated the best professional human Go players (Silver 
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et al., 2016; Silver et al., 2017). These examples, together with many others, have led to the 

burst of DL research, exerting substantial impacts on our daily life.

Not surprisingly, powerful DL tools have also been introduced to solve problems in 

medicine. Numerous studies have demonstrated the power of DL in a variety of problems 

ranging from disease diagnosis (Esteva et al., 2017; Rajpurkar et al., 2017; Mendelson, 

2018), where an DL agent achieved a performance comparable or better than well trained 

clinicians, to data mining in health informatics (Ravì et al., 2017), where the hidden 

structures in healthcare data were discovered and employed to support decision making. 

Specific to the medical physics community, the research interests on DL have also 

experienced a rapid and continuous growth in a relatively short period of time. To illustrate 

this fact, we searched papers that have “artificial intelligence” or “deep learning” in the title 

or abstract published in two major medical physics journals Physics in Medicine and 
Biology and Medical Physics, as well as in the medical physics category of arXiv.org, the 

world largest electronic archive of preprints in physics and mathematics. Figure 1 presents 

the result with the vertical axis displayed in a logarithmic scale. Apparently, there has been 

an exponential growth in the number of publications since 2015. This has also matched the 

overall trend of research interest on DL in medicine, as quantified by the number of 

publications obtained in the PubMed database with the same searching criteria.

Along with the rapid growth of research activities and achievements, it came to the point that 

we should look at the initial but substantial successes gained in a relatively short period of 

time. As such, multiple review articles on DL in healthcare, or specifically in medical 

physics, have been published (Miotto et al., 2017; Thompson et al., 2018b; Sahiner et al., 
2019). Meanwhile, DL has triggered extensive discussions regarding its role in medical 

physics research and clinical practice (Tang et al., 2018; Thompson et al., 2018a; Xing et al., 
2018; Sensakovic and Mahesh, 2019).

These publications have successfully served their roles in terms of demonstrating the 

interests on DL, summarizing achievements and learnt lessons, as well as discussing future 

directions. However, we think there is also a strong need for a review article written from an 

educational aspect targeting researchers in the medical physics community. In particular, it is 

desirable to introduce to our community technical aspects of DL, available tools and 

resources, fundamental functions of DL from the mathematical perspective, and its 

capabilities and limitations. Having such a concise and focused review article could help 

researchers who are interested in DL, but may not have been trained in this area, to become 

familiar with this technology. This will facilitate their research and inspire novel research 

directions and activities. Meanwhile, we have to admit that DL has its own limitations. It has 

not yet been fully understood mathematically at this point why DL is so powerful in some 

problems. Discussing potential challenges of DL will help researchers to establish objective 

interpretations of this technology and to generate impactful DL studies in medical physics.

With these goals in mind, we prepared this topical review article. Instead of focusing on 

summarizing the remarkable achievements so far, this article will present a detailed 

introduction to the DL technology and in-depth discussions on it. The rest of this article is 

divided into two main parts. Sections 2 to 4 belong to the first part, which presents the DL 
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technology as well as available research tools and resources. The purpose of this part is to 

give readers a brief, but hopefully comprehensive overview of DL. Since we focus on 

introducing the DL technology to researchers who are not trained in this area, a lot of 

concepts and terminologies will be provided at a very fundamental level. Experts in DL may 

find these sections basic and may skip them. Due to a limited space, it is not possible to 

cover all topics in a very detailed way. We will include important concepts for one to quickly 

gather necessary information, and provide references for further reading. The second part of 

this article, Sections 5 to 7, provides more in-depth discussions on the fundamentals behind 

DL. We will introduce mathematical aspects of DL and discuss challenges of which we 

should be aware. We will also present potential solutions to some of the challenges, as well 

as our recommendations. Finally, we will conclude the review article in Section 8 with an 

outlook into the near future.

2. What is artificial intelligence/machine learning/deep learning?

2.1 AI, machine learning, and deep learning

Artificial intelligence (AI) refers to the intelligence achieved by machines, which is in 

contrast to the natural intelligence of humans. In general, it broadly encompasses the 

capabilities of any devices or systems to take actions for successfully achieving specific 

goals (Jackson, 1985; Nilsson and Nilsson, 1998). In this sense, any models, algorithms, or 

computer programs designed by humans to tackle certain tasks requiring human intelligence 

can be generally considered as AI. Hence, the scope of the term AI covers a wide spectrum 

of problems including, but not limited to perception, recognition, analysis, and decision-

making using a machine or computer.

Machine learning (ML) is a subcategory of methods within the broad scope of AI (Figure 2), 

which specifically refers to numerical algorithms and models established to analyze data and 

derive or learn decision-making capabilities to achieve certain tasks (Alpaydin, 2009). In 

other words, ML deals with data. Its goal is to conclude the hidden pattern embedded in the 

data under practical constraints, such as data size and quality. The derived pattern can then 

be used to solve the problem of interest. Take the classical problem of image classification 

as an example, an ML method would try to draw a boundary to separate different classes by 

analyzing the dataset of images. For a new image to be classified, it is compared to the learnt 

boundary to decide the class that it belongs to.

First introduced by Aizenberg et al. (2000), Deep learning (DL) is a group of methods 

within ML (Figure 2). Therefore, the general goal of DL is aligned with that of ML. What 

differentiates DL from other ML techniques is that DL employs large-scale hierarchical 

models with multi-layer architectures to automatically generate comprehensive 

representations and to learn complicated inherent patterns of the data (LeCun et al., 2015). 

In contast, classical ML methods uses hand-crafted features manually extracted from data as 

input and relies on relatively simple models to represent inherent data patterns. In recent 

years, DL is becoming increasingly popular in both research and applications because of its 

feasibility granted by advanced numerical algorithms, high computing power, and available 

large-scale datasets, as well as its impressive performance as compared to traditional ML 

methods.
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2.2 Deep neural network

The most commonly employed models in DL are deep neural networks (DNNs), which are 

essentially a type of artificial neural network (ANN) (McCulloch and Pitts, 1943) but with a 

large number of layers. The building block of a DNN is a neuron designed in analogy to the 

neural cell of a human. Each artificial neuron consists of four major components: a group of 

input signals, a linear operation, a non-linear operation, often termed as activation function, 

and its output signal (Figure 3(a)). The neuron takes its inputs and first performs a linear 

operation on them. The resulting data are fed into an activation function, commonly a non-

linear function, to generate the neuron’s output. A typical form of the activation function is 

rectified linear unit (ReLU) (Nair and Hinton, 2010) outputting zero if the input value is 

negative, and the same value as the input otherwise, although other function forms are often 

used. A large number of neurons are connected under a certain structure to form a DNN, 

where the output of a neuron is fed to another neuron as one of the inputs.

Typically, the DNN contains a number of layers (e.g. Figure 3(b)). Neurons in one layer 

receive information from the previous layer, and after processing it, pass the result to the 

next layer. Any layer embedded between the input of the DNN and the output is termed as a 

hidden layer. In mathematical terms, let us denote the input data as a vector x = [x1, x2, x3,

…], the data at the ith hidden layer as ℎi = ℎi
1, ℎi

2, ℎi
3, … , and the output data as y = [y1, y2, 

y3,…]. We further denote operations acting on the input of the ith layer as fi(⋅ |θi), where θi 

represents all relevant parameters defining the operations. Note this operation contains both 

the linear and non-linear part as mentioned previously. With a number of n layers, the basic 

neural network operations can be written as:

ℎ1 = f0 x |θ0 ,
ℎi = fi − 1 ℎi − 1 |θi ,
y = fn ℎn |θn .

(1)

It is easy to see that this can be written in the form of a composite function:

y = DNN x θ = fn fn − 1 fn − 2 ⋯ f1 f0 x θ0 θ1 ⋯ θn − 1 θn , (2)

where the function DNN(x|θ) is a mapping from the input to the output, and θ represents the 

set of θi to define this DNN mapping. The total number of layers indicates the depth of a 

DNN, while the number of neurons in a layer gives its width.

It is worth mentioning that a DNN does not necessarily organize its neurons in a layered 

format and more complicated architectures may be employed. For example, skip or residual 

connections can be added to connect neurons in non-adjacent layers, as in the popular 

ResNet (He et al., 2016a). Mathematically, a hidden layer calculation with a skip connection 

between the layers i and j can be written as

ℎi = fi − 1 fi − 2 ⋯ ℎj + ℎj, for certain i > j . (3)

Regardless of the exact formulation, the commonality among DL models is that they utilize 

many consecutive layers of calculation. Popular operation types of these layers include, but 
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not limited to full connection (Ivakhnenko and Lapa, 1965), convolution (Fukushima, 1980; 

LeCun et al., 1990; LeCun and Bengio, 1995), max-pooling/up-sampling (Scherer et al., 
2010; Ciresan et al., 2011), batch normalization (Ioffe and Szegedy, 2015), ReLU (Nair and 

Hinton, 2010), sigmoid-shaped functions, the soft-max function (Goodfellow et al., 2016) 

etc. A typical scheme of DL is to first apply a linear operation on the previous layer 

followed by a non-linear operation. It is very uncommon to use two linear operations 

sequentially, since this is equivalent to using a single linear operation. In addition, a 

normalization scheme, including batch (Ioffe and Szegedy, 2015), layer (Lei Ba et al., 2016), 

instance (Ulyanov et al., 2016), or group (Wu and He, 2018) normalization, may be applied 

either directly before or after the non-linear operation, which tends to improve the 

convergence speed during the network training process.

To date, a large number of DNN architectures have been designed for different applications. 

For example, fully connected DNNs are the most general form that plays an important role 

in numerous studies. Convolutional neural networks (CNNs) employ convolutional 

operations to effectively extract image features and are widely used in image-related 

projects. Recurrent neural networks (RNNs) have a recurrent mechanism that can handle 

data with a temporal structure. Most of successful applications so far incorporate one, or the 

combination of these DNNs. Major characteristics of these DNNs are summarized in Table 1 

and we will discuss them in detail in the following subsections.

2.2.1 Fully connected deep neural network!—In principle, a fully connected DNN, 

in which every pair of neurons are linked using pair-specific connections between two 

adjacent layers, is the most general form of DNNs. Figure 3(b) shows the basic design of a 

fully connected DNN. The number of neurons in the input, output and hidden layers may 

vary, depending on many attributes such as the data format or the intended use of the model.

While the fully connected DNN is a very general network form, it is not used very often in 

practice by itself. For a specific problem of interest, it is of importance to design a special 

network form, which can be viewed as by removing some connections of a fully connected 

DNN purposely, to make the network easier to train and to improve computational 

performance. The design of the specific network structure can be very creative, and often be 

specifically tailored based on the researcher’s domain knowledge and experience. For 

instance, various CNN (Krizhevsky et al., 2012; Cho et al., 2014; Simonyan and Zisserman, 

2014; Ronneberger et al., 2015) and RNN (Hochreiter and Schmidhuber, 1997; Graves et al., 
2014) architectures are designed specifically for the processing of image data and sequential 

data, respectively.

2.2.2 Convolutional neural network—Convolutional neural networks (CNNs) 

proposed by LeCun et al. (1989) effectively use convolutional layers for image-related tasks. 

The convolutional computation utilizes a kernel and convolves with the previous layer’s 

image data to produces new images, called feature images, and feeds them to the next layer. 

Pooling operations, such as max-pooling or average-pooling, can be added after convolution 

to reduce resolution of the feature images. This allows for the model to reduce 

computational cost and to view and analyze the images at multiple resolution scales. In 
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addition to these layers, CNNs can still incorporate other operations such as fully connected 

layers, batch/layer/instance/group normalizations, non-linear activations, etc.

Recently, a number of researchers have revealed the tremendous performance of CNNs on 

image related tasks. This is largely ascribed to the capability of analyzing images at different 

resolution scales that comes with convolutional and pooling operations. For instance, a basic 

structure of a classification CNN inspired by LeNet (El-Sawy et al., 2016) is shown in 

Figure 4 (a). After analyzing the images at different scales through the first few 

convolutional layers, the extracted information is gathered and further processed in the last a 

few fully connected layers to generate the final output. Several variants of CNN model 

structures for classification have been proposed, such as AlexNet (Krizhevsky et al., 2012), 

VGGNet (Simonyan and Zisserman, 2014), and GoogleNet (Szegedy et al., 2015).

CNNs have also been employed widely for image-to-image translation tasks. Different from 

those for image classification, a CNN in an image translation task outputs an image that has 

a one-to-one pixel or voxel correspondence with the input. One of the common uses of such 

CNNs is for image segmentation, where the output is the segmented region maps. A popular 

architecture designed for this task is the U-net (Ronneberger et al., 2015), and its 3D variant, 

the V-net (Milletari et al., 2016), which for the first time introduced the Dice loss layer 

widely incorporated nowadays. A basic structure of U-net style architecture is depicted in 

Figure 4(b). Because of the multiple layers of convolutions and pooling operations to change 

image resolutions among layers, U-net’s and V-net’s architectures allow effective calculation 

and combination of both local and global features. Many variations of these two networks 

have appeared in literature, typically with modifications designed for specific tasks of the 

studies.

2.2.3 Recurrent neural network—Recurrent neural networks (RNN) are neural 

networks with a feedback mechanism in the hidden layers, as shown in Figure 5. Because of 

the recurrent nature, an RNN can be equivalently viewed as a series of stacked networks 

with identical structures. RNN was designed to effectively learn from sequential data, such 

as writing, speech, time series data, decision pathways, etc. Structure-wise, RNNs can be 

created using fully connected or convolutional style layers, as well as other aforementioned 

DNN operations. The original RNN structure was found to be limited to only short 

sequences of data mainly due to the so-called unstable gradient issues in propagating 

memory from previous iterations. To mitigate this issue, a long short-term memory (LSTM) 

model (Hochreiter and Schmidhuber, 1997) was proposed, which added extra mechanisms 

for remembering/forgetting past information (forget gate), adding new data into the memory 

(input gate), and calculating desired output for that iteration (output gate). With these 

modifications, LSTM is capable of learning and performing on much longer sequences of 

data, and has largely replaced the basic RNN for most modern tasks. While the LSTM is one 

of the most popular version of RNN, other recurrent networks have been devised as well, 

including bi-directional RNN (Schuster and Paliwal, 1997; Mikolov et al., 2010; Sak et al., 
2014; Zaremba et al., 2014), gated recurrent unit (GRU) (Cho et al., 2014), neural turing 

machines (Graves et al., 2014), etc.
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2.2.4 Other network structures—In the modern DL setting, most frameworks utilize 

the aforementioned fully connected DNNs, CNNs, RNNs, or a combination of them to 

achieve a high performance for a given task. However, there exists less conventional network 

structures, such as deep belief network (DBN) (Lee et al., 2009) and deep Boltzmann 

machine (DBM) (Mohamed et al., 2009). In the interest of space, we will not present their 

details and readers can find more from relevant references.

2.3 Training of a machine learning/deep learning model

Using an ML/DL approach to solve a problem requires a training stage to develop the 

model. Specifically, model training refers to the process of determining the model 

parameters based on observed data (training data). Training the ML/DL model is often 

formulated mathematically as solving an optimization problem, where the goal is to find the 

model parameters that minimize a loss function. For a DNN model, this can be expressed as

θ * = min
θ

L θ = L DNN x θ , (4)

where θ* is the set of parameters of the trained model. The loss function L(·) is problem 

specific. Take the image classification problem as an example, if we were given a set of 

images xi and corresponding classification labels yi, the loss function can be naturally 

defined as L θ = ∑i yi − DNN xi θ 2. Minimizing this loss function explicitly enforces the 

agreement between the predicted label DNN(xi|θ) and the ground truth label yi by 

minimizing the difference between them. In practice, the loss functions can be defined 

creatively in different forms, e.g. cross entropy for classification, Dice similarity coefficient 

for segmentation (Dice, 1945), depending on specific considerations.

It is important to note that Eq. (4) is often a non-convex optimization problem. This means 

that it is difficult to find the global minimum. This optimization problem is typically solved 

via a gradient-based algorithm that updates the solution θ as

θk + 1 = θk − λ∇θL θ , (5)

where k is the index of iterations, ∇θL is the gradient term with respect to θ, and λ is called 

the learning rate. For the loss function involving a complex DNN, it is complicated to 

evaluate the gradient term. Rumelhart et al. (1988) proposed to use a technique called 

backpropagation, which effectively employs the chain rule in calculus to compute gradient 

and update the parameters θ at each layer. Although this technique is very computationally 

efficient, it still does not guarantee a global minimum. To help both the local minimum issue 

as well as to alleviate the problem of potentially a large memory usage, DNNs are often 

trained using stochastic optimization methods, such as stochastic gradient descent (SGD) or 

adaptive moment estimation (ADAM) (Kingma and Ba, 2014). While these methods differ 

slightly, such as additional momentum calculations or adaptive learning rates, a common 

scheme is that only a portion of the training data is randomly selected at a given step to 

update the solution. More specifically, the complete training scheme consists of a number of 

epochs. Before each epoch, the training data is shuffled and split into a number of small 

portions called batches. The training process loops over all these batches in each epoch, each 
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time using data from a batch to update the model. A number of training epochs are needed to 

yield convergence or satisfactory results. Note that the data used to update the model in 

different epochs are the same, but the data batches are randomly generated.

Similar to solving other optimization problems, training the DL model involves many user-

defined parameters in the algorithm, called hyper-parameters. Examples include learning 

rate, number of epochs, batch sizes, and dropout rate (Srivastava et al., 2014), etc. The 

values of these hyper-parameters affect the solution and hence resulting model performance. 

One usually repeatedly adjusts these hyper-parameters to achieve a satisfactory performance 

of the trained model.

A typical setup when constructing a ML/DL model is to use a portion of available data, 

called training dataset, for model training, i.e. to solve the optimization problem in Eq. (4) 

and set aside a smaller, hold-out testing dataset, to evaluate the model performance, after the 

training stage is completed. The loss function L(·) used to train a ML/DL model can often be 

viewed as a certain form of error, when evaluating the model performance on the datasets. 

The error evaluated on the testing dataset is typically larger than that on the training set. The 

difference between the two is termed as the generalization gap, see Figure 6 for a graphical 

illustration. This gap tends to indicate the model’s generalizability. Being able to generalize 

means that the model trained on the training dataset performs well on the testing dataset that 

has not been seen by the training process. Hence, we expect that the data will likely perform 

equally well for future data, when we apply the trained model to solve the problem. In this 

case, the generalization gap is small. On the other hand, a large gap means bad model 

generalizability. Generally speaking, using a model with a high complexity can reduce the 

training error, as shown in Figure 6. However, this does not mean the trained model becomes 

more accurate. After a certain point, the model starts to be capable of “memorizing” the 

training data, as characterized by the increasing testing error and generalization gap. Since 

the goal of a ML/DL study is to build a model using training data and to apply it on unseen 

future data, we would like to find the sweet spot where the generalization gap is minimized, 

so that the trained model has the best generalizability.

In the regime of DL, studies have observed a quite surprising phenomenon: a very complex 

DL model with an extremely large number of trainable parameters may also generalize well 

after being trained on a large dataset(Neyshabur et al., 2018; Novak et al., 2018). The exact 

mathematical reason for this phenomenon is still unclear, although there are some hints. 

Numerous studies have been actively investigating this direction (Belkin et al., 2018). More 

detailed discussion on this will be given in Section 6.2.

2.4 Feasibility and popularity of deep learning

Since Ivakhnenko and Lapa (1965) established the first effective DNN, DL has been around 

for more than 50 years. Yet the lack of large-scale datasets and the limited computing power 

impeded its applications. These obstacles were recently overcome, making DL a feasible 

solution to many problems. Formulated in a hierarchical multi-layer architecture, a DNN 

consists of a number of hidden layers. The large number of network parameters naturally 

requires the collection of a massive training dataset. Creating such a large-scale dataset was 

expensive, labor intensive, and time consuming until very recently, when fast development in 
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data acquisition/sharing techniques and storage capability have been advanced. One of the 

most impressive examples is the ImageNet database (Deng et al., 2009; Krizhevsky et al., 
2012; Russakovsky et al., 2015) where more than 14 million fully annotated images were 

collected from the Internet.

In addition, training a DNN is usually formulated as solving a large-scale optimization 

problem, demanding a huge computing power. Given the relatively limited computing power 

in the past decades, it was not practical to use DNN. This issue has been eased by the 

substantial increase in memory and computing power of modern computers/workstations. In 

particular, graphics processing unit (GPU) has been employed in the scientific computing 

regime (Pratx and Xing, 2011; Jia et al., 2014a; Despres and Jia, 2017). Its remarkable 

power to parallelize computations substantially improves the efficiency of training DL 

models, making it affordable to use DNN in real-world applications.

One of the main reasons making DL popular is its flexibility in handling different problems. 

One critical step for the success of a classical ML model is to extract concise representations 

of the data, namely feature extraction. Due to the relatively limited flexibility of traditional 

ML models, a concise and complete representation of the data is very important to feed the 

ML model with relevant information for accurate learning. Take a typical image 

classification problem to classify images into cats and dogs as an example. A classical ML 

approach typically requires manually extracting relevant features from input images, e.g. 

shape, size, color, etc., and feeding them into the ML model to predict the output class label. 

However, this step is very challenging, and often needs problem-specific and creative 

thinking. In contrast, DL can be conducted through a purely data-driven end-to-end 

approach. The flexibility of a DNN is large, so that it is capable of establishing a mapping 

directly from the input to the output, bypassing the feature extraction step. For the cat/dog 

classification problem, a DL model can be constructed to learn a mapping directly from the 

image to the class label using a large amount of labeled training data. The researcher does 

not have to explicitly specify what features the model should look at. After training, the 

feature extraction step is inherently incorporated in the built model.

Additionally, the remarkable performances beyond most of traditional ML methods in a 

spectrum of problems also contribute to DL’s popularity. Examples include natural language 

processing (Mikolov et al., 2010; Manning et al., 2014), face recognition (Schroff et al., 
2015), image classification (Krizhevsky et al., 2012; Russakovsky et al., 2015), playing 

board games (Silver et al., 2016; Silver et al., 2017), and self-driving (Bojarski et al., 2016), 

to name a few.

3. Learning strategies of deep learning

Depending on how a ML model is trained, we generally divide the learning strategies into 

supervised learning, unsupervised learning, semi-supervised learning, and reinforcement 

learning. The same classification can be applied to learning strategies of DL, as it is a 

subcategory of ML. In this section, we will briefly introduce the characteristics of each 

category and present some examples.
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3.1 Supervised learning

Supervised learning (SL) refers to the learning strategy that trains a model by using labeled 

data with input-output correspondence and by explicitly enforcing the compliance of the 

model to this correspondence. SL is the most straightforward and effective learning strategy, 

since the learning goal is clearly defined by the paired input data and output target. With the 

widely available DL platforms (see details in Section 4), it is quite easy to set up a DL 

model as well as to perform training via SL. On the other hand, SL has its limitation of 

requiring the co-existence of input data and corresponding output target. For instance, each 

training image has to be annotated with an explicit class label for the image classification 

task. Such a strict requirement on dataset diminishes the practical value of SL in many 

contexts, especially for those applications where the targets of data are hard to obtain.

As many medical problems can be formed as mappings from the input to the output side, SL 

is probably the most obvious approach to solve these problems in a DL way. The researchers 

could be very creative in terms of defining the inputs and outputs. Rather than enumerating 

the large number of successful DL models trained with SL, we will briefly show a few 

representative examples.

Given the success of DL in image-related areas, applications in medical imaging are 

certainly warranted. For instance, remarkable success has been achieved using DL-based 

methods trained with SL to perform segmentation (mapping from anatomy image to organ 

maps) (Ronneberger et al., 2015; Roth et al., 2015; Cha et al., 2016; Guo et al., 2016; Hu et 
al., 2016; Milletari et al., 2016; Hu et al., 2017; Ibragimov and Xing, 2017; Balagopal et al., 
2018; Ren et al., 2018; SAFFARI et al., 2018; Chen et al., 2019a; Jung et al., 2019a; Jung et 
al., 2019b), to improve image quality (mapping from a low-quality image to the 

corresponding high-quality image) (Han et al., 2016; Chen et al., 2017a; Gjesteby et al., 
2017a; Gjesteby et al., 2017b; Kang et al., 2017; Kelly et al., 2017; Hansen et al., 2018; 

Liang et al., 2018; Maier et al., 2018a; Maier et al., 2018b; Rivenson et al., 2018; Schlemper 

et al., 2018; Xie et al., 2018; Zhang and Yu, 2018; Zhu et al., 2018), to improve image 

resolution (mapping from a low-resolution image to the corresponding high-resolution 

image) (Oktay et al., 2016; Pham et al., 2017; Chen et al., 2018; Iqbal et al., 2018), to 

convert images between different modalities (mapping from one image modality to another) 

(Han, 2017; Fu et al., 2019; Kazemifar et al., 2019; Liu et al., 2019a; Liu et al., 2019b), and 

to conduct disease diagnosis based on medical images (mapping from an image to a label of 

diagnosis result) (Zhang et al., 2014; Hua et al., 2015; Kumar et al., 2015; Shen et al., 2015; 

Cheng et al., 2016; Litjens et al., 2016; Sun et al., 2016; Rajpurkar et al., 2017; Wang et al., 
2017; Chen et al., 2019b) etc.

Applications of SL can go beyond image-related problems. Zhen et al. developed a DL-

based model trained with SL to build a mapping from radiation dose distribution to rectum 

toxicity after radiotherapy (Zhen et al., 2017). Similar strategy has also been applied for 

distant metastasis prediction after radiotherapy in head and neck cancer (Diamant et al., 
2019). In the radiotherapy treatment planning regime, SL were employed to train DL models 

to establish a relationship between a patient image to the best achievable dose distribution 

(Nguyen et al., 2019a; Nguyen et al., 2019b; Nguyen et al., 2019c). This approach has also 
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been used for treatment plan quality assurance purpose (Tomori et al., 2018; Nyflot et al., 
2019).

3.2 Unsupervised learning

In contrast to SL, unsupervised learning (USL) is a group of methods that purely rely on 

input data and seek for the inherent data patterns without requiring any target information. In 

this sense, the learning objective is not explicitly described and the learning process is fully 

driven by the data itself. A representative application of USL is data clustering, where the 

data samples need to be grouped into several clusters without any prior knowledge regarding 

group labels of sample, sometimes not even the number of clusters in the dataset.

In DL, one typical example of USL is the training of a deep auto-encoder (Vincent et al., 
2010; Ngiam et al., 2011). Auto-encoder (AE) refers to the model building two-way 

mappings between the original data space and a latent space, i.e. a vector space of a 

relatively lower dimension than the original data space while keeping most of the data 

information in the original space. While AE can be achieved using many ML approaches, a 

deep auto-encoder (DAE) refers to an AE model constructed using a DNN architecture, as 

shown in Figure 7. The function that maps from the original data space to the latent space is 

called an encoder, whilst a decoder stands for the mapping that reconstructs the data from 

the latent representation. The detailed network structure of a DAE is quite flexible. For 

example, the network can be CNN based, fully connected DNN based, or a mixture of them, 

depending on the specific context. Essentially, a DAE simply aims at creating a concise 

representation of the original data on a latent space with most of the information from the 

original space preserved, such that the data can be exactly recovered based on the latent 

representations. To achieve this goal, training a DAE is performed by simply enforcing the 

agreement between the original data and the corresponding output from the decoder. No 

task-specific information or target is involved in the training process, as required by the 

definition of USL. Several variants of DAE have been proposed such as sparse autoencoder 

(Xu et al., 2016), denoising autoencoder (Vincent et al., 2008) and variational autoencoder 

(Sønderby et al., 2016).

DAE has its broad applications in many different areas. Within the scope of medical physics, 

DAE has been successfully applied to seek for a low-dimension representation of patient CT 

images, such that high-quality low-dose CT images can be reconstructed by restricting the 

solution to the trained DAE-based manifold as prior information (Wu et al., 2017; Ma et al., 
2018). It has also been employed to enhance the robustness and quality for real-time MRI 

and CT image reconstruction (Mehta and Majumdar, 2017). A DAE-based unsupervised 

deep feature learning algorithm was developed for medical image analysis (Guo et al., 2016; 

Chen et al., 2017b). DAE has also been utilized for other medical physics related tasks, such 

as breast density segmentation (Kallenberg et al., 2016), multiple organ detection (Shin et 
al., 2013), and breast cancer nuclei detection (Xu et al., 2016).

In addition to DAE, other types of USL have also been employed in medical physics field. 

For instance, deep Boltzmann machine was applied to tackle the problem of heart motion 

tracking for treatment planning (Wu et al., 2018).
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3.3 Semi-supervised learning

Semi-supervised learning (semi-SL) falls in between SL and USL. It broadly refers to the 

training strategies designed for applications with target information only partially available, 

which holds true for many real-world applications. Hence, semi-SL methods have attracted 

great research interests. The goal of semi-SL is to fully utilize data with/without targets 

rather than simply treating the problem via SL using only the data with labels, or 

formulating the problem via USL while completely ignoring the available labels.

One of the most widely used semi-SL techniques in the DL area is generative adversarial 

networks (GAN) (Goodfellow et al., 2014). A general GAN structure is illustrated in Figure 

8. A generative network (generator) and a discriminative network (discriminator) are trained 

simultaneously to fight against each other. The goal of a discriminator is to distinguish real 

and synthetic samples in a way similar to human perception, whilst the generator is trained 

to produce examples that are realistic enough to fool the discriminator. To handle the 

unlabeled data in semi-supervised learning, semi-supervised GAN has been proposed 

(Springenberg, 2015; Odena, 2016; Kumar et al., 2017). For each unlabeled data, instead of 

specifying which label it should receive, the semi-supervised GAN forces it to belong to one 

of the possible categories with a large probability based on the underlying pattern in data as 

well as the labeled data available in dataset.

Variants of GAN architecture have been incorporated into the medical physics field. A 

recent study (Liang et al., 2018) has successfully adopted the CycleGAN (Zhu et al., 2017) 

to generate synthesized CT images from CBCT images for adaptive radiation therapy 

without fully relying on paired CT-CBCT data. Zhang et al. proposed a deep adversarial 

network for biomedical image segmentation by utilizing unannotated images (Zhang et al., 
2017). Nie et al. established an attention based approach using a confidence network for 

adversarial learning to tackle the image segmentation problem (Nie et al., 2018). Madani et 

al. put forward a semi-supervised GAN model to solve domain adaptation problem for chest 

X-ray classification (Madani et al., 2018).

There are also many other types of semi-SL approaches established in DL. In medical 

physics field, Feng et al. proposed a progressive semi-SL strategy for MRI segmentation that 

gradually enlarges the training dataset along training steps by including reasonable 

unlabeled data (Feng et al., 2018). Bai et al. designed an iterative strategy to alternatively 

train the DNN model and estimate labels of unlabeled data for cardiac MRI segmentation 

(Bai et al., 2017). A deep multi-planar co-training strategy was developed for multi-organ 

segmentation (Zhou et al., 2018), where pseudo-labels were generated for unlabeled data. 

The scheme was also employed in Sun et al. (2017), in which a graph based semi-SL method 

was put forward for breast cancer diagnosis with majority of unlabeled data.

3.4 Reinforcement learning

Reinforcement learning (RL) (Sutton and Barto, 2018) is a ML/DL strategy that enables a 

model, or more frequently referred as an agent, to learn by interacting with an environment, 

an existing system that produces states based on the agent’s actions. This is illustrated in 

Figure 9. Essentially, RL tries to train the agent to make decisions to maximize a reward 
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based on the interactions between the agent and environment. In deep reinforcement 
learning (DRL) (François-Lavet et al., 2018), a deep neural network is incorporated to model 

the agent. This approach incorporates the superior perception ability of DL into the RL 

framework to improve the decision-making performance for complex tasks. Different from 

previously mentioned learning strategies, during the process of model training, DRL utilizes 

a reward function obtained from the environment to improve the model. Specifically, it trains 

DL models in a natural trial-and-error learning strategy similar to that of a human. The deep 

model, namely agent, is constructed to learn decision-making by observing the reaction of 

the environment, i.e. how the environment changes its state in response to the decision. The 

quality of the decision, good or bad, is quantified by the reward function. Through a series of 

interactions with the environment, the agent can learn how to make appropriate decisions 

based on the observed state to maximize its reward.

Modem applications, such as in (Mnih et al., 2013; Mnih et al., 2015), often combine DRL 

with Q-learning (Watkins and Dayan, 1992). Instead of aiming at maximizing the reward 

obtained through the next interaction, the goal of Q-learning is to predict the total reward to 

be obtained in the sequence of future interactions. Deep Q-learning has been successfully 

applied to achieving many real-world problems, such as playing Atari games (Mnih et al., 
2013; Mnih et al., 2015) and the game of Go (Silver et al., 2016; Silver et al., 2017).

DRL essentially tries to mimic human’s decision-making behaviors, which holds a strong 

potential for solving medical physics problems requiring human inputs. It has been 

successfully applied to automatically adjust regularization parameters in iterative CT 

reconstruction (Shen et al., 2018; Shen et al., 2019d). In addition, Shen et al. established an 

intelligence virtual treatment planner that is able to automatically operate a treatment 

planning engine to generate clinically acceptable plans in a human-like fashion. This idea 

has been tested in high-dose-rate brachytherapy (Shen et al., 2019a), as well as in external 

beam radiation therapy (Shen et al., 2019b; Shen et al., 2019c). DRL was also employed to 

automate the decision process of adaptive radiotherapy for non-small cell lung cancer 

(Tseng et al., 2017). A multimodal image registration strategy was also developed based on 

the deep context reinforcement learning (Ma et al., 2017).

4. Available research tools and datasets

4.1 Deep learning frameworks

Due to the exploding popularity of DL in recent years, a number of computational packages 

and frameworks have been established to simplify development and deployment of DL 

models, with large levels of support backed by companies. All of these packages now handle 

basic and generic operations encountered in DL to allow for a relatively straightforward 

implementation. For instance, commonly used layers in a DNNs, such as fully connected 

layer, 1D/2D/3D convolution layer, batch normalization, dropout layer, max-pooling layer, 

etc., are predefined in these DL frameworks. They also provide readily usable activation 

functions including ReLU, sigmoid, soft-max, etc. Users can simply call some functions to 

set up a DNN suitable for their own tasks. These DL frameworks have built-in optimization 

algorithms that can calculate gradient/momentum and perform backpropagation operations 

to train a network. These features allow researchers to begin at a higher level of 
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development, and focus more on solving their own problems, rather than spending a lot of 

efforts on implementing the DL model and training it. The following paragraphs will present 

common DL packages available to researchers. We also summarize them in Table 2.

Currently having the largest community usage and support, TensorFlow developed by the 

Google Brain Team in 2015 is the most popular DL framework (Abadi et al., 2016). 

TensorFlow was designed with production and scalability in mind, making it very popular in 

the industrial setting where quickly pushing prototypes to deployment is essential. Moving 

forward, TensorFlow 2.0 now has Eager Execution enabled by default, which allows for 

faster debugging, immediate run time, dynamic computational graphs, and custom gradients, 

ultimately leading to faster prototyping and development from a research standpoint. 

TensorFlow 2.0 fully integrates Keras (Chollet, 2015) as the default mechanism, a high-level 

Application Programming Interface (API) that wraps around the core frameworks like 

TensorFlow, Microsoft Cognitive Toolkit, and Theano. It contains a simple, easy to utilize 

interface to access the packages’ core operations. The integration of Keras into TensorFlow 

as the default creates a simple and seamless method for model development, training, 

validation, testing, and deployment.

While TensorFlow gets the award for the largest community and support, PyTorch (Paszke et 
al., 2017) gets the award for the fastest growth. Released in 2016, PyTorch is the Python-

based version and successor of Torch, a popular ML and scientific computing framework 

written based on Lua and released in 2002. In contrast to TensorFlow that started with a 

scalable and production ready type of framework and added Eager mode at a later time 

point, PyTorch followed a reversed path. They designed the framework to be more 

“Pythonic” (follows the conventions and language use of Python), allowing for dynamic 

computation graphs from the beginning. These aspects made PyTorch great for rapid 

prototyping and gain immense popularity among the academic community. More recently, 

with the release of PyTorch 1.0, there was a much heavier focus on paving the path from 

research to production and scalability.

Even with TensorFlow/Keras and PyTorch taking the top spots in popularity, there are many 

other frameworks available for ML/DL tasks. Developed by Berkeley AI Research (BAIR), 

Caffe (Jia et al., 2014b) is the next most popular framework. It is written in C++ with a 

Python interface. An attempt to create its successor, Caffe2, was started by Facebook in 

2017, but the project development was merged into PyTorch in spring of 2018. The next 

popular ML framework, Theano (Bergstra et al., 2010; Bergstra et al., 2011; Bastien et al., 
2012) was developed by the Montreal Institute for Learning Algorithms (MILA) at the 

Universit de Montréal. In fall of 2017, with rising popularity of TensorFlow, it was 

announced that Theano would cease any major development. However, minor updates are 

still added, and some experts today still rely on Theano for ML tasks. The Apache MXNet 

(Chen et al., 2015) was developed by the Apache Software Foundation. It is written in 

multiple languages, including Python, C++, MATLAB, R, Julia, JavaScript, Scala, Go, and 

Perl. While less popular, MXNet is a very high-performance framework, typically training 

faster with less computational resource demand. Microsoft Cognitive Toolkit, CNTK (Seide 

and Agarwal, 2016), is Microsoft Research’s implementation for commercial-level 

distributed DL, and can be added as a library for Python, C#, or C++. Deeplearning for Java, 
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DL4J (Team, 2016), is a computing framework written for Java and the Java Virtual 

Machine (JVM). Chainer (Tokui et al., 2015) is a purely Python-based framework developed 

by Preferred Networks, Inc. It is one of the early adopters and popularizers of the “define-

by-run” format of DL, which is now the concept in both PyTorch and Eager Execution in 

TensorFlow. Last but not the least, MATLAB (The MathWorks, Inc., Natick, Massachusetts, 

United States) also has its own DL package, but is usually behind the aforementioned open-

source packages. However, MATLAB has recognized this and allows developers to import 

models built in other frameworks such as TensorFlow, Keras, PyTorch, MXNET, Caffe, etc., 

to be used in it.

For most researchers starting DL studies, either TensorFlow or PyTorch is a great framework 

to begin with, as they offer plenty of tools that will satisfy majority of users’ needs. Other 

less popular frameworks may find their utility in special use cases. For example, a developer 

that needs an application written in Java may choose to use DL4J for a more seamless 

integration of the DL development and deployment in the Java environment, as opposed to 

training the model in Python with Tensorflow, and then porting the trained model over to 

Java.

Beyond that, it is largely due to personal preference. Even through TensorFlow and PyTorch 

began with different philosophies, their latest releases are beginning to converge in terms of 

their capabilities and available tools. Both PyTorch and TensorFlow have fairly large 

community backings, with many models and codes available freely online (Table 2). In 

general, a number of popular model implementations can be easily found through a quick 

online search query.

As for coding languages, for scientific research, it is often recommended to use Python in 

order to have access to TensorFlow and PyTorch. Python is the most popular language used 

by the DL community, and is one of the most utilized languages for industry. It is highly 

recommended to install Python via the Anaconda Distribution, a Python and R distribution 

focused on scientific computing. It simplifies package and environment management, and 

contains most of the core packages needed for scientific computing.

4.2 Datasets

It is widely recognized that DL models are data hungry, and that, in the medical realm, the 

dataset size is often limited. In the era of big data for ML, enormous efforts have been spent 

to aggregate medical data and make them publicity available. Here we only point out a few 

representative ones.

The National Cancer Institute (NCI) provides a large resource index for researchers (https://

www.cancer.gov/research/resources), including a large list of over 80 available databases 

and datasets. The datasets cover research areas that include cancer treatment, cancer biology, 

cancer omics, screening and detection, cancer heath disparities, cancer and public health, 

cancer diagnosis, cancer statistics, cancer prevention, causes of cancer, bioinformatics, and 

cancer survivorship. Of these datasets, The Cancer Imaging Archive (TCIA) (Clark et al., 
2013) is a notable database and is constantly growing. Funded by NCI, TCIA consists of 

mostly DICOM images of CT, MRI, and PET, as well as organ structures, radiation therapy 
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plans, and dose data. Another notable archive, The Cancer Genome Atlas (TCGA) (Tomczak 

et al., 2015) is a database to catalogue major genomic mutations that cause cancer, with the 

goal to improve diagnostic methods and treatment standards.

Moreover, within the medical physics community, various challenges are hosted every year 

by different organizations, e.g. the grand challenge from American Association of Physicists 

in Medicine (AAPM) and the multimodal Brain Tumor Segmentation (BRATS) challenge 

from the Medical Image Computing and Computer Assisted Intervention Society (MICCAI). 

Datasets released from these challenges are important resources for different problems.

5. Mathematical aspects of deep neural networks

Previous sections have presented a brief introduction on DL, major techniques and 

resources. Starting from here, we will switch gears to discuss technical aspects of DL to gain 

some insights about its capability and potential challenges.

5.1 Mathematical interpretations of deep neural networks

From mathematical perspective, a DNN can be viewed as an effective tool that is able to 

approximate a function arbitrarily well under suitable mathematical conditions (Hornik et 
al., 1989; Hornik, 1991; Pinkus, 1999). Both the depth and width of a neural network are 

among the most important factors that affect its approximation power. As we have defined in 

Section 2.2, depth refers to the total number of layers in a DNN and width refers to the 

number of neurons in a layer. Earlier results on the approximation property, i.e. universal 

approximation, suggested that a wide class of functions can indeed be approximated by 

neural networks with only one hidden layer, although the number of neurons may increase 

exponentially, as we increase the required level of accuracy of the approximation (Cybenko 

and systems, 1989; Funahashi, 1989; Barron, 1993). Later, many studies showed that the 

depth of DNNs helps with the approximation. For example, approximation with DNNs leads 

to an exponential or polynomial reduction in the number of neurons while maintaining the 

same level of approximation accuracy (Cohen et al., 2016; Eldan and Shamir, 2016; Liang 

and Srikant, 2016; Mhaskar et al., 2016). Furthermore, Delalleau and Bengio (2011), 

Telgarsky (2015), and Telgarsky (2016) presented concrete examples that there exist 

functions that can be more efficiently represented with DNNs rather than shallow networks. 

Recently, Yarotsky (2018) analyzed the dependence of optimal approximation rate on the 

depth for ReLU activated DNNs. When approximating a multivariate polynomial, Rolnick 

and Tegmark (2017) mathematically proved that the total number of neurons in DNNs 

should grow linearly with respect to the number of variables of the polynomial. In (He et al., 
2018), the authors investigated the connection between linear finite element functions and 

ReLU activated DNNs. They proposed an efficient ReLU activated DNN structure to 

represent any linear finite element functions and theoretically established that at least two 

hidden layers are needed in a ReLU activated DNN to represent any linear finite element 

functions. More recently, Shen et al. (2019e) provided an intriguing analysis on ReLU 

activated DNNs via a nonlinear approximation with composite dictionaries. They 

demonstrated the advantage of depth over width quantitatively. Other than generic DNNs, 

theoretical analysis on the popular ResNet (He et al., 2016a, b) were also provided (Veit et 
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al., 2016; Lin and Jegelka, 2018; Ma and Wang, 2019). Lu et al. (2017) investigated the 

efficiency of the depth of ReLU activated DNNs from a different angle by proving that there 

exist classes of wide neural networks which cannot be realized by any narrow network 

whose depth is no more than a polynomial bound, indicating that network depth is more 

effective than width. On the other hand, Hanin (2017) proved that there is a minimal width 

of ReLU activated DNNs to guarantee approximation of continuous functions. Their results 

indicated that a good DNN cannot be too narrow either, otherwise we cannot approximate 

continuous functions even with infinite depth.

It is also of note that, in addition to viewing a DNN as an effective function approximation 

tool, there are also other mathematical interpretations of DNNs. For example, because of the 

recursively composite structure, it is natural to view a DNN as a certain dynamic system 

(Cessac and Chaos, 2010). Specifically, E (2017) made an inspiring observation that ResNet 

can be viewed as the forward Euler scheme solving an ordinary differential equation, and 

linked training of DNNs with the optimal control problems. Similar observations were also 

made by other groups (Chang et al., 2017; Li and Shi, 2017; Sonoda and Murata, 2017; 

Chang et al., 2018) and rigorous justification of the link was given (Thorpe and van Gennip, 

2018; E et al., 2019). These interpretations are useful in certain contexts (Gregor and LeCun, 

2010). Due to space consideration, we will not go into more details. Interested readers can 

refer to relevant literatures.

5.2 Fundamental requirements to build a successful deep neural network model

As mentioned in Section 2.1, the fundamental problem of ML (including DL) is to decipher 

the unknown function y = f*(x), from a set of observed training data Atrain. The unknown 

f*(x) is approximated by a function f(x|θ), where θ represents parameters of the function to 

be determined through a training process. In the context of DL, this function takes the form 

of DNN, as specified in Eq. (2). After training, performance of the solution function y = f(x|

θ) is evaluated in a test set of data Atest.

The underlying challenge of ML/DL is that the training is performed by minimizing a 

certain loss function, e.g. L θ = ∑ xi, yi ∈ Atrain yi − f xi θ 2, defined on the observed 

training dataset, while the trained model is evaluated on the testing dataset. Both the training 

and the testing datasets are finite and may be of a relatively small size. These datasets may 

not completely represent the structure of the unknown function and data distribution. In 

principle, the proper loss function to recover y = f*(x) should be 

L * θ = ∑ x, y y − f x θ 2. Note the difference between the actual loss function L(θ) and 

the desired loss function L*(θ) in terms of the range of summation. In other words, it is 

desired to train the model in the complete dataset covering all the points (x, y). However, 

this is impossible, as otherwise we would already have all the information about the 

unknown function and there would be no need for solving the ML/DL problem.

With these in mind, there are two fundamental requirements for a successful ML/DL 

process. (1) The training and testing datasets should be representative of the function y = 

f*(x), so that it is unbiased to use the actual loss function L(θ) defined with the training 

dataset as a proxy of the desired loss function L* (θ) and to evaluate the model performance 
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on the testing dataset. (2) For the specific problem of interest, the function f(x|θ) used to 

approximate the unknown function y = f*(x) based on data should have sufficient capacity 
and flexibility. Here capacity measures the scope of mappings that the function f(x|θ) is able 

to learn by adjusting model parameters θ. High flexibility is a consequence of high capacity, 

as it permits the flexible use of the model f(x|θ) to approximate the unknown but potentially 

very complex mapping y = f*(x), such as mapping from an image to a class label.

Based on the discussion in Section 5.1 looking at DNNs from the function approximation 

perspective, a DNN serves the purpose of providing a class of functions with a large capacity 

that can be trained to flexibly approximate a very complex mapping from the input to the 

output. It is this fact that contributes to the successful applications of DNNs to solve a 

number of problems. Take a typical problem of classifying a picture into cat or dog group as 

an example, a successful function achieving this goal, i.e. mapping an image into a class 

label, is likely very complicated in its mathematical form. The function has to extract some 

features from the image, based on which the two targeted groups can be discriminated. 

Although describing these features verbally is relatively easy for a human, describing them 

rigorously in a mathematical form is apparently difficult. Nonetheless, after training a DNN 

with a large number of images, it can easily learn the mapping function, although described 

in a neural network format. In this example, the flexibility and capacity attributes of DNN 

are of central importance.

Nonetheless, the first requirement on data distribution for the success of DL is beyond the 

reach of DNNs. In other words, given a sufficient amount of data, a DNN is capable of 

extracting complex patterns hidden in the data, yielding a successful DL application. Yet a 

DNN cannot generate additional information not contained in data.

6. Challenges for deep learning in general and in medical physics 

problems

After a brief introduction in the last section about how DNNs can meet in part the 

requirements of ML, we will discuss specific challenges that DL is facing, including both 

generic challenges as a ML tool and specific ones in the medical physics contexts. We would 

like to emphasize that presenting these challenges does not mean using DL to solve medical 

physics problems is impractical. On the contrary, we hope the presentation could help us 

understanding DL better, yielding impactful studies with scientific and practical values.

6.1 Data size

Data size is the fundamental challenge for all ML/DL approaches. Numerous studies have 

demonstrated the success of DL in problems with sufficient data. However, applying DL to 

problems with small-size datasets is dangerous.

This data size issue is typically discussed in combination with the dimensionality of the 

problem of interest. Let us denote the number of data samples with n and the dimensionality 

with p. The severity of this data size problem indeed depends on both quantities. The 

fundamental cause of this problem is that each observed data sample only carries 

information locally valid at the sample location, or at most in a region surrounding the 

Shen et al. Page 18

Phys Med Biol. Author manuscript; available in PMC 2021 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sample’s location, if we assume smoothness of information with respect to the data sample 

location. Unfortunately, for a fixed number of n samples, as the dimension p increases, these 

samples become sparser and sparser in the space. Specifically, suppose we place n samples 

in a unit cube of dimension p. Each data point only carries information in a small region 

around it, e.g. a small ball of a radius of ε. The total volume of all the ε-balls around the 

data points is nVp(ε) = n εpVp(1), where Vp(1) is the volume of a p-dimensional unit sphere. 

Given the volume of the unit cube 1p = 1, the ratio of the volume that we have measured 

information to the entire volume is nεpVp(1). For a fixed n, this ratio quickly approaching 

zero. This implies that for a fixed n, as the problem dimension p increases, there are more 

and more gap spaces between samples, in which there is no information measured. Hence it 

becomes increasingly difficult to draw conclusions about the global data structure of the 

unknown function to be reconstructed from the observed samples. This is often called the 

curse of dimensionality, indicating that the number of needed samples grows rapidly with 

dimensionality.

While the comprehensiveness of the training data is critically important to DL methods, and 

ML methods in general, a proper metric to evaluate data comprehensiveness is still missing. 

It is hard to quantify how well the inherent pattern of one specific type of data is represented 

by the training data. Moreover, instead of the original data space, the inherent pattern is 

often embedded in a task-related low-dimensional latent subspace. Unfortunately, such a 

latent space is generally unknown and it is a particularly challenging task to estimate its 

dimensionality. Although it is not exact, the dimensionality of the original data space p is 

often considered as an alternative measure to represent the complexity of data. For general 

ML purposes, it usually requires number of training samples n to be much larger than p to 

ensure comprehensiveness of training data. A problem with small n and large p is usually 

challenge to solve.

It is worth mentioning that the data size n refers to the number of independent samples, 

rather than the number of features measured per sample. There is a clear cut between the 

notion of big data and big-size data. Big data refers to the situation with a large number of 

independent samples. A dataset containing only a few samples but numerous measurements 

per sample is only big in its size, but may not be considered as big data. Meanwhile, 

independence of data samples is problem specific. In many image processing contexts, 

images can be broken into patches which can be considered as a large number of 

independent samples. It is necessary to justify independence based on problems of interest.

Coming to medical physics problems, data size is a particular concern for several reasons. 

Data collection for most of the medical problems is often time-consuming, labor-intensive, 

and expensive. The creation of a useful training dataset usually requires notable domain 

knowledge from clinicians. Moreover, data pre-processing, which may also require 

substantial efforts, is commonly needed for medical data, given the sometimes-poor 

standardization, distinct clinical protocols, and inevitable human errors in data collection. 

Furthermore, although a relatively large pool of historical data might be available at some 

large medical institutions, the amount of data available for each specific task is likely still 

limited. On top of all these issues, legal and privacy concerns are additional factors that 

prevent assembling large-scale medical datasets and sharing them among institutions. As a 
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consequence, medical datasets are often in the regime of small n. On the other hand, many 

medical tasks are actually large p problems due to the involvement of high-dimensional data 

such as multi-modality medical images and other patient medical records. It is also often 

easier to measure a lot of information per patient than to have a large number of patients. 

Combining these facts, the small n large p nature of many problems indeed poses a 

significant challenge for ML/DL in medical applications.

6.2 Overfitting

Overfitting refers to the situation where a ML/DL model is trained to closely or even exactly 

fit a particular set of training data, but fail to learn the general underlying data pattern to 

maintain generality. This typically happens when the number of parameters in an ML/DL 

model is too large to be justified by the available training data.

6.2.1 Overfitting in deep learning—To date, almost all the successful DL applications 

were achieved on large-scale datasets. In these examples, although the number of network 

parameters is larger than the number of training data, it has been empirically and 

surprisingly observed that the developed DNN models still generalized well. The 

mathematical reasons behind this phenomenon is yet unknown. A recent study (Belkin et al., 
2018) has shed some lights to bridge the classical ML and the DL regimes. They provided 

several examples to show that over-parametrization, i.e. using a large model with more 

parameters than data, helps to improve the performance of DL models. However, we would 

like to emphasize that these conclusions were drawn based on the assumption that the 

amount of training data is sufficient to well approximate the complete data distribution. 

Generality of the conclusions to different problems and the theory behind remain to be 

further explored.

On the other hand, in the cases with a relatively small-size dataset, the concern of overfitting 

should be always kept in mind. This is particularly true because of the large capability of 

DNN to fit data, which in fact is one of its virtues and at the same time one of its drawbacks. 

One interesting study was reported by (Zhang et al., 2016), which received the best paper 

award of 2017 International Conference on Learning Representations (ICLR). One of the 

key results is depicted in Figure 10, where large scale DL models were trained to fit different 

datasets synthesized based on CIFAR10 dataset (Krizhevsky and Hinton, 2009), a widely 

used public image dataset in the computer science community. More specifically, the authors 

generated multiple synthetic datasets by randomly assigning fake image labels, shuffling 

image pixels, adding random noise to image pixels, and replacing the images by random 

Gaussian noise etc. As such, the generated training data set lost “correct” information and 

hence the models built on it did not have meanings. However, as shown in Figure 10(a), the 

DL model was still able to perfectly fit the original CIFAR10 dataset as well as all the 

synthesized with 0% training loss, although it took more training steps to achieve so (Figure 

10(b)). Note that there were no true data patterns to learn in the synthetized datasets, since 

either image labels or image data were corrupted and hence the trained model did not 

generalize anymore in these cases (Figure 10(c)). These results clearly demonstrated the fact 

that large-scale DL models are powerful enough to memorize the whole training dataset.
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6.2.2 Potential approaches to prevent overfitting—Multiple strategies have been 

designed to address the overfitting problem. One trivial way is to reduce the number of 

network parameters. However, the network capacity would be reduced as well, which may 

deteriorate the model performance. Hence, it requires insights about the problem of interest 

and the knowledge about the strengths and weaknesses of different network structures to 

design an effective network model.

Another effective and commonly employed approach is data augmentation, i.e. to expand a 

dataset by synthesizing additional realistic samples from available samples. The way of 

augmentation varies depending on the context. For instance, one common augmentation 

technique used in image analysis related tasks is to apply random translations, rotations, 

deformations, and adding low-level random noise to training images to create new training 

samples. A more advanced augmentation strategy is to perform interpolation based on the 

distribution of existing training data (Chawla et al., 2002). More recently, the generative 

adversarial networks (GANs) (Goodfellow et al., 2014) have demonstrated its power to 

synthesize realistic training samples (See Section 3.3). However, empirical evidence recently 

showed that GANs learn distributions defined on a fairly small region of the input data 

domain. Hence, the capability of GAN may be also limited in terms of generating truly 

independent data (Arora and Zhang, 2017).

Synthesizing new data based on physics principles is also a potential approach to increase 

data size. For instance, in the problem of x-ray scatter estimation in cone beam CT (Maier et 
al., 2018a; Nomura et al., 2019), Monte Carlo simulation can be employed to generate 

realistic scatter signals based on patient anatomy and x-ray illumination setup (Jia et al., 
2012). Nonetheless, performance of models trained by these data critically depends on the 

realism of data synthesis. If there is a systematic bias of the synthesized data from real data, 

e.g. due to inaccurate modeling of the physics process, the trained models would give 

incorrect outputs, when being applied to real situations.

Incorporating regularizations to model parameters can also help preventing overfitting 

(Moody, 1992). Classical regularizers including weight decay and sparsity have shown to be 

effective in many studies (Boureau and Cun, 2008; Glorot et al., 2011a; Krizhevsky et al., 
2012; Venkatesh et al., 2017). Along the same line, more sophisticated approaches, such as 

group sparsity (Scardapane et al., 2017) and structured sparsity (Wen et al., 2016), were 

introduced. Moreover, layers and architecture specifically designed for DNN have also been 

put forward (Glorot et al., 2011a; Wan et al., 2013; Srivastava et al., 2014). One of the most 

successful regularization techniques in DNN model is adding dropout layers (Srivastava et 
al., 2014). It randomly turns off some neurons with a certain probability at each iteration of 

the training phase, so that the number of activated network parameters is reduced. Despite 

the remarkable success achieved by these methods, the study Zhang et al. (2016) revealed 

that overfitting may still remain for large-scale DNNs, even when various regularizations are 

applied. Further efforts in developing more effective regularization techniques are definitely 

needed.

6.2.3 Monitoring overfitting with validation—Preventing DL models from 

overfitting is still an ongoing research direction, since no existing solution can achieve 
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satisfactory performance in a general situation. Therefore, monitoring overfitting along the 

training process becomes essential.

One effective way is to have a stand-alone validation dataset and monitor the model 

performance on it along the training process, rather than to pursue the lowest training loss 

evaluated on the training dataset. Hyper-parameters, such as number of layers, size of each 

layer, learning rate, etc., can be tuned in order to reduce the validation loss in a trial-and-

error fashion. Moreover, through monitoring the validation loss along the training process, it 

is also possible to select the model at the epoch when the smallest validation loss is 

obtained.

A more comprehensive way is to perform k-fold cross validation (Kohavi, 1995). We 

illustrate the idea of k-fold cross validation in Figure 11 using a simple 3-fold case as an 

example. The dataset is first split randomly into training data and testing data. The testing 

data are saved for model evaluation after model development, while the training data are 

randomly split evenly into three folds. Multiple trials of training can be performed to 

develop multiple models. In each trial, one fold of data is left out as validation data, such 

that the performance of the model trained on data in other folds can be validated along the 

training steps. Similar to single-fold validation, one can adjust hyper-parameters according 

to the validation performance averaged over the k-fold cross validation process. With finely 

tuned hyper-parameters, the model achieving the best performance on training and validation 

data, or an integrated model generated via certain fusion techniques (Ngiam et al., 2011) can 

be selected as the final model. Up to this point, the model should have only seen the training 

and validation datasets. Its performance will be finally evaluated on the reserved testing data.

Although these validation strategies have been shown to be very useful to identify 

overfitting, they do not guarantee a generalizable model, especially when the data size 

problem discussed in Section 6.1 occurs. The reason is that, when the data are too sparse, the 

data space not observed in training and validation datasets allows a large freedom to 

manipulate the model without affecting training and validation performance. Meanwhile, 

when the validation dataset is not comprehensive enough to represent the complete data 

distribution, validity of using validation loss to prevent overfitting degenerates, as the model 

would be tuned to favor the validation data, but not the testing data.

We also emphasize that the testing data should not be involved in the training process in any 

form, before the final model is constructed and ready for model evaluation. A high model 

performance evaluated on the testing dataset likely indicates a successful model 

development. On the other hand, if the model performance is tested to be low, the model 

development is likely failed. Further tuning the model to improve performance on the testing 

data risks information leakage from the testing dataset to the training process and bias the 

model development. In this case, evaluating model performance on testing dataset is not a 

true test anymore but rather becomes validation.

6.3 Interpretation

Interpretability of a model refers to the level of transparency in knowledge and information 

that the ML/DL model extracts from input data. Interpretability helps to understand and 
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validate the correctness of the established model, and hence it is crucial to many real-world 

applications. For instance, let us assume a model has been developed to identify babies in 

images. An interpretable model provides information that it extracts for such decision 

making, e.g. a baby’s face in the image. Based on this fact, one can judge if the model is 

trained to identify the true information, or it mistakenly incorporates other incorrect 

information in the images to make the decision, such as by identifying a milk bottle. 

Interpretability probably requires more attentions in medical applications than in other 

applications, given the fact that resulting DL models may potentially influence the clinical 

decision-making process, and thereby the patient care quality, safety, and outcome.

Given the complicated multi-layer structures and numerous numerical operations performed 

by each layer, interpreting DL models is often challenging by itself. A DL model is 

sometimes referred as a “black box”, since users have little knowledge about what is inside 

the highly nonlinear model. This has become one of the main obstacles that prevent further 

applications of DL models in many real-world tasks.

To date, extensive studies have been performed to investigate and enhance interpretability of 

DL models. A recent survey in (Zhang and Zhu, 2018) gave a comprehensive review about 

the current status. Major efforts have been devoted to two aspects, i.e. enhancing 

interpretability of DL models and developing interpretable models. To interpret existing DL 

models, t-SNE embedding was proposed to map DNN representations onto a low-

dimensional space to visualize the relationship among data (Maaten and Hinton, 2008). A 

number of other methods have also been developed to visualize regions in input data that DL 

models consider to be important (Simonyan et al., 2013; Springenberg et al., 2014; Zeiler 

and Fergus, 2014; Mahendran and Vedaldi, 2015; Dosovitskiy and Brox, 2016; Nguyen et 
al., 2017; Samek et al., 2017). Meanwhile, interpretable DNN architectures have been put 

forward (Che et al., 2016; Chen et al., 2016; Sturm et al., 2016; Zhang et al., 2018). Among 

them, Zhang et al. (2018) proposed a typical interpretable structure by facilitating 

disentangle representation, while Sabour et al. (2017) designed the capsule network to 

extract the rationale of detection qualitatively. Several pioneer studies have been conducted 

to design interpretable architectures for medical related applications (Che et al., 2016; Sturm 

et al., 2016).

6.4 Model Uncertainty and Robustness

The constructed DL model itself has uncertainty for three reasons. First, there are typically 

more network parameters than training data, which makes the optimization problem 

essentially underdetermined. The resulting model after the training stage depends on many 

factors, such as initial solution, hyper-parameters, etc. Second, due to the highly nonconvex 

form of the loss function, the training of a DL model ends up with one of the local minima. 

Conducting training multiple times does not necessarily produce the same model or models 

with the same performance. Third, the training algorithms are often of a stochastic nature. 

For instance, the data are split randomly into batches at each epoch. This fact introduces 

discrepancy among models even trained with the identical network structure using the same 

dataset.
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Robustness is another important aspect to consider, when evaluating the performance of a 

trained DL model, particularly in the medical context. It refers to the sensitivity of the model 

output with respect to perturbations to the input variables. A high sensitivity means poor 

robustness. As perturbations always exist in the real world, a DL model with poor robustness 

can lead to unstable performance, and thereby deteriorate its practical value. Unfortunately, 

it has been recognized lately that DL models are not quite robust. Multiple recent studies 

have shown empirical results, demonstrating that output of DL models may be sensitive to 

small changes on input data (Kurakin et al., 2016; Papemot et al., 2016; Akhtar and Mian, 

2018; Yuan el al., 2019).

Specific to the healthcare context, since the established DL model has the potential to affect 

clinical decision making, robustness of DL models strongly correlates with the patient safety 

and healthcare quality. Yet a recent article in Science discussed deep vulnerability of DL 

models in healthcare (Finlayson et al., 2019). Figure 12(a) is one example, showing the 

output of an DL model predicting skin cancer is altered by adding a small-scale noise to the 

input image. The same behavior has also been observed in other DL models for image-based 

diagnosis of pneumothorax from chest x-ray, diabetic retinopathy from retinal fundoscopy 

(Finlayson et al., 2019), and the classification of lung nodules based on CT images (Tsai et 
al., 2019) (Figure 12(b)).

Although theoretical guidelines about this robustness issue are few and far between, we can 

still summarize some practical insights on how to improve model robustness. One effective 

way is to enhance diversity of the training dataset. More specifically, if the model is found to 

be not robust, we may include those vulnerable samples into the training dataset and further 

refine the DL models, such that the models observe those samples and learn the proper way 

to defend against the perturbations (Yuan et al., 2019). This process can be repeatedly 

performed, until the robustness level is satisfactoiy.

6.5 Correlation, causality, and incomplete information

A DNN can be very powerful to decipher the correlation between input and output variables, 

even a very complex one that is difficult to capture by other traditional ML methods. Yet it 

faces the same two challenges as other ML methods. First, it is hard to answer the question 

whether the discovered correlation is real or not. While one can be very creative in terms of 

using a DNN to establish a relationship between two variables, it may be dangerous to do so, 

if it is hard to justify that there is indeed a relationship between them. There are many 

examples on the Internet showing spurious correlations between different quantities around 

us. This problem is further compounded by the large flexibility and capacity of a DNN. The 

DNN can easily generate a mapping between the input and output variables with a high level 

of accuracy, and hence one may tend to believe the observed relationship is real. The second 

challenge is that the observed correlation does not necessarily mean causality, i.e. one is the 

cause of the other. While correlation is often acceptable to support decision making in 

medicine, it is highly desirable to derive causality, which would help us apply the DL model 

in the correct context.

In many situations, the input variables only contain partial information to determine the 

output variables due to incomplete measurements. For instance, encouraging results have 
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been achieved in medical image reconstruction using only a limited amount of 

measurements by mapping from a low-quality reconstructed image to a high-quality one 

with a DNN. In this case, it is important to think where the additional information is from. In 

the image reconstruction example, it is likely that the training process learns inherent prior 

knowledge about images, e.g. its appearance, shape, size, etc. The prior knowledge is 

appended to the input low-quality image to derive the output. Understanding the sources of 

the information provided by the network is valuable for not only gaining insights about the 

technologies itself, for further improving the methods, but also for a safe and confident 

deployment of the developed techniques in routine applications.

6.6 Effective and efficient learning

On the technical side, one has to admit that current DL technologies are still at their infancy. 

It typically requires a large amount of data to train the model and the training process 

usually converges slowly. This is in stark contrast with human intelligence that can easily 

and quickly understand situations and problems based on only a few observations. Hence, it 

is a central topic overcoming the data-hunger nature in medical regime and making the 

learning more efficient.

Transfer learning (Pan et al., 2010) is one of the effective approaches to reduce the 

requirement on data size. As its name suggested, transfer learning refers to a method where a 

model developed for one task is reused as the starting point for another model on a second, 

but related task. After a DNN model is trained for the first task, it is believed that the model 

already gains certain knowledge about the problem of interest. Hence, the network 

parameters can be reused as the initial solutions, when training the same network on the 

second related task using limited training data. Optionally, at the retraining stage, the first 

DNN model can be adapted or adjusted to better suit the second problem. Take an image 

classification problem in a medical context as an example, the publicly available DNNs such 

as VGG model may be reused, since the model has been successfully developed to recognize 

key features in an image, such as edges. Although the initial DNN model are trained using 

image data probably unrelated to the second problem, the capability of recognizing edges 

and other features from the pre-training stage is expected to be critical for the second 

problem, and hence should be preserved.

Network structure is very important for each specific task, as a predefined network with a 

specific structure can reduce the number of network links and hence unknown parameters as 

compared to using a fully connected network, making the training more effective. Therefore, 

before starting a DL study, it is worthwhile to carefully design the network structure based 

on the targeted problem. Meanwhile, it is equally important to avoid using an inappropriate 

network structure. Additionally, the emerging research of neural architecture search (Elsken 

et al., 2018), a subfield of automated ML, shows potential in searching for effective DNN 

architectures for different datasets and tasks.

One important reason why a human is able to quickly learn from a small-size dataset is the 

capability of reasoning. However, this is quite difficult for a network. Current DL 

approaches mainly rely on data. It is expected that, if we could incorporate rule-based 

reasoning capability in a DL model, the training process could be more effective.
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Because of the importance of improving learning effectiveness, not only in medical area, 

there have been a vast number of approaches developed over the years to address this issue, 

such as few-shot learning (Fink, 2005; Li et al., 2006), imitation learning (Ho and Ermon, 

2016; Duan et al., 2017), meta learning (Santoro et al., 2016), domain adaptation (Glorot et 
al., 2011b), etc. As it is impossible to enumerate all of them, interested readers could refer to 

relevant publications.

On the computation side, using GPU programming has become the standard practice to 

achieve a high computational efficiency. Many modern GPUs and GPU workstations are 

designed specifically for DL purposes. For instance, some modern GPUs supports the use of 

the half precision (16-bit) floating point format, because lower precision calculations seem 

to be not critical for DL (Micikevicius et al., 2017). This reduces the computational load and 

memory requirement compared to the conventional 32-bit floating point format for single 

precision operations.

7. Recommendations

Before concluding this review article, we will present some recommendations regarding 

practices on DL research. These recommendations are derived based on the extensive 

discussions about the insights of DNNs, their challenges, and potential solutions. We first 

summarize commonly encountered challenges as well as the corresponding 

recommendations in Table 3, and then provide more discussions below.

7.1 Graphics processing unit

As mentioned previously, training of a DNN usually requires extensive computations due to 

a large model size and the amount of data. It is beneficial to use GPU programing to 

overcome this challenge. While there are a few high-end GPU workstations from different 

vendors built specifically for DL purposes, almost all modern GPU cards can be used in a 

standard computer workstation or cluster to enhance computational efficiency. On the 

software side, most of the DL computational frameworks, such as TensorFlow and PyTorch, 

have supports of GPU-based computation, which allow users to employ GPUs without the 

need of in-depth knowledge in GPU programming.

7.2 Data and model construction

As data is the basis of DL, before performing a new study, the data should be carefully 

inspected to avoid issues such as errors, outliers, bias, and confounding factors, etc. Note 

that in many medical physics applications, it is challenging to get the real ground truth. For 

example, contours in image segmentation and labels in disease diagnosis are mostly given 

by clinicians. The data generation process is usually subjective and human error or 

uncertainty is almost unavoidable. Hence, having multiple clinicians to label the same 

dataset and properly integrating the labels are helpful to ensure validity of developed model.

Based on the specific task of interest, one should carefully select or design a DNN with an 

appropriate network structure. At this stage, it is important to keep the balance between 

model complexity and capacity. On one hand, a sufficiently complex DNN should be 

employed to allow accurately modeling the underlying complex data pattern. On the other 
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hand, the model should be kept as simple as possible to reduce the number of unknown 

parameters and therefore the required amount of data. In the circumstance with a limited 

data size, designing suitable data augmentation strategies based on the specific context is 

encouraged and often helpful. Yet data augmentation strategies should be justified and 

examined to avoid potential bias.

Given the extraordinary capability of a DNN, the risk of overfitting is often high and one 

should be always alerted about this fact. Cross validation as presented in Section 6.2.3 is an 

effective approach during the model training stage, when data size is limited. However, we 

need to keep in mind that it does not eliminate the risk of overfitting. In the case with an 

intermediate to large-size dataset, splitting the data into training, validation and test is 

recommended. Appropriate strategies to avoid overfitting, such as dropout, regularizations 

etc., could be employed during the training process. While repeated tuning hyper-parameters 

during the training step is unavoidable to achieve the best performance, it is very important 

to do so by observing model performance on the validation dataset only, but not the testing 

dataset.

7.3 Model evaluation

At the model evaluation stage, the model should be evaluated in a testing dataset that is 

completely blind to the training process to avoid information leakage from the testing 

dataset to the training stage, which may bias the constructed model to favor the testing 

dataset. Ideally, the testing dataset should be independent from the training dataset, e.g. from 

a different data source.

It is equally important to use proper evaluation metrics for the specific problem or context to 

objectively assess model performance. First, the evaluation metric has to be scientifically 

sound. For instance, for a model predicting a very rare disease, simply reporting model 

accuracy tested on a population dataset is likely not sufficient. A trivial model simply 

predicting no disease in all cases would give a very high accuracy level, but is practically 

useless due to poor sensitivity. More comprehensive evaluation metrics such as sensitivity, 

specificity, area under the curve, and many others should be employed for an objective 

evaluation from different perspectives. Second, evaluation metrics and passing criteria are 

problem specific. For many imaging related tasks, DL algorithms are very capable of 

generating visually very appealing images. However, the images have to be assessed in an 

appropriate context to evaluate if they meet requirements of the clinical task. For image-

based diagnosis purpose, using metrics regarding low-contrast object detection is much more 

important than just presenting visually appealing images. The CT image intensity accuracy 

is critical for radiotherapy dose calculation, whereas geometry accuracy should be the main 

focus for cone beam CT in the context of image-guided radiotherapy.

7.4 Model interpretation

Correctly interpreting the resulting model is at the core of DL. Care should be given to 

properly and objectively make conclusions and statements. For instance, a DL model can 

discover correlations, but it would be typically challenging to establish causality. While 

correlation is acceptable in medicine, the fact that the constructed model reports correlation 
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should be clearly stated to avoid misleading readers. With this in mind, human interpretation 

and judgement is of importance to avoid spurious results. One example is that the shoe sizes 

and student’s intelligence quotient scores would be found correlated by a ML method, but 

neither of them is the cause of the other. The impact of confounding factor in this case, age, 

may not be identified by DL and it has to rely on the researcher to figure this out. Another 

situation is that the input data contain both the independent variables and other variables 

correlated to them, whereas the output only depends on the independent variables. A trained 

DL model may build a relationship not only between the output and the independent 

variables, but also incorrectly between the output and other correlated variables. Again, 

carefully examining and testing the developed DL model is critical to make sure the model is 

constructed properly.

It would be valuable in a study to use model interpretation techniques to understand the 

exact information that DNN extracts from the training data. This would help us to gain 

confidence and insights about the study and avoid over or incorrect interpretations. 

Meanwhile, we agree that it is not always possible to decipher reasons in the constructed 

DNN due to technical challenges. In this case, certain discussions and justifications 

regarding the end-to-end rationale learnt by a DNN model is important and encouraged. The 

discovered correlation should have a certain reasonable explanation to support it.

7.5 Model uncertainty and robustness

Every study has uncertainty, to a large or small extent. The uncertainty of the trained DL 

model may be caused by numerous factors including, but not limited to inherent noise in the 

data, limited data size, imperfectly selected model, training residual error, non-local minima 

of the training process, to name a few. The model robustness seems to be an issue caused by 

the DNN. Therefore, commenting on the model uncertainty and robustness is also an 

important aspect, so that readers can bear this in mind for effective use of the trained model.

The researchers are encouraged to perform comprehensive investigation and estimation 

about the magnitude and cause of uncertainty and robustness. For instance, the model may 

be trained multiple times to study the uncertainty due to the stochastic nature of the training 

process. Input data may be deliberately perturbed to investigate robustness of the trained DL 

model with respect to noise in the input data. We agree that such a comprehensive evaluation 

may be a tedious process and may be beyond the scope of some initial studies proposing a 

DL model. However, certain types of estimation are desired, so that the readers can assess 

the DL model from a more objective angle. For example, for a DL model claiming a better 

performance than a classical ML model but with the uncertainty of a similar size to, or even 

larger than the performance margin, it is probably inappropriate to claim the definitive 

advantage of the DL model.

7.6 Study reproducibility

Study reproducibility is an important feature of science (Open Science Collaboration, 2015). 

In the DL field, there has been an increasing need to enhance research reproducibility. Doing 

so will not only be critical for the deep understanding of published techniques, it would also 
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be vital for the community to continuously advance by building success on top of existing 

successes.

Data is the cornerstone of DL. Different from other fields where large-scale standard 

datasets are frequently available, e.g. the CIFAR-10 and CIFAR-100 datasets for image 

classification tasks, medical physics field has relatively less publicly available datasets. 

Section 4 has listed a few. When performing new studies, we recommend to consider using 

public datasets as the first priority. This would put studies from multiple groups on the same 

ground, facilitating cross comparisons. In addition, the sizes of public datasets are often 

larger than those of private datasets, which is a feature favored by DL research. Quality of 

these datasets is expected to be carefully inspected before being opened to public, releasing 

the users from tedious tasks of data cleaning.

Along the same vein, data sharing is another route to overcome the data-hunger nature of 

DL. Nonetheless, data sharing in medicine is challenging due to not only technical, but also 

practical and legal concerns. Standard solution for large-scale as-needed data sharing is yet 

unclear. Efforts from the community are encouraged to promote data sharing and to develop 

novel techniques to achieve this goal under practical constraints.

Another key factor to enhance reproducibility is to provide sufficient details in publications. 

This includes not only the typically presented information such as network structure, 

training data, algorithms, etc., but also a comprehensive list of hyper-parameter values, 

training strategies etc. It is also noted that it is probably impractical to list all the details in a 

paper. For instance, some hyper-parameters are dynamically adjusted during the training 

process. Hence, it is suggested to clearly specify those key parameters and details that may 

significantly contribute to the results.

Meanwhile, we point out that training a DL model has inherent randomness. Examples 

include the commonly used stochastic gradient descent algorithm (Bottou, 2010) and the 

dropout strategy (Srivastava et al., 2014). The randomness in the training process, together 

with the highly non-convex landscape of the loss function, poses a barrier to exactly 

reproduce a reported training process, as each time running the training process would land 

at a certain local minimum following a random trajectory. On the other hand, it is more 

important for others to reproduce the claimed performance in a study, as opposed to the 

exact training process.

7.7 Do not forget classical machine learning models

As the last note, while we are continuously impressed by DL and are devoted to study DL, it 

is not a bad idea to keep eyes open about classical ML models for two reasons. First, when 

both classical and DL models can achieve the same, or similar performance, classical 

models may be preferred because of less computational demand, low requirement on data 

size, transparent model meanings, robustness etc. Second, even though DL model attain a 

better performance, classical models may still offer some insights about the problem and 

data, which are valuable for further improving the DL models.
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8. Concluding remarks

In this review article, we did not review extensively the rapid advancements of DL in 

medical physics area over the past several years, as existing review articles have conducted 

excellent jobs for this purpose. Instead, we focused our presentations on introducing DL 

technologies and discussing challenges faced by DL. This choice was made to provide 

medical physics researchers interested in DL an objective overview about the method and to 

help them start the endeavor. Because of limited space and efforts, our presentations cannot 

be complete. We hope the presentation can serve as an initial point for researchers to explore 

more in depth.

DL is a very capable and potentially very impactful tool to advance medical physics in near 

future. As is true for any other powerful tools, DL is not perfect and faces its own 

challenges. The exact mathematical theory behind DL is still lacking. The applications of 

DL in certain medical physics problems require careful and insightful thinking. Attention 

should be payed, when using DL technologies to solve problems in clinical practice.

Over a very short period, DL has achieved tremendous success in a spectrum of problems in 

medical physics. The way forward is bright and challenging. While there are still low-

hanging fruits in certain areas, there is still a long way to develop accurate, robust, and 

clinically impactful DL tools to ultimately bring the potential of DL from bench to the bed 

side and to eventually benefit patient care. Achieving this goal would require a close 

collaboration among physicists, mathematicians, computer scientists, data scientists, and 

clinicians. We hope that researchers will continuously perform novel and impactful studies 

towards realizing this goal and improve healthcare with this amazing technology.
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Figure 1. 
Number of DL-related research articles published in each year. The search for year 2019 

only covered the first two months and the number was linearly annualized to the full year.
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Figure 2. 
Relationship among artificial intelligence, machine learning, and deep learning.
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Figure 3. 
(a) Structure of a neuron. Σ indicates a linear operation acting on the input variables, and ϕ(.) 

is the nonlinear activation function. (b) An example of a fully connected DNN model with a 

multi-layer structure.
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Figure 4. 
Basic structure of (a) a CNN for classification tasks and (b) a U-net style architecture. Up-

sample is an operation to increase the dimension of data via a user-defined interpolation 

method. Flatten indicates the operation to reshape a high-dimensional data array into a 1-D 

vector.
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Figure 5. 
Illustration of the RNN architecture (left). x is the input data, h indicates the RNN, y is the 

output of RNN, and wr is the recurrent information. This network is equivalent to an 

unfolded chain-like architecture (right) with each block being a copy of the same network. 

Each block passes information to its successor.
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Figure 6. 
Illustration of training and testing errors as a function of model complexity.
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Figure 7. 
An example of a deep auto-encoder architecture. The left and right halves of the network are 

encoder and decoder, respectively. The vector in the middle is the representation of the data 

in the latent space.
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Figure 8. 
Structure of GAN. It consists of a generator and a discriminator. The generator is a network 

producing synthetic data by taking latent vectors as input. The discriminator is another 

network trained to distinguish real and synthetic data.
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Figure 9. 
Illustration of the DRL process. An environment indicates an existing system that produces 

states after interacting with an agent. The gain in the interaction is evaluated by a pre-

defined reward function. An agent in the form a deep neural network observes the state from 

the environment and determines an action. The overall goal of DRL is to train a deep neural 

network-based agent to maximize the reward automatically by interacting with the 

environment.
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Figure 10. 
Figure 1 from (Zhang et al., 2016). Fitting random labels and random pixels on CIFAR10. 

(a) shows the training loss of various experiment settings decaying with the training steps, 

(b) shows the relative convergence time with different label corruption ratio, (c) shows the 

test error (also the generalization error since training error is 0) under different label 

corruptions.
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Figure 11. 
Illustration of 3-fold cross validation.
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Figure 12. 
(a) Examples from (Finlayson et al., 2019), used with permission. Model prediction and 

confidence level are shown, (b) An example showing prediction results a CT-based lung 

nodule classification network is changed by adding a noise to input CT images. Predicted 

labels from the DL model are given below images.
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Table 1.

Commonly used DNNs.

Networks Characteristics

Fully connected 
DNN

1 All neurons in one layer are connected with all neurons in the adjacent layer using pair-specific connections

2 There is a large number of trainable network parameters

3 Typically, a large amount of data and computational resources are required to determine parameters

CNN

1 Convolution and pooling operations are involved to connect adjacent layers

2 Typically, there are considerably less trainable network parameters compared to a fully connected DNN

3 Often used to handle image-related tasks

RNN

1 Feedback mechanisms are incorporated in hidden layers to realize a recurrent structure

2 Often used to handle time series data
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Table 2.

Summary of commonly used DL packages.

DL packages Language Characteristics

TensorFlow (Abadi et al., 2016) Python

• Largest community usage and support

• Easy implementation

• Integrated Keras API to simplify implementation

• Large number of examples, e.g. available at https://aithub.com/hwalsuklee/
tensorflow-generative-model-collections

PyTorch (Paszke et al., 2017) Python

• Fastest growing community usage and support

• Easy implementation

• Large number of examples, e.g. available at https://github.com/znxlwm/
pytorch-generative-model-collections

Caffe (Jia et al., 2014b) C++

• Large community usage and support (less popular than TensorFlow or 
PyTorch)

• Merged with PyTorch

Theano (Bergstra et al., 2010; 
Bergstra et al., 2011; Bastien et 

al., 2012)
Python

• Limited community usage and support

• Ceased major development

MXNet (Chen et al., 2015) Multi-language

• Limited community usage and support

• High efficiency

CNTK (Seide and Agarwal, 
2016) Multi-language • For commercial-level distributed DL

DL4J (Team, 2016) Java

• Limited community usage

• Suitable for applications in Java

Chainer (Tokui et al., 2015) Python

• Limited community usage

• Early adopter of “define-by-run” DL

MATLAB Multi-language

• Large community usage and support

• Non-open-source

• Slower update compared to other open-source packages

• Available interface with other packages
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Table 3.

Commonly encountered challenges in DL and recommendations.

Challenges Recommendations

Model training

Training efficiency • Employ high-end GPUs and well-established computational packages

Data quality • Understand and improve data quality

Data quantity

• Increase data size

• Use data augmentation and synthesize data

Overfitting

• Start with a small-scale model

• Use validation strategies to monitor overfitting

• Use regularization strategies

Model evaluation

Model evaluation

• Test the model in testing dataset blind to training stage

• Use appropriate and comprehensive metrics

Interpretability

• Interpret models

• Use interpretable models

Robustness and uncertainty

• Be aware of robustness and uncertainty

• Discuss model robustness and uncertainty, and evaluate if possible

Other Reproducibility

• Use public datasets, if possible

• Share data and model

• Present research in detail
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