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Nature is a vast source of bioactive molecules and has provided an active and efficient reservoir for drug discovery. Among natural
compounds, one of the most promising is Schisandrin B (Sch B), isolated from Schisandra chinensis, which was documented to
possess diversified pharmacokinetic propriety, among them antioxidant, anti-inflammation, cardioprotection, and
neuroprotection. Due to its large biological properties, Sch B was recorded to be a potent cure for several diseases by targeting
several signaling pathways. This review is aimed at emphasizing the recent data on the biological properties of Sch B among the
molecular mechanism of this drug on tumoral, cardiac, and neural diseases. The data suggest that the antitumor activities of Sch
B were mainly through apoptosis and cell cycle arrest at the diver’s stage. It is reported that Sch B could be used as effective
chemotherapy, neuroprotection, and cardioprotection since it possesses a spectrum of biological activities; however, further
investigations on the mechanism of its action and preclinical trials are still mandatory to further validate the potential of this
natural drug candidate.

1. Introduction

Natural compounds have been broadly used since ancient
times to prevent and cure various illnesses in Asian countries
mostly. Nature attracts particular attention because it pro-
vides a vast source of bioactive molecules. Those molecules
have been used separately or as a mixture to cure or prevent
cancer, cardiovascular disease, and neurodegenerative dis-
ease, among others [1, 2]. Among natural compounds, Tradi-
tional Chinese Medicine (TCM) has the characteristics of low
toxicity, multiple targets, and integrity, which can be regu-
lated by the machinery of the body immune function, inhibit
the formation of tumor tissue neovascularization, promote
the death of tumor cells, and reduce the effect of tumor cell
resistance to achieve antitumor properties, in the prevention
and treatment of cancer prescription surface which have cer-
tain advantages [3–5]. Among TCM, Schisandra chinensis
has been used for thousands of years to prevent memory defi-
ciency [6]. With the development of technology, Schisandra
chinensis is a mixture of several bioactive compounds; among

others, we have Sch A, B, and C, which have been used to pre-
vent several illnesses [7, 8]. In the three isoforms of Sch, Sch B
attracts particular attention. Previous reports revealed Sch B
function in neuroprotection by reducing oxidative stress [9,
10]. In this review, we describe the pivotal role of Sch B in
treating cancers, cardiovascular diseases, and neurodegener-
ative diseases and explain the molecular mechanism as well
as the function in several illnesses.

2. Schisandrin B and Antioxidation

Modern pharmacological studies have shown that Sch B
could play an essential role in liver protection, antioxidation,
antiaging, antitumor, antianxiety, and other aspects. Numer-
ous experiments have shown that Sch B could increase the
level of superoxide dismutase (SOD) in cells, inhibit lipid
peroxidation, and reduce lactate dehydrogenase and malon-
dialdehyde releasing reactive oxygen species therefore
directly removing free radicals and playing an antioxidant
role [11, 12]. Indeed, the scavenging effect of hydroxyl free
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radicals of oxygen free radicals by Sch B was most significant,
compared to vitamin C at the same concentration [13]. Lam
and Ko [10] found that Sch B has specific antioxidant effects
on various tissues, including the brain. Earlier studies have
shown that Sch B can increase the activity or content of
SOD and glutathione (GSH) in tissue cells and resist free rad-
ical pairs of biological damage. Recent studies reported that
Sch B could also activate glutathione-s-transferase (GST),
glutathione reductase (GRD), and glucose-6-phosphate
dehydrogenase (G6PD) activity; improve the level of the
GSH antioxidant system; and ultimately protect the oxidative
body damage [14, 15]. Sch B can also restore the activity of
GSH-PX and other antioxidant enzymes and reduce the pro-
duction of MDA [16, 17].

Moreover, the antioxidative effect of Sch B was also
reported on neuroprotective activities. Sch B was found to
regulate the expression of the heat shock protein (HSP) gene
in neurons [18]. HSP is a component of the subpartner;
HSP70 has been proven to have a neuroprotective effect on
antioxidant stress, again demonstrating the clinical preven-
tion and treatment of Sch B broad prospects in treating
degenerative diseases of the central nervous system. Besides
the above pharmacological effects, Sch B can also prevent
oxygen-free radicals from forming biofilm structural and
functional damage [19, 20]. Likewise, Sch B was reported to
avoid ischemia-reperfusion through exerting antioxidant
proprieties [21]. Additionally, it is well known that mito-
chondria are the production sites of ATP and an essential
source of reactive oxygen species dysfunction which can pro-
duce excessive reactive oxygen species and cause oxidative
stress damage, leading to opening of permeability conversion
(MPT) holes, and subsequently result in the breakdown of
the organelle membrane potential, a process that could trig-
ger ATP synthase to work in reverse, further accelerating
ATP depletion, ion homeostasis destruction, and even abnor-
mal cell apoptosis [22]. Furthermore, the moment the MPT
hole opens, cytochrome c can leak into the cytoplasm, trig-
gering a series of events such as caspase-9 activation that
eventually leads to mitochondria-driven apoptosis [23]. Sch
B reduces the production of lipid peroxides, which may be
one of its molecular mechanisms to protect mitochondrial
integrity [12, 20].

3. Schisandrin B and Cancer

Cancer is a pathological condition that has been known since
immemorial times by early Egyptians. Despite this ancient
lineage (about 3000 B.C.), two modern patterns favor can-
cers’ incidence, and types encountered longevity and lifestyle.
For the etymology of cancer, it was derived from the Greek
word karkinos first coined by Hippocrates (460-370 B.C.)
while describing the pathology in its structural aspect as a
rounded mass surrounded by radial ramifications like a mov-
ing, clasping crab. This analogy was an attempt with the
breast tumor. He classified cancer based on their size, ana-
tomic sites, and whether it was superficial or deeply embed-
ded at its site [24–26]. Cancer is used as an inclusive name,
referring to more than a hundred disease conditions [27].
The pathological conditions are characterized by uncon-

trolled cell growth beyond boundaries that could start at
any anatomical site, then eventually spreading (metastasize)
towards the nearby and farthest tissue(s)/organ(s). Like
many other epidemic chronic noncommunicable diseases,
cancers’ incidence is believed to be a consequence of rapid
urbanization, environmental pollution, and changes in life-
styles [28, 29].

Chemotherapies remain one of the most used methods
for cancer treatment. These drugs inhibited cancer cell growth,
therefore stopping the proliferation of cancer [30, 31]. The
cytotoxicity of Sch B was reported against a wide variety
of human cancer cell lines (Table 1) with low concentra-
tion. The cancer cell inhibition by Sch B was demonstrated
to be through several biological pathways, among them cell
cycle arrest, apoptosis, ROS production, and autophagy.

3.1. Sch B Induces Cell Cycle. The cell is the anatomical and
physiological unit of life. From that place, cell fulfills all the
characteristics of living things, namely, functional organiza-
tion, metabolism, homeostasis, growth and development,
reproduction, passing on genetic information, responding
to environmental changes, and ability to adapt through evo-
lution. Cell cycle regulation plays a crucial role in cell death.
Every phase of the cell cycle is regulated by the interaction of
cyclin and their relevant cyclin-dependent kinases (CDKs),
which guaranteed one step to another [32, 33].

Four stages, including G1, S, G2, and M, are included in
the typical cell cycle governed by cyclin-dependent kinases
(CDKs) as well as their cyclin partners. Furthermore, the
commitment of distribution appears in the G1 stage, which
is governed by cyclin D/CDK4/6 as well as cyclin-E/CDK2
at the alleged G1/S changing. In the S stage, DNA is next
repeated. Moreover, a second gap stage, namely, the G2
phase, follows this S stage. At the end of G2 stage, entry
was governed by cyclin-B/CDK1 into M stage (karyokine-
sis) at which the cell splits. Under the specific circumstance,
they can go into the cell cycle and start splitting again
(Figure 1) [34, 35].

Cyclin/cyclin-dependent kinase (CDK) compounds,
essential regulators of RNA copying as well as cell cycle
advancement, are of great importance. To guarantee suitable
progress through every stage, a suite of checkpoints arranged
carefully, which regulate diverse cellular kinases needed for
unique cell circle events, has been developed by cells. Nota-
bly, as for the mitotic entry as well as chromosome segrega-
tion, which guarantee the right forming of daughter cells,
some cell circle protein kinases which contain members of
Polo-like kinases, as well as the Aurora family, are of great
significance [36, 37]. Genetic, as well as epigenetic, mecha-
nisms often linked with the proliferation of the tumor cell
and the expression of cell cycle managing proteins are
generally influenced by these mechanisms, which lead to
inadequate checkpoint governance and cause abnormal
responses to cellular harm. Both hyperplasic edges and an
additional susceptibility to the accumulation of extra
genetic changing contributing to the tumor advancement,
as well as the gaining of more invasive phenotypes, are
caused by these alterations [38, 39]. Researchers have paid
particular attention to identifying anticancer medicines
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directed against crucial cell cycle regulators in the last years.
In particular, CDK or cell cycle protein kinase retardants
are solved by some preclinical as well as clinical experi-
ments [40, 41].

Sch B was reported to induce inhibition of human lung
cancer, cholangiocarcinoma, gallbladder cancer, and gastric
cancer cells through which are mediated by inhibition of
cyclin D1, as well as CDK4, and CDK6 promoting activation
of p21 and p53. Additionally, Sch B was reported to induce
lung cancer cell cycle arrest at G2/M phase mainly through

the phosphorylation of the checkpoint of the histone H3 at
Ser10, which are the monitors of mitosis (chk1). This report
also reported that Sch B, by inhibited ATR protein kinase
activity, is involved in the G1/S and S phase checkpoint reg-
ulation through inhibition of p53 and cdk1 [42]. Previously,
we have found that Sch B induces prostate cancer cell
(LNCaP) arrest at S phase by inhibition of cyclin E/CDK2,
which is associated with an increase of p53 and p21 [43].
Taken together, these data suggest that Sch B might induce
cell cycle arrest in all the phases of the cell cycle in the cancer

Table 1: Antitumoral and molecular target of Sch B on several cancer cell lines.

Type of cancer Cell lines Targets Effects References

Colon CACO2 HCT116 FAK ↓ Antiulcer [48]

Prostate DU145 LNCaP
PI3K, AKT, STA3, JAK2, CDK2,

cyclin E ↓, p53, p21 ↑
Apoptosis

S phase arrest
[43]

Breast
MDA-MB-231, BT-549,
MDA-MB-468, MCF-7

STAT3, DOX ↑, Survivin, TGF-β ↓

Apoptosis
Metastasis

Cell cycle arrest S phase
ROS production

[49–51]

Ovarian A2780
DOX ↑

Survivin ↓
Apoptosis [50]

Melanoma B16F10 AKT ↓ Hyperpigmentation [50]

Lung A549
TGF-β1, Bcl-2, HIF-1, VEGF, MMP-9,

MMP-2, cyclin D1, CDK6, CDK4 ↓, p53, p21 ↑

Cycle arrest at G2/M
checkpoint and G0/G1

Apoptosis
[42, 52, 53]

Glioma U251, U87 HOTAIR, p-Akt, p-Mtor MMP-9, ΔΨm ↓ Apoptosis [54–56]

Cholangiocarcinoma ΔΨm, cyclin D1, Bcl-2, CDK-4 ↓
G0/G1 phase arrest

Apoptosis
[57]

Gallbladder GBC-SD and NOZ Bax ↑ Bcl-2, NF-κB, cyclin D1 CDK-4 ↓
G0/G1 phase arrest

Apoptosis
[47]

Gastric SCG-7901 Cyclin D1, mRNA ↓ G0/G1 phase arrest [47]

Hepatoma SMMC-7721 Hsp70 ↓ Apoptosis [46]

G1

SG2

G0

p53

Apoptosis

Metaphase

Anaphase

Telophase
Cytokinesis

Prophase

CyclinB/CDK1

CyclinD

CyclinE

CDK2
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CDK1

CyclinB

CDK1
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Figure 1: Regulation of cell cycle.
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cell and therefore might be used as an efficient drug in the
targets of cell cycle arrest to inhibit cancer cell proliferation.

3.2. Sch B Induces Cell Apoptosis. Apoptosis is the procedure
of programmed cell death (PCD), which might appear in
multicellular organisms. Biochemical incidents cause typical
cell changes (morphology) as well as death. Chromatin con-
densation, cell shrinkage, chromosomal DNA fragmentation,
and nuclear fragmentation are contained in these variations.
Researchers reported that the cell is attracted to commit sui-
cide positively in an advancing and homeostatic circum-
stance; the incentive of suicide might be offered by the lack
of some survival factors; specific change in the morphology
occurs in there as well as these suicide paths’ biological chem-
istry; the pathway of “apoptosis” is addressed by someone;
and the biochemistry about these suicide paths is followed
by a more universal path to delete. However, both of these
are generally motivated in a genetic and composite way.
There is specific proof that can ensure “apoptosis” symptoms
like endonuclease activation. It can be illogically attracted
without entering a genetic cascade. Nevertheless, it is neces-
sary to mediate the probably correct apoptosis as well as pro-
grammed cell death genetically. In the cancer cell line,
apoptosis might occur through a diver’s molecular mecha-
nisms [44, 45].

The induction of apoptosis in a cancer cell by Sch B was
firstly reported by Wu et al. [46] in human hepatoma
SMMC-7721 cells. This was mediated through intrinsic
mitochondrial pathways via Hsp70 and caspases-3, 7, and
9, since plentiful studies reported the cytotoxicity-mediated
apoptosis in diver’s cancer notably through extrinsic path-
ways. Akt pathway regulates many genes and is implied in
cell physiopathology that might contribute to the formation
of chemoresistance sensitivity or resistances as well as the
formation of solid tumors. Regarding its importance, several
studies are nowadays focused on this pathway for further
cancer therapy. Sch B was reported to induce cytotoxicity of
melanoma, prostate, and glioma cancer cells through inhibi-
tion of Akt.

Moreover, it was reported that the Akt activation might
be causing phosphorylation of specific proteins that cause cell
survival, such as NF-κB, which triggers survival caused by
phosphorylation of IκB. The studies of Xiang et al. [47]
proved that Sch B induces apoptosis in the gallbladder cell
through an apoptosis intrinsic pathway via overexpression
of Bax and inhibition of Bcl-2 as well as NF-κB with cleavage
of PARP, and caspase3/9.

4. Docking System Test

In order to evaluate the efficiency of Sch B compared to Sch A
and C, we have performed autodock calculation and then
compared the binding affinity as well as binding energies.
As observed in Figure 2 and Table 2, Sch B has better binding
sites for all cell cycle phases. Indeed, Sch B is able to dock to
all cyclin D, E, and A and CDK2 and 4, which are the primary
regulator of S, G2, and G1 phases; besides, the binding energy
is higher for all cyclin and cyclin-dependent kinase compared
to Sch A and C.

Furthermore, it is well known that p53 acts as a tumor
suppressor. P53 plays a crucial role in cell growth arrest or
apoptosis depending on the cell type or physiological circum-
stances. Likewise, p53 also positively regulates the protein
expression of Bax while negatively regulating Bcl-2 protein
expression. Moreover, a recent study reported p53-null mice
to have higher levels of Bax while expressing lower expres-
sion of Bcl-2 in many tissues. As observed in Figure 3 and
Table 2, Sch B has a better binding affinity to Bcl-2, Bax,
p53, and caspase-3 (apoptosomes); furthermore, compared
to Sch A and C, it is clear that the binding energy of Sch B
to this protein is higher compared to Sch A and C. These data
suggest that Sch B could be a better target as chemotherapeu-
tic drugs compared to Sch A and C.

The matrix metalloprotease (MMP) family is a kind of
endopeptidase which plays an essential role in the invasion
and metastasis of tumor cells. MMPs can promote tumor
cells to secrete VEGF, which is secreted by tumor cells pro-
moting the secretion of MMPs by vascular endothelial cells.
Among MMPs, MMP-2 and MMP-9 belong to the gelati-
nases in matrix metalloproteinases, which are closely related
to the invasion and metastasis of gastric cancer cells. Further-
more, it was reported that MMP-9 and VEGF could play a
crucial role in tumor angiogenesis. Moreover, it was further
confirmed that MMP-9, like VEGF, may be associated with
the occurrence and development of malignancy and maybe
an alternative therapeutic target. As observed in Figure 3(b)
and Table 2, Sch B has a better affinity with MMP2/9 as well
as VEGF, suggesting that Sch B could be a better target in the
treatment of gastric cancer compared to Sch A and C.

STAT3 belongs to the family of signal transduction and
transcriptional activation. STAT3 plays dual roles in signal
transduction and transcriptional activation. The motivated
STATs homo- or heterodimerize through mutual SH2 field
phosphor-tyrosine roads that are released from the receptor
and come into the nucleus, where the transcription of several
genetic factors in both rising, as well as adult tissues, is con-
trolled by them. For example, the promoters of Akt, cyclin
E, VEGF, Fas, matrix metalloproteinase 2 (MMP2), c-Myc,
Mcl-1, HGF, Bcl-xL, and survivin might be bounded to
STAT3 in a direct way. As shown in Figure 4 and Table 2,
Sch B has a better affinity with STAT3 and Akt compared
to Sch A and C. Taken together, Sch B is a better target as
chemotherapy drugs for several cancer cells compared to
Sch A and C.

5. Schisandrin B and Neuroprotection

Neurodegenerative disease (ND) is characterized by the loss
of neurons caused by several burdens among Alzheimer’s
and Parkinson’s diseases and cerebrovascular impairment.
Although those diseases have a similar symptom, their
mechanism differs. Scientists reported that ND is mainly
associated with microglia inflammation, and it is the accu-
mulation of those microglia which are responsible for the
induction of neurodegenerence through the release of
proinflammatory factors such as tumor necrosis factor
(TNF), interleukin (IL-6/1β), and nitric oxide (NO) [58,
59]. Those are mainly responsible for neurodegenerence
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via apoptosis depending on the neuroinflammatory pro-
cess. Therefore, target novel drugs that might inhibit neu-
roinflammation and prevent neuron death through

apoptosis become preferential targets by researchers to
palliative neurodegenerence diseases. S. chinensis has been
used since ancestral time in China as a supertonic for brain
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disorders and has been proven to reverse ischemia as well as
improve cognition. Recent studies revealed that Sch B is the
main active compound in the use of S. chinensis for neuropro-
tection. In fact, Sch B was shown to inhibit the protein expres-
sion of IL-1β and TNF-α with phosphorylation of MMP-2/9

in the ischemic hemispheres and, therefore, protect rat cere-
brum against inflammation as well as metalloproteinase deg-
radation [60]. On the other hand, Sch B was also shown to
avoid microglial-mediated inflammatory through inhibited
proinflammatory cytokine such as TNF-α, IL-6, PGE2, and
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Figure 3: Autodock calculation was performed to determine and compare the binding amino affinity of Sch A, B, and C to p53, Bax, Bcl-2,
and caspase-3, which are the principal indicators of apoptosis.
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NO. The anti-inflammatory activity of Sch B was also related
to its ability to interact between Toll-like receptor and their
adapter proteins (MyD88, IRAK-1, and TRAF-6), which con-
sequently induce the suppression of IKK transcription factor

through NF-κB pathways [61]. Besides, Sch B was shown to
reduce oxidative stress by inducing inhibition of MDA and
increase SOD expression and therefore prevent hind limb
I/R muscle injury [62].
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Moreover, recently, several reports have proven that Nrf2
signaling pathways play a role in the antioxidative response
element gene by reducing oxidative stress in several diseases,
among them cancer, Alzheimer’s and Parkinson’s diseases,
and ischemia. Owning its antioxidant properties, Sch B was
reported to protect neurodegenerence through inhibition of
ROS and malondialdehyde while increasing glutathione and
dismutase levels through Nrf2 pathways [63]. Moreover, in

Parkinson’s disease, Sch B could decrease cell survival by
upregulating the miR34a expression and inhibiting Nrf2
pathways [64]. Finally, in Alzheimer’s disease, Sch B was
reported to reduce GSK-3β, a key enzyme necessary for the
hyperphosphorylation of tan protein, therefore contributing
to the protection of neurons from Alzheimer’s diseases
[65]. Table 3 below resumes the recent application of Sch B
as neuroprotection.

Table 3: Molecular mechanism of neuroprotection by Sch B.

Assay Organism tested Dose/conc. Mechanisms References

Sch B prevents neuron from
Alzheimer’s disease

Mice
340, 290, 80, and

70 nM

Inhibited glycogen synthase kinase-3β,
therefore alleviating the cell injury induced by

Aβ and the cognitive disorders in AD
[65]

Sch B prevents neurodegenerence
induced by anxiety associated
with oxidative stress

Mice
30mg/kg and
60mg/kg

Increase the activity of SOD, GSH, and Nrf2 and
Keap1, along with suppression of ROS production

[63]

Sch B might improve Parkinson’s
disease

Mice 100μM

Improve 6-OHDA-induced neural cell death and
activated Nrf2 signaling pathways along with

boosting
the expression of miR-34a. Those protect from

neurodegenerence

[64]

Sch B prevents cerebral ischemia
Sprague-Dawley

rats
10 and 30mg/kg

Inhibited the expression of proinflammatory
factor

(TNF-α and IL-1β) as well as prevented the
activation of MMP2/9

[60]
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Figure 5: Molecular mechanism of Schisandrin B.
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6. Schisandrin B and Myocardial Ischemia

Worldwide, cardiovascular diseases (CVD) remain one of the
most leading causes of mortality. Among CVD, myocardial
infarction is the main reason for morbidity in developing
countries. Till now, the most efficient cure of myocardial
infarction consisted of reperfusion therapy; however, reper-
fusion could induce inflammatory response or oxidative
stress, consequently inducing cellular death. This phenome-
non was reported as ischemia/reperfusion (I/R) injury.
Regarding this, researchers’ hypothesis identification of novel
pharmaceutical drugs that might exert as well as reduce anti-
inflammation could prevent the I/R injury in myocardial
injury [66–68].

Some mechanism has been reported to prove the effi-
ciency of Sch B in the treatment of myocardial ischemia. Ear-
liest, heat shock treatment could increase myocardial Hsp25
and Hsp70 expressions that could protect against I-R injury
under the present experimental conditions. Sch B was
reported to prevent I/R enhancing the expression of Hsp25
and Hsp70 [69, 70]. Recently, Sch B was said to reduce myo-
cardial injury through inhibition of oxidative stress and
induction of Akt phosphorylation and prevent apoptosis by
decreasing the cleavage of caspase-3 [66, 71]. Besides, the
apoptosis inhibition of Sch B was associated with its ability
to downregulate some inflammatory cytokine through eNOS
signaling pathways [72]. Moreover, the inhibition of ROS-
mediated cardioprotective activity of Sch B was particularly
associated with the ability of Sch B to increase mitochondrial
glutathione, which consequently enhances myocardial ATP
and therefore protects I/R injury [73, 74].

To sum up, the molecular mechanism of cancer cell
regulation and cardioprotection by Sch B was resumed in
Figure 5.

7. Conclusion and Further Perspective

In this review, we have emphasized various pharmacological
activities of Sch B. Sch B is a natural nonenzymatic antioxi-
dant with low toxicity and low cost and has a broad applica-
tion prospect oxidation inhibitor; therefore, it could be used
in the cure of many diseases. The antitumor activities of
Sch B were mainly associated with the induction of cell cycle
arrest at different stages and apoptosis mediated through sev-
eral signaling pathways. Autodock calculation simulation
proved that Sch B is a more efficient drug in the regulation
of cell cycle and apoptosis compared to Sch A and Sch C.

Although several molecular and classic pathways have
been recognized as possible targets of Sch B in the cancer cell
line, the long-term toxicities of Sch B must be evaluated in
detail in various animal models to inaugurate its safety pro-
file. Pharmacodynamics biomarkers predictive of Sch B tis-
sue exposure as well as probable response are needed.
Moreover, no related research on the clinical application of
Sch B has been reported yet. Therefore, preclinical and clini-
cal trials are still required to elucidate the full spectrum of
anticancer effects of Sch B, either alone or in synergistic com-
bination with existing therapies.
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