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Abstract The lungs provide a large inner surface to guarantee
respiration. In lung alveoli, a delicate membrane formed by
endo- and epithelial cells with their fused basal lamina ensures
rapid and effective gas exchange between alveolar and vascu-
lar compartments while concurrently forming a robust barrier
against inhaled particles and microbes. However, upon infec-
tious or sterile inflammatory stimulation, tightly regulated
endothelial barrier leakiness is required for leukocyte transmi-
gration. Further, endothelial barrier disruption may result in
uncontrolled extravasation of protein-rich fluids. This brief
review summarizes some important mechanisms of pulmo-
nary endothelial barrier regulation and disruption, focusing on
the role of specific cell populations, coagulation and comple-
ment cascades and mediators including angiopoietins, specif-
ic sphingolipids, adrenomedullin and reactive oxygen and
nitrogen species for the regulation of pulmonary endothelial
barrier function. Further, current therapeutic perspectives
against development of lung injury are discussed.
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Introduction

The inner walls of blood vessels are covered with a continuous
endothelial cell monolayer, constituting a semi-permeable
barrier between blood and interstitium. Neighbouring endo-
thelial cells (ECs) are closely connected to each other by
interendothelial junctions. Under physiologic conditions, the
endothelial monolayer actively controls paracellular and

transcellular extravasation of proteins, solutes and fluids,
thereby adjusting interstitial fluid homeostasis (Komarova
and Malik 2010). In lung alveoli, endo- and epithelial cells
and their merged basal laminas build a delicate membrane of
less than 1 μm thickness, which ensures rapid and effective
gas exchange between alveolar and vascular lumens while at
the same time forming a robust barrier against inhaled parti-
cles and microbes. Moreover, this sophisticated structure im-
portantly contributes to central metabolic and immunologic
functions of the lung. However, upon infectious or sterile
inflammatory stimulation via either the alveolar (e.g., in pneu-
monia and mechanical ventilation) or the vascular lumen (e.g.,
in bacteremia and sepsis), pulmonary endothelial barrier ho-
meostasis may be disturbed, resulting in increased permeabil-
ity, protein-rich fluid extravasation, lung oedema and finally
acute respiratory distress syndrome (ARDS) with mortality
rates ranging from 27 to 45 % depending on severity (Ranieri,
et al. 2012) (Fig. 1).

Pneumonia is the most prevalent infectious disease world-
wide and the third most frequent cause of death (World
Health Organisation 2013). Pneumonia is also the most fre-
quent cause of sepsis, a systemic inflammatory response of the
organism, which may originate from infections at any other
site of the body (abdominal, blood stream, urogenital, etc.)
(Matthay et al. 2012). In both pneumonia and sepsis, the initial
innate immune response to invading bacteria, viruses or fungi
is insufficient to avert the infection. Despite subsequent anti-
biotic treatment, the interaction of pathogens and host defence
culminates in complex inflammatory responses. Liberation of
inflammatory mediators, recruitment and activation of leuko-
cytes to the lungs and activation of complement and coagu-
lation cascades, are initiated, contributing to pulmonary endo-
thelial hyperpermeability and ARDS development.

For patients with ARDS, mechanical ventilatory support is
an inevitable and life-saving treatment but may also perpetu-
ate the inflammatory response and further enhance pulmonary
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endothelial barrier dysfunction (Verbrugge et al. 2007).
Specific pharmacologic therapies aiming at improvement of
endothelial barrier function in patients with pneumonia, sepsis
and/or ARDS are lacking. However, recent experimental stud-
ies enhanced our unders tanding of endothe l ia l
pathomechanisms contributing to the development of
ARDS, potentially providing the basis for novel therapeutic
strategies. Therefore, we try here to give an overview on
recent insights into the mechanisms of pulmonary endothelial
barrier dysfunction in acute inflammation.

The pulmonary endothelial barrier

Inside endothelial cells, filaments of polymerised actin mole-
cules together with polymerised tubulin molecules

(microtubules) build the cytoskeleton, which is connected to
glycocalyx (Yoneda and Couchman 2003), focal adhesions
and junctional proteins. Whereas two types of endothelial
junctions, adherens junctions (AJ) and tight junctions (TJ),
are known, the current concept is that a sealing belt of tight
junctions is present in EC of the blood–brain barrier but play a
minor, if any, role in the barrier function of pulmonary endo-
thelium. Consisting in vascular endothelial (VE) cadherin and
catenin, AJs maintain the tight connection of adjacent ECs and
regulate the paracellular passage of fluids and solutes smaller
than 3 nm in radius across the endothelial monolayer
(Komarova and Malik 2010). In parallel, larger molecules
including hormones, drugs, albumin and albumin-bound sub-
stances are transported across the endothelial barrier by trans-
cellular trafficking. Caveolar vesicles formed at the luminal
side of ECs take up the molecules to be transported, cross the
ECs and release the molecules at the abluminal surface by
exocytosis (Predescu et al. 2007). These two different trans-
port mechanisms actively regulate endothelial permeability
and thereby tissue fluid homeostasis.

Pulmonary endothelial barrier disruption

Pathogens entering the alveolar compartment by inhalation or
via the bloodstream are recognized by pathogen recognition
receptors (PRRs). The heterogeneous group of PRRs com-
prises Toll-like receptors (TLRs), cytosolic NOD-like recep-
tors (NLRs), RIG-I–like receptors (RLRs) and DNA sensors
(Opitz et al. 2010). In alveoli, these receptors are expressed in
epithelial cells, macrophages, dendritic cells, ECs and in sub-
sequently recruited immune cells. PRRs sense highly con-
served microbial molecules called pathogen-associated mo-
lecular patterns (PAMPs) and specific endogenous molecules
liberated by cell injury called danger-associated molecular
patterns (DAMPs). PRR activation evokes cellular production
of inflammatory cytokines, interferons and chemokines on
transcriptional and post-translational levels (Opitz et al
2010), resulting in the activation of locally distributed cells
and the recruitment of neutrophils and macrophages. Thus,
upon microbial infection and “sterile” tissue damage by var-
ious insults, PRRs are central contributors to the inflammatory
response. When being controlled, these inflammatory mecha-
nisms are a prerequisite for pathogen clearance and thus for
survival. However, control is frequently lost and once the
inflammatory cascade is on track even effective antibiotic
treatment is unable to stop it, which can (partly) be explained
by ongoing PAMP and DAMP release from dying bacteria
and injured cells, respectively. Inappropriate inflammation
induces further unchecked synthesis of cytokines, chemokines
and lipid mediators, accumulation and activation of leuko-
cytes, uncontrolled activation of complement and coagulation
cascades and last but not least endothelial barrier dysfunction.

�Fig. 1 a Airspace-derived activation of the endothelium by mediators,
bacterial toxins or physical stress due to mechanical ventilation starts a
complex interplay of various inflammatory cascades resulting in vascular
permeability. Monocytes (M) are recruited to the endothelium (EC) and
facilitate its further activation by secretion of TNFα, thereby augmenting
the recruitment of neutrophils (PMN). Activated platelets stimulate PMN.
Endothelium-PMN contact leads to permeability (1). Upon stimulation
PMN undergo netosis, liberating neutrophil extracellular traps (NETs)
consisting in DNA and histones that cause endothelial toxicity and
barrier breakdown (2). Specific soluble mediators also increase
permeability (3). Neutrophil-platelet complexes activate blood
coagulation. Central effector proteases like thrombin directly mediate
vascular permeability. Further, thrombin activates complement factor
C5 to C5a—a permeability increasing anaphylatoxin (4). TNF tumor
necrosis factor; IL-1β Interleukin-1β; ROS/RNS reactive oxygen and
nitrogen species. b Intracellular signalling regulates endothelial
permeability. Endothelial contraction results from actin myosin
interaction after MLC-phosphorylation, which is regulated by myosin
light chain kinase (MLCK) and myosin light chain phosphatase (MLCP).
MLCP is inhibited by RhoA–ROCK signalling while MLCK is activated
by c-Src, RhoA and Ca2+/Calmodulin. Ca2+ enters the cytosol from
endoplasmatic reticulum (ER) or extracellular space. Downstream of
platelet activating factor (PAF) and PAF receptor (PAFR), phospholipase
C (PLC) hydrolyses posphatidyl inositol bisphosphate (PIP) into inositol
1,4,5-triphosphate (IP3) and diacylglycerol (DAG). IP3 mediates Ca2+

liberation from the ER while DAG opens transient receptor potential
canonical (TRPC) channels in the cellular membrane. The resulting
increase of intracellular Ca2+ leads to the activation of protein kinase C
(PKC) α, to further RhoA activation and to Ca2+/calmodulin complexes,
altogether finally leading to MLCK activation. Actin polymerisation
forms stress fibres associated with endothelial contraction. Various
stimuli like IL-1β or mechanical force activate mitogen-activated
protein kinase (MAPK) p38 (p38), which activates MAPK activated
protein kinase 2 (MK2), which phosphorylates heat shock protein 25
(HSP25) leading to actin polymerisation. Adherence junctions (AJ) are
mandatory for the sealing of intercellular contacts. VE-cadherin is
anchored in peripheral cortical actin to the cytoskeleton. VE-cadherin
phosphorylation leads to VE-cadherin internalisation and thereby to
increased endothelial permeability. RhoA and c-Src phosphorylate VE-
cadherin. Rac-1 and p190RhoAGAP (p190) functionally antagonise
RhoA activity. p190RhoAGAP is recruited to the AJ by p120-catenin
(p120), which itself inhibits VE-cadherin internalisation. ROCK inhibits
p190RhoAGAP and PKCα inactivates p120-catenin thereby augmenting
destabilisation of AJ. IQGAP1 recruits and stabilises Rac-1, protecting
against VE-cadherin internalisation
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Not only direct PRR ligation by the pathogen but also
liberated pathogenic factors may activate PRR-dependent in-
flammatory cascades. For example, cell wall peptidoglycan of
Streptococcus pneumoniae activates TLR-2 (Schroder et al.
2003), while the pneumococcal exotoxin pneumolysin is rec-
ognized by TLR-4 and NLRP-3 (Malley et al. 2003;
Witzenrath et al. 2011). Bacterial toxins rapidly compromise
endothelial cell function (Rubins et al. 1992; Suttorp et al.
1988, 1990, 1991). Pneumolysin, for example, may rapidly
induce (1) Ca2+ influx and (2) liberation of platelet activating
factor (PAF) followed by thromboxane release (Lucas et al.
2012; Witzenrath et al. 2007). Ca2+ increase and thromboxane
receptor ligation both activate myosin light chain kinase
(MLCK) via PKCα and Rho-kinase dependent signaling
(Hippenstiel et al. 1997; Lucas et al. 2012; Witzenrath et al.
2007). MLCK phosphorylates MLC and subsequent actin–
myosin-dependent cytoskeletal contraction evokes disruption
of AJs, interendothelial gap formation and paracellular per-
meability (Shen et al. 2010). In addition, pneumolysin is a
cholesterol-dependent cytolysin that kills ECs by pore forma-
tion (Tilley et al. 2005). Thus, pathogens may induce endo-
thelial injury via host-dependent inflammatory and via direct
mechanisms.

Neutrophils, monocytes and thrombocytes

Upon acute inflammation, neutrophils and distinct monocyte
subsets among other recruited leukocytes are involved in the
pathophysiology of pulmonary vascular barrier failure.
Platelets also contribute to vascular injury by activating neu-
trophils and liberating soluble factors that directly interact
with vascular barrier integrity.

Neutrophils are rapidly recruited to the lung upon different
insults (Grommes and Soehnlein 2011; Yoshida et al. 2006).
In the lungs, the capillary compartment is the place of neutro-
phil transmigration, in contrast to other vascular beds where
neutrophils pass the endothelial barrier in the venules. Upon
stimulation by various inflammatory agents, the cytoskeleton
of the neutrophils changes by forming peripheral actin rims,
which leads to neutrophil stiffening and trapping in the capil-
lary bed (Yoshida et al. 2006). Although the initial trapping is
independent from expression of integrins and selectins on the
cell surface (Yoshida et al. 2006), further recruitment may
indeed depend on selectins and integrins in distinct scenarios
(reviewed in Grommes and Soehnlein 2011). However, endo-
thelial leukocyte adhesion and alveolar recruitment of neutro-
phils does not induce significant vascular permeability per se
(Martin et al. 1989; Rosengren et al. 1991). Although not yet
shown for the pulmonary endothelium, studies performed in
HUVECs or cremaster vessel preparations reveal that during
the process of neutrophil transmigration, endothelial disrup-
tion seems to be controlled by the formation of “endothelial

domes / transmigratory cups” (Carman and Springer 2004;
Phillipson et al. 2008) that encapsulate the neutrophil and
further by ring-like structures of neutrophil LFA-1 and endo-
thelial ICAM-1 around the invading leukocyte, thereby po-
tentially sealing the barrier through diapedesis (Shaw et al.
2004).

However, activated neutrophils contribute to vascular per-
meability by (1) secretion of soluble factors causing endothe-
lial contraction, (2) contact mediated mechanisms and (3)
generation of reactive oxygen species.

Amongst others, soluble factors of neutrophils include
TNF-α, which binds to TNF-α receptor 1 and 2 and is known
to induce vascular permeability. Notably, although TNF-α
leads to MLCK and Rho Kinase (ROCK)-dependent actin
stress fibre generation in endothelial cells, this is probably
not the main mechanism of TNF-α induced endothelial per-
meability, as blocking ROCK or MLCK did not ameliorate
transcellular electric resistance (Petrache et al. 2001).
However, TNF-α also induced p38 MAPK-dependent disar-
rangement of the microtubule system and thereby loss of
intercellular VE-cadherin resulting in barrier disruption.
Blocking microtubule breakdown strongly protected against
barrier failure induced by TNF-α (Petrache et al. 2003).
Further soluble factors include: (1) thromboxane A2, which
is processed by endothelial cyclooxygenase-2 (COX2) from
neutrophil-derived arachidonic acid, binds to the thromboxane
receptor and may induce permeability in endothelial cells
(Kim et al. 2010); (2) Leukotriene A4, which is processed
by endothelial LTC4 synthetase and binds to the endothelial
cysteinyl LT receptor subtype 2 (CysLT2R); and (3) CXCL1, -
2, -3, -8 which bind to CXCR2 and are involved in endothelial
barrier disruption (extensively reviewed in (DiStasi and Ley
2009)). Further, neutrophil - endothelial contact via ICAM-1
and LFA-1/MAC-1 leads to (1) rapid increase of intracellular
Ca2+, which mediates actin polymerisation and endothelial
contraction as well as disassembly of adherence junctions
due to phosphorylation of VE-cadherin and (2) to the secretion
of heparin-binding protein, which is also secreted by neutro-
phils upon binding of LTB4 to the BLT1 receptor, finally
resulting in barrier failure by endothelial contraction (for
detailed review of underlying mechanisms, refer to DiStasi
and Ley 2009).

Activation of neutrophils in the pulmonary microvascula-
ture leads to endothelial hyperpermeability by generation of
reactive oxygen species. Gao et al. (2007) observed that ROS
generation upon TNF-α stimulation depends on class 1A
phosphoinositide 3 kinase and CD11b/CD18, resulting in
NADPH oxidase activation and finally generation of ROS,
causing pulmonary hyperpermeability (see below).

Platelets secrete various mediators upon activation, includ-
ing thromboxane, thereby decreasing endothelial barrier in-
tegrity as observed in human umbilical vein endothelial cells
(HUVEC) and in vivo (Kim et al. 2010). Moreover, platelets
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mediate vascular permeability in infection and inflammation
indirectly via activation of neutrophils (He et al. 2006; Looney
et al. 2009; Zarbock et al. 2006). Clark and colleagues have
shown that platelets are activated by stimulation of TLR4 on
their surface in murine sepsis (Clark et al. 2007). Upon acti-
vation, platelets secrete thromboxane, which is mandatory for
the formation of permeability-mediating platelet-neutrophil
complexes. In contrast, neutrophils solely attached to the
endothelium after activation by TNF-α do not increase
vascular permeability (He et al. 2006). In mouse models
of transfusion-related acute lung injury (TRALI) platelets are
crucial for the development of permeability and pulmonary
neutrophil sequestration (Looney et al. 2009). Further, plate-
lets are involved in the generation of neutrophil extracellular
traps (NETs). Neutrophils can undergo a process termed
netosis in which the neutrophil expels its condensed
DNA, to which histones, antimicrobial peptides and en-
zymes like myeloperoxidase are bound. NETs can bind
and kill bacteria and thus contribute to the innate im-
mune response against invading pathogens (Brinkmann
et al. 2004). On the other side, NETs can be harmful.
NETs are involved in thrombus generation and cause
endothelial permeability and sepsis related organ failure
(Caudrillier et al. 2012; Clark et al. 2007; Saffarzadeh
et al. 2012). In TRALI, platelets are mandatory for NET
formation in the lung and inhibition of platelet aggrega-
tion ameliorated NET generation and consecutively pul-
monary permeability (Caudrillier et al. 2012).

Among peripheral blood monocytes a population of
GR-1high/CCR2+/CXCCr1low monocytes can be defined,
which are delivered from the bone marrow to sites of
inflammation. This population rapidly homes in the pul-
monary microvasculature upon lipopolysaccharide (LPS)
infusion or the onset of injurious mechanical ventilation
and primes the lung for the development of pulmonary
oedema formation when a second hit like LPS, zymosan
or ventilator-induced lung injury (VILI) occurs (O’Dea
et al. 2009; Wilson et al. 2009). The mechanism by which
this damage is mediated is not fully clarified but the
recruited monocytes secrete TNF-α and activate endothe-
lial cells in a paracrine fashion, thereby directly or indi-
rectly contributing to endothelial barrier dysfunction
(O’Dea et al. 2005). Further, they are involved in the
process of neutrophil recruitment in ALI (Dhaliwal
et al. 2012).

Although the underlying mechanisms of leukocyte medi-
ated barrier failure are of highest scientific interest, therapeutic
interference to ameliorate acute lung injury by depletion or
blocking of cell recruitment should raise concerns as neutro-
phils and monocytes are key players of pulmonary and sys-
temic innate immune responses and therapeutic intervention
at this level might leave the patient functionally
immunosuppressed.

Coagulation

Elevated fibrin turnover is a hallmark of acute lung injury
regardless of its genesis and may correlate with the severity of
the diseases (Glas et al. 2013; Prabhakaran et al. 2003).
Intrapulmonary fibrin deposition results from tissue factor–
factor VII pathway activation, reduced pulmonary fibrinolytic
capacity due to elevation of plasminogen activator inhibitor 1
(PAI-1) concentrations, diminished absolute and relative pro-
tein C activity due to reduced protein C production and
shedding of thrombomodulin, an important activator of pro-
tein C on the cell surface, as well as reduced antithrombin III
levels (Hofstra et al. 2011; Prabhakaran et al. 2003; Ware et al.
2003). Pulmonary coagulopathy occurs after alveolar flooding
with protein-rich fluid due to high permeability oedema,
resulting in alveolar fibrin deposition but coagulopathy also
contributes to inflammation and vascular permeability itself,
thereby aggravating the disease. Thrombin, the central prote-
ase of the coagulation pathway activating fibrinogen, mediates
proinflammatory effects by binding to protease activated re-
ceptors (PAR), thereby causing secretion of cytokines or lead-
ing to liberation of vascular endothelial growth factor
(VEGF), which contributes to vascular permeability
(Hippenstiel et al. 1998). Furthermore, thrombin can directly
cause endothelial cell contraction and processing of comple-
ment factor C5a from C5, a potent anaphylatoxin causing
inflammation and vascular permeability (Cirino et al. 1996;
Glas et al. 2013; Huber-Lang et al. 2006; Khan et al. 2013; Liu
et al. 2010).

Complement

The complement system is part of the innate immune system
and is also involved in functions of the adaptive immune
response (Mastellos et al. 2003). The complement cascade
can be activated by the classical, the lectin and the alternative
pathways (Markiewski and Lambris 2007). Antigen–antibody
complexes activate the classical pathway by binding C1q,
thereby processing C1s, while in the lectin pathway mannose
binding lectins (MBL) bind to pathogen associated molecular
patterns on bacteria, assembling with mannose binding lectin
proteases (MBLP) 1 and 2 thereafter. C1a and MBL/
MBLP1+2 subsequently interact with C2 and C4, processing
the C3 convertase C4b2a. The alternative pathway is activated
after contact with, e.g., bacterial surfaces by spontaneous
hydrolysis of C3, which forms together with factor Bb the
alternative C3 convertase C3bBb. Both C3 convertases pro-
cess C3 to C3a – an anaphylatoxin – and C3b, which is part of
the C5 convertase. The C5 convertase cleaves C5 into C5a—
a second anaphylatoxin — and C5b, the latter one being part
of the membrane attack complex that leads to cell lysis, while
C3a and C5a contribute to inflammation and vascular
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permeability. Both C3a and C5a induce stress fibre generation
in endothelial cells and thereby endothelial contraction.
Notably, the response was only of short duration after C3a
stimulation, while being prolonged after C5a exposition
(Schraufstatter et al. 2002). C5a-induced permeability was
more severe and phosphaditiyinositol-3 kinase-, src kinase-
and epidermal growth factor (EGF) receptor-dependent, while
C3a mediated its effects via Rho kinase-controlled pathways
(Schraufstatteret al. 2002). Neutralising C5a in rodent models
of acute lung injury and systemic inflammatory responses
reduced permeability in various organs including the lung
(Liu et al. 2010). However, in C3-deficient mice, immune
complex-mediated lung injury including vascular permeabil-
ity was not attenuated, while C5a deficiency proved to be
protective (Huber-Lang et al. 2006). This observation led to
the understanding that C5a can be alternatively processed by
the protease thrombin defining another alternative pathway
for complement activation downstream of C3a. Thus,
targeting C5a rather than C3a to ameliorate vascular perme-
ability seems to be reasonable. A study by Kahn and col-
leagues also even observed aggravated microvascular injury
in C3-deficient mice suffering from acute rejection after tra-
chea transplantation, while antagonisation of C5a was highly
protective. Again, thrombin-mediated C5a activation
accounted for this observation (Khan et al. 2013).

Toll-like receptor 4 (TLR4) dependent signaling

TLR4 is central for recognition of exogenous (e.g., LPS) and
endogenous (e.g., high mobility group box-1, oxidised phos-
pholipids) pro-inflammatory stimuli (Imai et al. 2008; Park
et al. 2004). Systemic LPS levels have been linked to severity
of sepsis and related organ failure (Marshall et al. 2004). LPS
induced vascular permeability (Mehta and Malik 2006) and
mice deficient for TLR4 were protected against lung injury
due to different stimuli including LPS, oleic acid, cecal liga-
tion and puncture and gut or lung ischemia/reperfusion injury
(Ben et al. 2012; Hilberath et al. 2011; Imai et al. 2008;
Tauseef et al. 2012; Zanotti et al. 2009). Various signalling
cascades have been linked to TLR4-mediated pulmonary
permeability. Oxidised phospholipids induced TLR4-
dependent activation of TRIF (TIR domain-containing
adapter-inducing interferon-β) and TRAF6 (TNF receptor-
associated factor 6) leading to NF-κB-dependent IL-6 libera-
tion, which contributed to lung oedema (Imai et al. 2008).
After binding to the TLR4/MD2 receptor complex, LPS induced
NF-κB activation via MyD88, IRAK (interleukin-1 receptor-
associated kinase)1, IRAK2 and IRAK4 (Kawagoe et al.
2008; Medvedev et al. 2002). Further, recognition of LPS by
TLR4 increased intracellular diacylglycerol (DAG) levels,
activating transient receptor potential canonical (TRPC) 6
channels and leading to calcium influx, thereby activating

MLCK, which facilitates myosin light chain (MLC) phos-
phorylation inducing endothelial cell contraction. MLCK ac-
tivation further augmented LPS-induced NF-κB-related in-
flammatory responses that contribute to vascular leakage
(Mehta and Malik 2006; Tauseef et al. 2012). Further, TLR4
activation evoked phosphorylation of src-kinase and consec-
utively of VE-cadherin and p120, ultimately resulting in
destabilisation of adherence junctions (Gong et al. 2008).
TLR-4 is involved in the proinflammatory response to
HMGB-1 in monocytes, which again was found to be
MyD88-, IRAK1,2,4- and NF-κB-dependent (Park et al.
2004). Moreover, HMGB-1 was linked to lung oedema for-
mation in ventilator-induced lung injury (Ogawa et al. 2006).
However, HMGB-1 also induced endothelial permeability via
the receptor for advanced glycation end products (RAGE)
(Wolfson et al. 2011).

In summary, TLR4 is often critically involved in the regu-
lation of vascular barrier function during lung inflammation.
Thus, enthusiasmwas aroused by the development of eritoran,
an inhibitor of LPS-binding to the TLR-4 adaptor molecule
MD-2. Eritoran reduced pulmonary inflammation in different
animal models (Mullarkey et al. 2003) as well as in humans
exposed to LPS bolus infusion (Lynn et al. 2003). In a phase II
clinical trial, patients with severe sepsis treated with eritoran
tended to have reduced mortality as compared to placebo-
treated patients (Tidswell et al. 2010). However, a recent
multicentre phase III study found no impact of eritoran on
mortality or relevant secondary outcome parameters in sepsis
(Opal et al. 2013), questioning the rationale of TLR4 inhibi-
tion for the treatment of sepsis and related organ failure
including ARDS. Although not proven by current data, it is
tempting to speculate that targeting a single PRR was unsuc-
cessful because of the pleiotropic immune activation by var-
ious PAMPs andDAMPs involving different PRRs and down-
stream signaling pathways in sepsis.

Angiopoietins and Tie-2

Angiopoietin-1 (Ang-1) to Ang-4 are ligands of the receptor
tyrosine kinase Tie2. Ang-1 and -2 are well-known regulators
of angiogenesis, inflammation and vascular leakage (reviewed
in David et al. 2013; Eklund and Saharinen 2013), whereas the
role of Ang-4 and its murine orthologue Ang-3 has not been
extensively investigated. Tie2 is abundantly expressed in en-
dothelium and also in PMNs and a subpopulation of mono-
cytes (Lemieux et al. 2005; Wong et al. 2000). Ang-1 is
constitutively expressed in different cell types, including
pericytes surrounding the vasculature, vascular smooth mus-
cle cells, fibroblasts, thrombocytes and megakaryocytes
(Eklund and Saharinen 2013). Steady Tie2 activation by
Ang-1 importantly contributes to endothelial quiescence and
barrier integrity. In contrast, Ang-2 is expressed in endothelial
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cells, stored in Weibel-Palade bodies (Fiedler et al. 2004) and
rapidly released upon activation by inflammatory stimuli in-
cluding TNF-α and thrombin (Fiedler et al. 2004, 2006). Ang-
2 acts as an antagonist of Ang-1 at the Tie2 receptor, thus
confirming endothelial quiescence and perpetuating pro-
inflammatory, barrier-disintegrating mechanisms (Fiedler
et al. 2006; Scharpfenecker et al. 2005)

Ang-2 mRNA expression is increased upon stimulation by
TNF-α, thrombin, hyperoxia, VEGF, PDGF and many other
factors (Augustin et al. 2009). In 2006, Parikh and colleagues
reported that Ang-2 serum levels were generally increased in
patients with sepsis, being even more increased when sepsis
was accompanied by ARDS (Parikh et al. 2006). In subjects
with acute lung injury, plasmaAng-2 had a prognostic value for
mortality in non-infection-related but not in infection-related,
acute lung injury (Calfee et al. 2012). In two experimental
models of sepsis, Ang-2 heterozygous mice had reduced Ang-
2 levels and were protected against lung injury, indicating that
Ang-2 plays a pathogenetic role besides being a marker of
disease severity (David et al. 2012). The perception of Ang-2
being of central pathophysiologic importance in sepsis is
being supported by the recent observation that Ang-2 antibody
treatment attenuated acute pericyte loss, permeability, hypo-
tension and mortality in mice subsequent to intravenous LPS
injection (Ziegler et al. 2013). In vitro, Ang-2 increased and
Ang-1 suppressed, endothelial adhesion molecule expression
and PMN adhesion (Fiedler et al. 2006; Gamble et al. 2000).
Ang-2 may also be able to directly recruit inflammatory cells,
because the 20 % monocytes expressing Tie-2 have been
shown to display chemotaxis towards Ang-2 in vitro
(Murdoch et al. 2007). Moreover, mice genetically overex-
pressing Ang-1 or being treated with Ang-1 showed reduced
pulmonary cytokine and adhesion molecule expression, PMN
infiltration and vascular leakage in endotoxin- or hydrogen
peroxide-induced lung injury (Mammoto et al. 2007;
McCarter et al. 2007; Witzenbichler et al. 2005; Xu et al.
2008). Ang-1 reduced pro-inflammatory gene expression
and mediator production probably via interaction of the phos-
phorylated Tie-2 receptor with currently unidentified inhibi-
tors of NF-κB (Hughes et al. 2003).

In addition to regulating inflammation, Ang-1 and -2 di-
rectly alter endothelial integrity. In mice, Ang-1-induced Tie-2
receptor phosphorylation stimulated the p190RhoGTPase-
activating protein (p190RhoGAP) via PI3-kinase and Rac1
to inactivate RhoA, resulting in reduced F-actin stress fibre
formation and diminished endothelial permeability
(Mammoto et al. 2007). For Rac-1 activation by Ang-1, IQ
domain GTPase-activating protein-1 (IQGAP-1) is required
(David et al. 2011). In line, the ability of Ang-1 to reduce
endotoxemia-induced pulmonary vascular leakage was
abolished by downregulation of p190RhoGAP in mice
(Mammoto et al. 2007). Further, Ang-1 (1) interfered with
the inositol triphosphate (IP3) receptor, thereby blocking

TRPC1-dependent Ca2+ influx and reducing endothelial
hyperpermeability in vitro (Ahmmed et al. 2004; Jho et al.
2005); (2) increased the presence of junctional VE-cadherin
protein via extracellular signal-regulated kinase (Erk) 1/2-
dependent activation of sphingosine kinase 1, thereby
strengthening the tethering forces between adjacent endothe-
lial cells (Li et al. 2008); and (3) decreased basal and VEGF-
induced phosphorylation and subsequent internalisation of
VE-cadherin (Gavard et al. 2008). Adenoviral Ang-1 gene
transfer as well as administration of mesenchymal stem cells
transfected with Ang-1 almost completely abolished pulmo-
nary hyperpermeabi l i ty induced by subsequent
lipopolysacharide injection (Mei et al. 2007; Witzenbichler
et al. 2005). However, both approaches for Ang-1 delivery
were far from translation into effective clinical therapies. In
this respect, the development of vasculotide, a pegylated 7-
mer peptide that activates Tie-2 (Tournaire et al. 2004) and
the demonstration of vasculotide´s therapeutic potential in
established abdominal sepsis in mice (Kumpers et al. 2011)
may represent important milestones on the long way from
understanding the importance of Tie-2 for endothelial barrier
function to the clinical application of Tie-2 activation.

Sphingosine-1-phosphate and other biologically active
sphingolipids

Sphingolipids, a class of lipids containing sphingoid bases as a
backbone, form amechanically stable and chemically resistant
outer leaflet of the plasma membrane lipid bilayer. Some
sphingolipids regulate biological processes, including
sphingomyelin, ceramide, sphingosine and sphingosine-1-
phosphate. The current understanding of the role of these four
and other sphingoid bases in acute lung injury has been
recently reviewed in detail (Natarajan et al. 2013; Uhlig and
Yang 2013). Ceramide is derived from palmitoyl-CoA and
serine in a multi-step process or from sphingomyelin by
sphingomyelinase. Ceramide is deacylated to sphingosine
(Sph) through the action of ceramidases (Canals et al. 2011)
and Sph is rapidly phosphorylated by sphingosine kinase
(Sphk)-1 and -2 to sphingosine-1-phoshate (S1P). S1P is
either cleaved by S1P lyase (S1PL) to ethanol-amine phos-
phate and trans-2-hexadecenal, or dephosphorylated to sphin-
gosine by S1P phosphatases 1 and 2 (S1PPase) or by lipid
phosphate phosphatases (LPP).

Ceramide deteriorates and S1P improves, barrier integrity.
Of note, the Gram-negative endotoxin LPS and the pneumo-
coccal exotoxin pneumolysin disrupt the pulmonary endothe-
lial barrier in a platelet-activating factor (PAF)-dependent
manner (Uhlig and Yang 2013; Witzenrath et al. 2007), with
PAF increasing vascular permeability by an acid
sphingomyelinase (ASMase)-dependent process (Goggel
et al. 2004). In brief, ASMase-produced ceramide recruits
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caveolin-1, eNOS and TRPC-6 channels into caveolae. NO
usually blocks TRPC6 channels but caveolin-1 inhibits NO
production by eNOS, resulting in TRPC6 activation followed
by an increase of [Ca2+]i, MLCK activation, MLC phosphory-
lation and finally EC contraction and paracellular permeability
(Uhlig and Yang 2013).

S1P is produced by platelets, erythrocytes, hematopoietic
and vascular endothelial cells (Hanel et al. 2007; Tani et al.
2005; Venkataraman et al. 2008; Yatomi et al. 1995).
Coordinated biosynthesis and degradation maintain S1P con-
centrations in plasma and tissues in the range required for
most favourable physiologic functions, which include regula-
tion of cell proliferation, differentiation, survival, migration,
morphogenesis and barrier function (Natarajan et al. 2013).
Using mice that selectively lack S1P in the plasma, Camerer
and colleagues noted that basal plasma levels of S1P maintain
endothelial barrier function. As compared to wild-type litter-
mates, mice with a lack of plasma S1P had increased pulmonary
vascular leak and demonstrated enhanced susceptibility to
PAF stimulation, a phenotype reversed by S1P transfusion
(Camerer et al. 2009).

S1P acts as an intracellular messenger (Le Stunff et al.
2004) or as an extracellular ligand of five cell surface recep-
tors (S1P1–5), which are differentially expressed and coupled
to various G proteins (Uhlig and Yang 2013). Vascular endo-
thelial cells primarily express S1P1, S1P2 and S1P3.
Physiologic S1P plasma concentrations (0.5–1 μM) maintain
microvascular barrier integrity via ligation of the Gi-coupled
S1P1 and exogenous addition of S1P to lung ECs increased
monolayer integrity rapidly and dose-dependently through
S1P1. S1P binding to S1P1 induces Rac activation, peripheral
MLC phosphorylation, adherens junction assembly and
cortactin translocation, which protects endothelium from
barrier-disruptive effects of thrombin (Garcia et al. 2001).
Moreover, Teijaro and colleagues recently observed that en-
dothelial S1P1 critically regulates innate immune responses in
influenza pneumonia. Activation of endothelial S1P1 attenu-
ated cytokine storm, immune cell recruitment and mortality
during infection with human pathogenic influenza virus
(Teijaro et al. 2011), suggesting that in this case endothelial
cells are conducting the innate immunity orchestra (Iwasaki
and Medzhitov 2011).

In addition to extracellular receptor-dependent effects of
S1P, intracellular S1P enhanced barrier integrity independent-
ly from S1P receptors requiring Rac-1 and SphK1-/- mice
were more susceptible to LPS-induced lung injury compared
with wild-type mice (Wadgaonkar et al. 2009). Along the
same line, LPS evoked increased expression and activity of
the S1P catabolising S1PL, thereby reducing S1P levels.
Constitutive reduction of S1PL expression in vivo (S1PL+/-

mice) or in ECs (by siRNA) reduced lung injury and inflam-
mation upon LPS stimulation (Zhao et al. 2011). Most impor-
tantly, infusion of S1P reduced lung microvascular leakage

and also cytokine release, leukocyte infiltration and histologic
tissue changes in numerous different in vivo models of lung
injury, including ischemia/reperfusion, pancreatitis and endo-
toxin challenge in mice and dogs (Liu et al. 2008; McVerry
et al. 2004; Okazaki et al. 2007; Peng et al. 2004). However,
S1P at supraphysiologic local concentrations (>5 μM) medi-
ates RhoA-dependent barrier disruption through ligation of
S1P2 and S1P3, which couple to Gi, Gq and G12/13
(Sammani et al. 2010; Siehler and Manning 2002; Wang and
Dudek 2009). Moreover, S1P stimulates contraction of human
bronchial smooth muscle cells (Rosenfeldt et al. 2003), en-
hances murine airway hyperresponsiveness (Roviezzo et al.
2007) and evokes bradycardia through S1P3 (Forrest et al.
2004). The latter findings suggest a rather small therapeutic
window for S1P, which may limit the therapeutic potential of
S1P and drugs that increase S1P production or reduce S1P
catabolism.

Therefore, S1P receptor agonists have gained considerable
interest. For example, intratracheal as well as intravenous
delivery of the S1P1 agonist SEW-2871 reduced lung perme-
ability after endotoxin injection (Sammani et al. 2010) and the
S1P receptor 1 and 3–5 ligand AAL-R reduced lung perme-
ability and mortality after influenza infection in mice (Walsh
et al. 2011). Closer to clinical application is a derivative of the
fungal metabolite myriocin, fingolimod (FTY720), which
holds structural similarities with S1P and has been approved
as an immunosuppressive agent for the treatment of multiple
sclerosis (Brinkmann et al. 2010). In addition to its immuno-
suppressive effects, FTY720 enhanced endothelial barrier
function in vitro (Sanchez et al. 2003) and in vivo (Dudek
et al. 2007) and ameliorated LPS-evoked lung injury in mice
(McVerry et al. 2004; Natarajan et al. 2013). However, we
recently observed that, although lower concentrations of
FTY720 enhanced barrier integrity in endothelial cell mono-
layers (0.01–1 μM FTY720) and in mechanically ventilated
mice (0.1 mg/kg FTY720), higher concentrations (10–
100 μM FTY720) evoked apoptosis and barrier dysfunction
in vitro and in mechanically ventilated mice (2 mg/kg) but not
in spontaneously breathing mice (Müller et al. 2011). If these
experimental findings are translatable into the clinical setting,
they suggest that, in fingolimod-treated ventilated patients
with multiple organ dysfunction syndrome, in whom hepatic
metabolism of FTY720 is hampered, increased FTY720 plas-
ma concentrations could harm lungs that are sensitised by
mechanical ventilation towards barrier-destabilising effects
of the drug.

Despite recent studies providing valuable insights into
possible mechanisms of barrier regulation by FTY720, the
mode(s) of action remain unclear. FTY720 is partly phosphor-
ylated by SphK2, thereby increasing its affinity to S1P1 and
S1P3 (Billich et al. 2003). Nevertheless, reduction of VEGF-
induced permeability by FTY720 was independent from S1P1
expression (Sanchez et al. 2003) and endocytosis and
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degradation of S1P1 by FTY720 has been proposed (Cyster
2005). Several further concepts may possibly explain
FTY720-induced barrier enhancement and have recently been
reviewed (Natarajan et al. 2013). Notably, FTY720, like S1P,
induces bradycardia and dyspnea along with FEV1 (forced
expiratory volume in 1 s) reductions (Kappos et al. 2006). In
conclusion, caution is warranted when considering FTY720
for therapeutic lung barrier enhancement in critically ill
patients.

Reactive oxygen and nitrogen species

Reactive oxygen species (ROS) and reactive nitrogen species
(RNS) are crucial regulators of cellular function. ROS and
RNS are tightly counterbalanced by antioxidant systems as
superoxide dismutase or glutathione. However, excessive
ROS/RNS production or critical reduction of their antioxida-
tive counterparts leads to oxidative stress, which is involved in
the pathogenesis of lung injury and particularly vascular per-
meability. Among other molecules displaying oxidative prop-
erties, superoxide anions (O2

-), hydroxyl radical ( OH), hy-
drogen peroxide (H2O2) and hypochloric acid (HOCl) are
summarised as ROS, while metabolites of the nitric oxide
( NO) metabolism like nitrite (NO2

-) or peroxynitirite
(ONOO-) with oxidative power are termed RNS. Both ROS
and RNS are physiological mediators of functional cell
regulation.

ROS derived from mitochondrial oxidative phosphoryla-
tion can modulate the specific cellular pattern by reacting with
redox-reactive cysteine residues, thereby altering enzyme ac-
tivities and controlling cellular signalling (Ray et al. 2012).
Under inflammatory conditions, endothelial NADPH oxi-
dases, xanthine oxidase, cyclooxygenase and eNOS are in-
volved in increased ROS/RNS production. Neutrophils deliv-
er even higher amounts of ROS due to NADPH oxydase
activity, which are in part further processed to HOCl by
myeloperoxidase activity. In addition, neutrophils produce
RNS by iNOS (Boueiz and Hassoun 2009). ROS and RNS
contribute to acute lung injury upon different insults.
Perfusion of isolated rabbit lungs with H2O2 evoked lung
oedema (Hippenstiel et al. 2002; Seeger et al. 1995). H2O2

exposure resulted in a rapid and substantial decrease in endo-
thelial cAMP content and the effects of H2O2 on endothelial
permeability were inhibited by adenylate cyclase activation
(Suttorp et al . 1993b). VILI increased xanthine
oxydoreductase (XOR) activity and blocking XOR-
protected mice from pulmonary hyperpermeability
(Abdulnour et al. 2006). ROS signalling leads to MAPK
activation, which is involved in permeability generation in
mice subjected to VILI (Dolinay et al. 2008; Park et al.
2012). Underlying mechanisms are proinflammatory func-
tions of this pathway and phosphorylation of heat shock

protein 25 (HSP25), which mediates stress fibre generation
and endothelial contraction (Abdulnour et al. 2006; Damarla
et al. 2009; Dolinay et al. 2008). Further, mice deficient for the
transcription factor Nrf2 exhibited increased lung injury and
permeability in VILI due to significantly reduced antioxida-
tive capacity and could be rescued from exacerbation of lung
injury by supplementing the antioxidant N-acetyl-cysteine
(Papaiahgari et al. 2007).

NO, the most prominent RNS, is a highly diffusible and
reactive free radical gas, produced from L-arginine in the lung
by constitutively expressed endothelial NO synthase (eNOS)
in endothelial cells and by inducible NOS (iNOS) in macro-
phages. Expression of eNOS usually stays constant while
eNOS activity can be rapidly increased, whereas iNOS ex-
pression is inducible but the activity is usually more or less
constant. Numerous inflammatory incidents induce NO pro-
duction and release, including endothelial stimulation by bac-
terial pore-forming toxins (Suttorp et al. 1993a). The plethora
of NO´s biologic effects includes control of vascular tone and
permeability, regulation of mitochondrial respiration and ad-
hesion of platelets and leukocytes. NO supports protection
of cells against oxidant injury and microbial threats but
can also have detrimental properties, e.g., activation of
inflammatory processes, enzyme inhibition and DNA
damage. Most probably, these cellular responses are
differentially regulated by specific NO concentrations
(Thomas et al. 2008). The majority of NO effects are
mediated by (1) nitrolysation of cysteine residues, (2)
reaction with transition metals like ion, zinc and copper
and (3) formation of ONOO- through reaction with O2

-,
which leads to nitration of proteins involved in the
regulation of cellular function (Korhonen et al. 2005).

Inhaled nitric oxide (iNO) is used as rescue therapy in
individual cases of hypoxic respiratory failure in adults, chil-
dren and newborns along with respiratory support and other
appropriate treatments. The inhaled vasodilator reduces pul-
monary arterial pressure without causing systemic vasodila-
tion and selectively redistributes pulmonary blood flow to-
wards ventilated lung regions, thereby reducing shunt flow
and improving oxygenation (Raoof et al. 2010). Nevertheless,
although improvement of blood gases has been regularly
noted during the first 24 h of treatment, iNO does not increase
ventilator-free days or survival of ARDS patients (Afshari
et al. 2011).

In addition to its vasodilatory properties, NO has endothe-
lial barrier-regulating effects in the lungs but the published
experimental studies paint a dichotomous picture. Inhaled NO
was shown to protect against pulmonary barrier dysfunction in
isolated perfused and ventilated rabbit lungs upon oxidative
stress or ischemia/reperfusion (Kavanagh et al. 1994; Poss
et al. 1995; Schutte et al. 2001b). Moreover, iNO reduced
pulmonary transvascular albumin flux in patients with acute
lung injury (Benzing et al. 1995).
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The precise mechanisms accounting for the stabilising
effect of NO remain to be elucidated but may involve increase
of cyclic guanosine monophosphate (cGMP) through activa-
tion of guanylate cyclase (GC). NO-induced barrier protection
in rabbit lung ischemia/reperfusion was associated with in-
creased cGMP production and could be further enhanced by
inhibition of the cGMP-specific phosphodiesterase (PDE) 5
(Schutte et al. 2000). Also, increase of cGMP by NO (donors)
and/or inhibition of cGMP-specific PDE 2 strengthened the
endothelial barrier in pulmonary ECs upon H2O2 treatment
(Seeger et al. 1995; Suttorp et al. 1996), in ECs and perfused
mouse lungs stimulated with thrombin (Seybold et al. 2005)
and in mice with severe Streptococcus pneumoniae pneumo-
nia (Witzenrath et al. 2009). The barrier-stabilising effects of
NO and cGMPmay be partly explained by negative regulation
of specific endothelial TRP channels (Yin et al. 2008), some
of which are central for [Ca2+]i increase, pulmonary endothe-
lial cell contraction and lung hyperpermeability in response to
various stimuli (Alvarez et al. 2006; Boueiz and Hassoun
2009; Hamanaka et al. 2007; Jian et al. 2008; Kuebler et al.
2010; Tiruppathi et al. 2002; Yin et al. 2008).

On the other hand, endogenous NO synthesis contributed
to lung injury in hypoxic ischemia/reperfusion of isolated
rabbit lungs (Schutte et al. 2001a). Moreover, iNOS expres-
sion was upregulated in response to mechanical ventilation in
mice and ventilated iNOS-/- mice as well as iNOS inhibitor-
treated mice had reduced lung inflammation and permeability
compared with control WT mice (Peng et al. 2004). In line,
pharmacologic inhibition of NOS prevented the development
of pulmonary hyperpermeability in rats subjected to VILI
(Choi et al. 2003). Gain and loss of function studies have
provided evidence for a contribution of soluble GC activation
to ventilator-induced lung injury in mice (Schmidt et al.
2008). Further, iNO significantly increased endothelial per-
meability in rats with Pseudomonas aeruginosa pneumonia
independently from the inflammatory response (Ader et al.
2007). Thus, the individual effects of NO on pulmonary
vascular barrier function seem to depend on local NO con-
centrations and the precise pathologic conditions.

Imatinib

Imatinib has been suggested for the treatment of increased
vascular permeability. The tyrosine kinase inhibitor imatinib
targets c-abl kinase, platelet-derived growth factor-derived
receptors, c-KIT, Arg kinase and discoid domain receptors 1
and 2 and has been implemented into treatment of chronic
myelogenous leukaemia. Recently, imatinib was found to
protect against endothelial barrier dysfunction evoked by
thrombin in isolated endothelial cells, by VEGF in a murine
skin model and in the context of polymicrobial sepsis in mice.
As the underlying mechanism, inhibition of Arg kinase

followed by augmented Rac1 signalling and stabilised inter-
cellular junctions and cell matrix adhesion has been identified
(Aman et al. 2012; Chislock and Pendergast 2013). Case
reports have been published describing reduction of pulmo-
nary oedema in the context of pulmonary venooclusive dis-
ease and resolution of bleomycin-induced pneumonitis
(Carnevale-Schianca et al. 2011; Overbeek et al. 2008). With
respect to clinical development, additional preclinical evi-
dence for imatinib efficacy in ARDS is required. Further,
possible relevant undesirable effects have to be considered
including cerebral haemorrhage particularly in patients with
compromised coagulation, as malfunction of coagulation is
also a major issue in sepsis patients (Hoeper et al. 2013).

Adrenomedullin

Adrenomedullin (AM) is an endogenous peptide with potent
barrier protective properties that is expressed in various cells
of the vascular system including endothelial and vascular
smooth muscle cells and also in cardiomyocytes, epithelial
cells and leukocytes. The AM gene encodes for a prepro-
adrenomedullin, which is processed to pro-AM, from which
AM and proAMN-terminal 20 peptide (PAMP) are generated.
Amida t ion by pep t idog lyc ine a lpha amida t ing
monooxygenase (PAM) is crucial for biologic function of
the active AM peptide (Temmesfeld-Wollbruck et al.
2007b). AM binds to the calcitonin receptor like receptor
(CRLR), which assembles with receptor activity-modulating
proteins (RAMP) 2 and 3. In endothelial cells, binding of AM
to the receptor results in intracellular accumulation of the
second messenger cAMP and in activation of various kinases
including protein kinase A (PKA), PKC, MAP kinases and
others (Hippenstiel et al. 2002; Temmesfeld-Wollbruck et al.
2007b).

Mice deficient for AM, CRLR, PAM or RAMP2 die pre-
maturely of hydrops fetalis, which highlights the role of AM
for vascular barrier integrity (Bonder et al. 2009; Caron and
Smithies 2001; Cyster 2005; Czyzyk et al. 2005; Ichikawa-
Shindo et al. 2008). AM is up-regulated under inflammatory
conditions like sepsis or experimental lung injury (Agorreta
et al. 2005; Cheung et al. 2004; Matheson et al. 2003) and
mice heterozygous for AM exhibit an aggravated inflamma-
tory response and organ damage following LPS challenge
(Dackor and Caron 2007).

Treatment with exogenous AM protected against pulmo-
nary hyperpermeability induced by various stimuli like staph-
ylococcus aureus alpha toxin, hydrogen peroxide,
lipopolysaccaride (LPS) or hyperoxia and ventilator-induced
lung injury (Hippenstiel et al. 2002; Itoh et al. 2007; Müller
et al. 2010; Temmesfeld-Wollbruck et al. 2007a). AM also
protected against barrier breakdown in the gut after challenge
with Staphylococcus aureus alpha toxin and in ischemia
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reperfusion injury and stabilised the blood–brain barrier
(Brell et al. 2005a, b; Higuchi et al. 2008; Honda et al.
2006; Kis et al. 2003; Temmesfeld-Wollbruck et al 2007a,
2009).

At least two major mechanisms may contribute to the
impressive function of AM. First, AM leads to the relaxation
of the contractile apparatus of the endothelial cell by avoiding
the generation of actin stress fibres and actin myosin interac-
tion (Temmesfeld-Wollbruck et al. 2007b). We and others
have observed a rise of intracellular cAMP upon AM stimu-
lation of endothelial cells, leading to the inhibition of MLC
phosphorylation, thereby blocking actin–myosin interaction-
mediated cell contraction induced by thrombin or hydrogen
peroxide in vitro, or evoked by mechanical ventilation in vivo
(Brell et al. 2005b; Hocke et al. 2006; Müller et al. 2010).
However, equally potent barrier protective effects of AM are
observed in gut epithelial cells that were not dependent on
intracellular cAMP increase (Temmesfeld-Wollbruck et al.
2009).

Second, besides reducing cell contraction AM increases
intercellular adherence, thereby mediating barrier
stabilisation. In rat intestine, staphylococcus alpha toxin infu-
sion induced vascular hyperpermeability accompanied by loss
of VE-cadherin in submucosal blood vessels, which was
avoided by AM treatment (Hocke et al. 2006). In endothelial
cells, AM protected against the loss of VE-cadherin and
occludin derangement due to thrombin or staphylococcus
alpha toxin stimulation and AM enhanced the expression of
claudin-5 in brain microvascular endothelial cells (Hocke
et al. 2006; Honda et al. 2006). Immunomodulating effects
of AM have been described (Gonzalez-Rey et al. 2006);
however, we observed that the strong barrier protection of
AM is not coupled to anti-inflammatory properties (Müller
et al. 2010). Although the underlying and obviously cell-
specific mechanisms of AM-mediated barrier protection part-
ly remain elusive, the powerful properties observed in com-
plex models regardless of the stimulus and independent from
immunosuppressive effects indicate a high translational po-
tential for AM.

Conclusions and future perspectives

Acute inflammatory diseases including pneumonia and sepsis
may result in ARDS, which is still associated with unaccept-
ably high mortality. Research has been successfully
uncovering basic disease mechanisms, leading to improve-
ments in therapy including ventilation and resuscitation strat-
egies. Nevertheless, although the pulmonary endothelium has
long been noted to be central in the pathogenesis of ARDS
and scientists have been elucidating innumerable important
mechanisms of permeability increase, most therapeutic strat-
egies to improve ARDS outcome based on the understanding

of lung endothelial barrier dysfunction have so far been frus-
trating. These drawbacks should be understood as important
sources of perception and it might be worth considering some
general aspects when moving forward in this field.

First, to regain endothelial barrier function once the endo-
thelium is severely injured may be a barely achievable objec-
tive. Interestingly, the only strategies so far decreasing mor-
tality in ARDS, reduction of tidal volume and probably early
prone positioning, short-term use of neuromuscular blockers
and oesophageal pressure-guided positive endexspiratory
pressure adjustment (Guerin et al. 2013; Network ARDS
2000; Papazian et al. 2010; Talmor et al. 2008), are aimed at
alleviation of further inflammatory stress by mechanical ven-
tilation, thus being of a rather preventive nature. It may be
promising to focus on strategies that decelerate the progress
of “uncomplicated” pneumonia or sepsis to ARDS instead of
trying to reverse severe parenchymal inflammation and injury.
Therefore, clinical and biological predictors of progress to-
wards ARDS need to be identified and future therapies should
be started before full-blown ARDS has developed. However,
this notion should not encourage the performing of experi-
mental studies in which the treatment of interest is com-
menced before onset of the initial disease (pneumonia or
sepsis in this case), because such a preventive strategy can
rarely be translated into clinics. Second, the “real life aspect”
needs to be respected. ICU patients are frequently prone to
ARDS due to multiple simultaneous incidents, unlike, e.g.,
LPS-treated mice, which means that numerous redundant
pathways may be differentially involved and should probably
be addressed therapeutically at the same time. Further, impor-
tant inter-individual differences need to be considered. Third,
complexity is an important issue. As our understanding of
central contributors to lung injury is growing, we are becom-
ing aware of the differential effects one and the same
pathomechanistic system may have. For example, S1P seems
to differentially affect endothelial integrity, depending on S1P
concentration, receptor expression and the exact local cellular
setting, which implements a further dimension into the picture
of barrier destructing mechanisms. Probably, systems biology
combined with mathematical multi-scale models that inte-
grate knowledge from experimental studies (in vitro, in vivo
and in silico), clinical trials and clinical and biological predic-
tors of the individual patient will facilitate development of
successful novel therapies and improvement of ARDS
prevention.

Since the first description of ARDS in 1967, researchers
have made great efforts to unravel the mechanisms contribut-
ing to endothelial dysfunction in the lung in order to develop
novel therapies. Walking all the way to where we are standing
today has sometimes been frustrating and possibly not even
half of the whole distance has been accomplished.
Nevertheless, considering the high morbidity and mortality
of ARDS, it is worth trying hard to proceed.
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