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Abstract

The hydrodefluorination of CF3-substituted alkenes can be catalyzed by a nickel(II) hydride 

bearing a pincer ligand. The catalyst loading can be as low as 1 mol%. gem-Difluoroalkenes 

containing a number of functional groups can be formed in good to excellent yields by a radical 

mechanism initiated by H• transfer from the nickel hydride. The relative reactivity of various 

substrates supports the proposed mechanism, as does a TEMPO trapping experiment.
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INTRODUCTION

Fluorine chemistry is gaining increasing attention because of the importance of fluorine-

containing compounds in medicinal chemistry and agrochemistry.1–6 Among fluorine-

containing functional groups, gem-difluoroalkenes are intriguing, contained in a series of 

biologically active compounds,7–10 and well established as a bioisostere of carbonyl 

compounds with increased metabolic stability and thus improved pharmaceutical 

performance.11–14 In the case of artemisinin, the replacement of a carbonyl with a gem-

difluoralkene gives enhanced antimalarial activity. In some cases, the gem-difluoroalkene 

moiety reverses the regioselectivity of enzyme-catalyzed hydride reduction (Figure 1). gem-

Difluoroalkenes can also serve as versatile building blocks for the synthesis of other 

fluorine-containing molecules.15–20

The growing interest in the gem-difluoroalkene moiety has led to a number of strategies for 

its preparation (Scheme 1). The conventional approach relies on functional group 

interconversion, i.e., the difluoromethylenation of carbonyl or diazo compounds (Scheme 

1a).16,17 However, these functional group interconversion strategies typically involve highly 

reactive intermediates or harsh reaction conditions, limiting their substrate scope.

There are several ways in which gem-difluoroalkenes can be prepared from the readily 

available21–25 trifluoromethyl-substituted alkenes. In one convergent approach, nucleophilic 

attack on a CF3 can lead to fluoride loss, but an SN2′ reaction with strong nucleophiles, such 

as Grignard reagents or organolithium reagents, will suffer from poor functional group 

tolerance (Scheme 1b). Recently, radical chemistry has been used for the synthesis of gem-

difluoroalkenes, with defluorination of CF3 by either photocatalysis or Ni catalysis (Scheme 

1c,d).26–36

Typical Ni-catalyzed defluorinations of trifluoromethyl alkenes for the synthesis of gem-

difluoroalkenes begin with single electron transfer from the nickel to an alkyl radical 

precursor. The resulting alkyl radical adds to another CF3 alkene, producing a new radical 

which is then quenched by the formation of a Ni–C bond; β-F elimination gives the final 

product. Other routes to functionalized gem-difluoroalkenes, such as alkenylation,37 

arylation,38 and borylation,39 have also been reported.

In general, C–F bond activation provides an easy approach to the synthesis of partially 

fluorinated compounds from readily available polyfluorinated species.15,40,41 The simplest 

transformation of this sort, hydrodefluorination, has attracted much attention and features a 

unique mechanistic diversity.42–45 However, most hydrodefluorination reactions promoted 

by transition metals are limited to aromatic or olefinic C–F bonds and show little selectivity 

among such bonds. The Hisaeda group has reported a (Co)B12–TiO2 hybrid catalyst for the 

photochemical hydrodefluorination of substituted α-CF3 styrenes,46 although a 

hydrogenation byproduct is always generated along with the gem-difluoroalkene. Zhang and 

co-workers reported a copper-catalyzed reductive defluorination of β-trifluoromethylated 

enones.47 However, the use of Grignard reagents limited its functional group tolerance. 

Herein, we report that the iso-PmBox Ni(II) hydride 1a can catalyze the synthesis of gem-

Yao et al. Page 2

J Am Chem Soc. Author manuscript; available in PMC 2020 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



difluoroalkenes by the hydrodefluorination of trifluoromethyl-substituted alkenes with 

silanes.

RESULTS AND DISCUSSION

The iso-PmBox nickel hydride system 1a was developed by, and has been studied by, the 

Gade group.48 It is well established that the Ni(II) hydride is in dynamic equilibrium with 

Ni(I) metalloradical. The Ni(I) can abstract halides from organic compounds and make 

Ni(II) halides, from which Ni(II)-H can be regenerated with silanes and boron hydrides.49–52

While investigating hydrogen atom transfer (HAT) from 1a, we found that it carried out the 

hydrodefluorination of α-CF3 styrene 2a (Scheme 2). During that reaction, the characteristic 
19F NMR resonance of the Ni(II)-F complex 1b was observed at δ −444.3.49 Moreover, the 

disappearance of 2a (a 19F singlet at δ −64.50) was accompanied by the appearance of an 

ABX3 pattern centered at δ −90.69 (2JF,F = 44.1 Hz, 4JH,F = 3.3 Hz), belonging to the gem-

difluoroalkene 3a. After the addition of PhSiH3, the 19F peak of 1b disappeared and the 1H 

NMR peak of 1a reappeared. (Et3SiH did not regenerate 1a.) Indeed, 1a was able to 

catalyze, in quantitative yield (as determined by 19F NMR) at room temperature, the 

dehydrofluorination of 2a with a stoichiometric amount of PhSiH3.

Table 1 displays the scope of our reaction. Various substituents, either electron-donating or 

electron-withdrawing, and different substitution patterns on the aromatic ring are well 

tolerated. All the substrates give yields ranging from good to near quantitative. No 

substantial amount of hydrogenation products was observed for any of the substrates, 

demonstrating a satisfying chemoselectivity. A thioether 3c, an ether 3d, a tertiary amine 

3m, and the heteroaromatic rings in 3g and 3p remain intact. Even the acidic protons of an 

amide 3e or the carboxylic acid 3f do not interfere with the reaction. An exocyclic gem-

difluoroalkene 3h, and the 2,2-difluorostyrene 3r, can be obtained from trisubstituted 

alkenes bearing a CF3 substituent, although an elevated temperature is required. 

Interestingly, only the E isomer of the starting material 2r gives product, with elevated 

temperature and extended reaction time, while the Z isomer remains unreacted.53 A 

monofluoroalkene 3i can be obtained from an alkene bearing a difluoromethyl substituent. 

Nitrile 3j, ester 3k, ketone 3n, and aldehyde 3o, which are not compatible with Wittig or 

Julia-type olefinations or with strong nucleophiles in SN2′ -type reactions, are all well 

tolerated by our method. Product 3l shows that our reaction can achieve chemoselective 

activation of the C–F bonds in trifluoromethyl alkenes without attacking an aryl fluoride C–

F bond. Other radical stabilizing groups, like a carboalkoxy substituent, can also facilitate 

the reaction, as shown by the formation of product 3q. Unfortunately, the reaction does not 

work on CF3 alkenes with aliphatic substituents, even at elevated temperatures—a result that 

is to be expected from the mechanism we propose below.

The control experiment in Table 2 (entry 2) shows that the nickel hydride 1a is required for 

the reaction. Attempts at replacing 1a with metal hydrides previously used in our lab (entry 

3), such as HCpCr(CO)3 and HV(CO)4(dppe) (dppe = 1,2-bis(diphenylphosphino)ethane), 

have been unsuccessful,54 so the reactivity of 1a is unique. The catalyst loading can be 

reduced (entry 4) to 1 mol% without diminishing the yield, although a longer reaction time 
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is necessary. The number of equivalents of PhSiH3 can be reduced without affecting the 

yield (entry 5), which suggests that all three silane hydrides can be used.

Two mechanisms for this reaction seem worth considering. One (shown in the top of Scheme 

3) is similar to Gade’s proposal for the hydrodefluorination (eq 3) of geminal 

difluorocyclopropanes.49 The Ni(I) (complex 1c) may abstract

eq 3

an F atom from the substrate 2a to form the Ni(II) fluoride 1b and the organic radical 4; H• 

transfer from the Ni(II) hydride 1a will then give the product 3a and regenerate 1c, while the 

silane will reduce the fluoride 1b back to the hydride 1a. The other possible mechanism 

(shown at the bottom of Scheme 3) involves the sort of H• transfer to olefins that we have 

used to generate radicals for cyclization and isomerization.55–58 Transfer to the methylene of 

2a from the hydride 1a is expected,59,60 generating the organic radical 5 while leaving the 

Ni(I) complex 1c. Abstraction of an F atom from 5 by 1c gives the product 3a and yields the 

Ni fluoride 1b,61 which can be reduced by the silane back to 1a.

The second mechanism is supported by several lines of evidence. First, it explains why 

aliphatic alkenes do not work (Scheme 4a), even at an elevated temperature. The aryl group 

is essential for stabilizing the organic radical resulting from HAT, given that CF3 is a radical 

destabilizing group;62,63 however, the fluorine atom abstraction in the first mechanism 

would not require an aryl substituent. Second, the slow reaction of trisubstituted alkenes (in 

Scheme 4b) is more easily explained by the second mechanism—using the established60,64 

effects of olefin substitution on the rate of HAT to an olefin from a metal hydride. A methyl 

substituent on the carbon receiving the H• (in the second mechanism) is known to slow HAT 

by about 3 orders of magnitude, while the rate of fluorine atom abstraction (in the first 

mechanism) should not change much with the extra substituent on carbon. Third, and the 

most conclusive, is the successful trapping of the radical 5 by TEMPO (2,2,6,6-

tetramethylpiperidin-1-yl)oxyl; Scheme 4c). The addition of 3 equiv of TEMPO to the 

reaction results in the formation of the TEMPO adduct 6 (Figure 2) in 73% isolated yield.

CONCLUSION

gem-Difluoroalkenes with a variety of functional groups can be generated by the nickel-

hydride-catalyzed hydrodefluorination of CF3 alkenes. The reaction is initiated by H• 

transfer from Ni to the substrate. Trapping of the radical 5 with TEMPO demonstrates a new 

mechanism for the previously reported48 NNN-pincer nickel(I/II) system.
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EXPERIMENTAL SECTION

General Procedures

All manipulations were carried out in an inert atmosphere box (O2 < 1 ppm) or under Ar by 

standard Schlenk techniques unless otherwise noted. Glassware was oven-dried or flame-

dried prior to use. All commercial reagents were used as received without further 

purification unless specified. Deuterated benzene (C6D6) was distilled from molten 

potassium and benzophenone ketyl. Benzene (C6D6) and tetrahydrofuran (THF) were 

distilled from sodium-benzophenone ketyl. isoPmbox-Ni(II)-H 1a,48 CpCr-(CO)3H,65 

HV(CO)4(dppe),66 and Co(dmgBF2)2(THF)2
67 were synthesized according to the literature 

procedures and stored in an argon atmosphere glovebox (O2 < 1 ppm). 1H NMR, 13C NMR 

and 19F NMR spectra were recorded using a Bruker 500 Ascend, DRX 500, DRX 400, or 

DRX 300 spectrometer. Peaks are referenced relative to solvent residual peaks in benzene-

d6, THF-d8, CD3CN, and CDCl3. The data are reported as follows: chemical shift in parts 

per million from internal tetramethylsilane on the δ scale, integration, multiplicity (br = 

broad, s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = multiplet), and 

coupling constants (Hz). High-resolution mass spectra were acquired on a Waters XEVO 

G2-XS QToF mass spectrometer equipped with a UPC2 SFC inlet and a LockSpray source 

with one of three probes: electrospray ionization (ESI) probe, atmospheric pressure chemical 

ionization (APCI) probe, or atmospheric pressure solids analysis probe (ASAP). X- ray 

diffraction data were collected on a Bruker Apex II diffractometer. Crystal data, data 

collection and refinement parameters are summarized in Table S1. The structure was solved 

using direct methods and standard difference map techniques, and was refined by full-matrix 

least-squares procedures on F2 with SHELXTL (Version 2013/4).68–70

General Procedure of NiH-Catalyzed Hydrodefluorination

In an inert atmosphere glovebox, CF3 substituted alkenes (0.25 or 0.5 mmol), PhSiH3 (1 

equiv), and isoPmbox Ni(II)-H 1a (0.05 equiv) were weighed in a glass vial and transferred 

to a J-Young tube using 1 mL of dry and degassed C6D6. The reaction was carried out at 

room temperature for 24 h unless otherwise noted. The crude reaction mixture was directly 

subjected to flash column chromatography for purification. Spectroscopic details of all the 

reaction products can be found in the Supporting Information.

Reaction with Other Metal Hydrides

In an inert atmosphere glovebox, (1,1-difluoroprop-1-en-2-yl)benzene 2a (0.25 mmol), 

PhSiH3 (0.25 mmol, 1 equiv), and HCpCr(CO)3 (10 mg, 0.05 mmol, 0.2 equiv), 

Co(dmgBF2)2(THF)2 (27 mg, 0.05 mmol, 0.2 equiv), or HV(CO)4(dppe) (28 mg, 0.05 

mmol, 0.2 equiv) were weighed in a glass vial and transferred to a J-Young tube using 1 mL 

of dry and degassed C6D6. The reaction was carried out at room temperature for 24 h. Crude 
1H NMR and 19F NMR were taken directly or after silica plug.

TEMPO Trapping Experiment

In an inert atmosphere glovebox, (1,1-difluoroprop-1-en-2-yl)benzene 2a (0.5 mmol), 

PhSiH3 (0.5 mmol, 1 equiv), TEMPO (1.5 mmol, 3 equiv), and isoPmbox Ni(II)-H 1a 
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(0.025 mmol, 0.05 equiv) were weighed in a glass vial and transferred to a J-Young tube 

using 1 mL of dry and degassed C6D6. The reaction was carried out at room temperature for 

144 h. The reaction conversion was 56%, 77%, and 89% at 3, 17, and 144 h, respectively. 

The crude reaction mixture was directly subjected to flash column chromatography for 

purification. Flash column chromatography was done using pure hexane. Product was 

obtained with 73% yield.

2,2,6,6-Tetramethyl-1-((1,1,1-trifluoro-2-phenylpropan-2-yl)oxy)piperidine (6)
1H NMR (400 MHz, chloroform-d): δ 7.68–7.62 (m, 2H), 7.46–7.34 (m, 3H), 1.95 (q, J = 

1.2 Hz, 3H), 1.69–1.50 (m, 3H), 1.47–1.41 (m, 2H), 1.29–1.36 (m, 7H), 1.13 (s, 3H), 0.43 

(s, 3H). 19F NMR (376 MHz, chloroform-d) δ −74.83. 13C NMR (101 MHz, chloroform-d): 

δ 140.86, 128.27, 127.76, 127.68, 126.00 (q, J = 287.6 Hz), 82.54 (q, J = 26.4 Hz), 60.98, 

60.26, 41.68, 41.56, 33.13, 33.08 (q, J = 4.1 Hz), 20.89, 20.80, 16.92, 16.35 (q, J =1.7 Hz). 

HRMS-ASAP+ (m/z): calcd for C18H27F3NO [M+H]+: 330.2045, found: 330.2025.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Representative applications of gem-difluoroalkenes.
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Figure 2. 
Molecular structure of TEMPO-adduct 6. Hydrogen atoms are omitted for clarity.
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Scheme 1. 
Typical Synthetic Routes to gem-Difluoroalkenes
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Scheme 2. 
Hydrodefluorination by PhSiH3 of α-CF3 Styrene 2a by isoPmBox Ni(II)-H 1a in a 

Stoichiometric and a Catalytic Manner
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Scheme 3. 
Two Possible Mechanisms Initiated by Fluorine Atom Abstraction and Hydrogen Atom 

Transfer, Respectively
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Scheme 4. Evidence in Favor of HAT-Initiating Mechanisma

aThe structure of 6 has been confirmed by single-crystal X-ray diffraction (Figure 2).
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Table 1.

Substrate Scope of the Nickel-Hydride-Catalyzed Hydrodefluorination of Trifluoromethyl-Substituted 

Alkenes
a

a
Isolated yields, unless otherwise noted.

b
70 °C.

c
50 °C.

d
95 °C, 10 days, only from the E isomer of starting material. The yield is determined by 19F NMR.
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Table 2.

Control Experiments
a

entry deviation from “standard conditions” yield
b
 (%)

1 none >95

2 no 1a <5

3 20 mol% HCpCr(CO)3 or 20 mol% HV(CO)4(dppe) instead of 1a <5

4 1 mol% 1a, 72 h >95

5 0.4 equiv PhSiH3 >95

a
All reactions are performed on 0.5 mmol scale.

b
Determined by 19F NMR.
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