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Abstract Molecular imaging with single photon- and

positron-emitting tracers plays an important role in the

evaluation of inflammation and infection. Although sup-

planted by labeled leukocyte imaging for most indications,

gallium-67 remains useful for opportunistic infections,

pulmonary inflammation and interstitial nephritis and,

when [18F]FDG is not available, spinal infection and fever

of unknown origin. In vitro labeled leukocyte imaging is

the radionuclide procedure of choice for most infections in

immunocompetent patients. When performed for muscu-

loskeletal infection, complementary bone marrow imaging

usually is necessary. Recent data suggest that dual time

point imaging might be an alternative to marrow imaging.

Several methods of labeling leukocytes in vivo, with agents

including antigranulocyte antibodies and antibody frag-

ments, peptides and cytokines, have been investigated, with

variable results. These agents are not widely available and

none of them are available in the USA. Radiolabeled

antibiotics have been investigated as ‘‘infection-specific’’

tracers, but the results to date have been disappointing.

Conversely, radiolabeled antimicrobial peptides do hold

promise as infection-specific tracers. The use of positron-

emitting tracers for diagnosing inflammation and infection

has generated considerable interest. [18F]FDG is useful in

fever of unknown origin, spinal osteomyelitis, vasculitis

and sarcoidosis. Other positron-emitting tracers that have

been investigated include [18F]FDG-labeled leukocytes,

copper-64-labeled leukocytes, gallium-68 citrate and

iodine-124 FIAU. Although radiolabeled tracers are used

primarily for diagnosis, they also offer objective bio-

markers for assessing response to therapeutic interventions

in inflammatory diseases. They could also potentially be

used to target cells and molecules with specific receptor

expression for histological characterization, select patients

for receptor-targeted therapy and predict response to

treatment.
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Introduction

Despite significant advances in our understanding of

microorganisms and the pathogenesis of inflammation and

infection, infection remains a major cause of patient mor-

bidity and mortality. Although signs and symptoms such as

fever, pain, general malaise and abnormal laboratory

results may suggest the presence of infection, the diagnosis

can be elusive and imaging tests often are used for con-

firmation and localization. There are two principal
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categories of imaging tests: anatomical or morphological,

and molecular. Anatomical imaging tests, such as radio-

graphs, ultrasound and computed tomography (CT) reveal

structural alterations in tissues and organs caused by

microbial invasion and the inflammatory response of the

host. Prototypical molecular imaging tests use agents such

as gallium-68 citrate, labeled leukocytes and fluorine-18

fluorodeoxyglucose ([18F]FDG). These agents, which

reflect the physiological changes that are part of the

inflammatory process, are taken up directly by cells, tissues

and organs, or are attached to native substances that sub-

sequently migrate to an inflammatory focus. Because they

provide different types of information, anatomical and

molecular imaging studies are complementary to each

another. There are certain situations, however, in which

molecular imaging tests are especially valuable: postoper-

ative infections and infections associated with orthopedic

hardware, notably prosthetic joint infection. Postoperative

infections are a significant cause of morbidity and mor-

tality. Ultrasound, CT and magnetic resonance imaging

(MRI) cannot consistently separate abscesses from other

fluid collections and, on occasion, even from normal

postoperative changes. The distorted anatomy, metallic

sutures and the surgical incision itself further complicate

study interpretation. Molecular imaging studies, however,

demonstrate physiological processes, which often precede

anatomical changes, and can help distinguish normal

postoperative inflammation from infection. In suspected

orthopedic hardware infection, plain radiographs are nei-

ther sensitive nor specific and cross-sectional imaging

modalities, such as CT and MRI, are limited by hardware-

induced artifacts. Radionuclide imaging is not affected by

metallic hardware and is the current imaging modality of

choice for diagnosing orthopedic hardware infection.

This article reviews the various radiolabeled molecular

imaging agents used for detecting and localizing inflam-

mation and infection as well as the potential role of these

agents in guiding selection of therapeutic agents and

monitoring treatment response.

Single photon-emitting (SPECT) tracers

Non-specific agents

Gallium-67 citrate

Several factors contribute to gallium-67 citrate (67Ga-

citrate) uptake in inflammation and infection. About

90 % of circulating Ga ions are bound to transferrin in

the plasma. Increased blood flow and vascular membrane

permeability result in increased 67Ga delivery and

accumulation at the inflammatory foci. 67Ga also binds

to lactoferrin, which is present in high concentrations in

inflammatory foci. Direct bacterial uptake, complexing

with siderophores and leukocyte transport also contribute

to 67Ga uptake in inflammation and infection. Imaging

usually is performed 18–72 h after injection. The normal

distribution of 67Ga, which is variable, includes bone,

marrow, liver, gastrointestinal and urinary tracts, and

soft tissues [1].

Replaced by labeled leukocyte imaging for most indi-

cations, 67Ga remains useful in select circumstances.

Opportunistic infections affect the lungs, and a normal scan

of the chest excludes infection with a high degree of cer-

tainty. In HIV-positive patients, lymph node uptake is

associated with mycobacterial infection and lymphoma.

Focal, or localized, pulmonary parenchymal uptake usually

is associated with bacterial pneumonia. Diffuse pulmonary

uptake, especially when intense, suggests Pneumocystis

jirovecii pneumonia [1].
67Ga is a sensitive indicator of pulmonary inflammation

and accumulates in interstitial pneumonitis, drug reactions,

collagen vascular disease, pneumoconioses and sarcoido-

sis. In patients with sarcoidosis, uptake correlates with

disease activity and response to therapy [1].
67Ga can help differentiate interstitial nephritis from

acute tubular necrosis in patients with acute renal failure.

Interstitial nephritis is characterized by renal uptake that is

more intense than lumbar spine uptake. Acute tubular

necrosis is characterized by little or no renal uptake [1]

(Fig. 1).

Fig. 1 Interstitial nephritis. On images acquired approximately 48 h

after injection, renal activity (arrows) is more intense than adjacent

lumbar spine activity. This is the characteristic presentation of

interstitial nephritis on gallium imaging

386 Clin Transl Imaging (2013) 1:385–396

123



Although [18F]fluorodeoxyglucose ([18F]FDG) PET is

the radionuclide test of choice for fever of unknown origin

and spinal osteomyelitis, 67Ga is an acceptable alternative

when this agent is not available [1].

Labeled leukocytes

In vitro labeled leukocytes In vitro leukocyte (WBC)

labeling usually is performed with 111In-oxyquinolone

(111In) or 99mTc-exametazime (99mTc-HMPAO). Uptake

depends on intact chemotaxis, number and types of cells

labeled and cellular response in a particular condition. A

circulating WBC count of at least 2,000/lL is needed for

satisfactory images. Although a mixed population of

WBCs is labeled, the majority of WBCs labeled are usually

neutrophils and the procedure is most sensitive for identi-

fying neutrophil-mediated infectious processes [2]. It is

possible to selectively label granulocytes. To do so, how-

ever, requires the use of a gradient separation process,

further lengthening an already labor-intensive process.

Published results, in general, have shown no real advantage

of radiolabeled granulocytes over radiolabeled leukocytes

for routine clinical use [3].

Images obtained shortly after injection of labeled WBCs

are characterized by intense pulmonary activity, which

clears rapidly. This phenomenon probably results from

WBC activation during labeling, which impedes cell

movement through the pulmonary vascular bed and pro-

longs transit through the lungs [2].

The advantages of In-WBCs include label stability, a

normal distribution limited to liver, spleen and bone mar-

row and the possibility of performing delayed imaging.

Complementary bone marrow imaging can be performed

during cell labeling, as a simultaneous dual isotope

acquisition, or after 111In-WBC imaging. Disadvantages

include low counts, low-resolution images and the 16–30 h

interval between injection and imaging [2].

The normal distribution of 99mTc-HMPAO-WBCs is

more variable than that of 111In-WBCs. In addition to the

reticuloendothelial system, activity is normally present in

the urinary tract, large bowel (within 4 h of injection) and

occasionally gallbladder. The advantages of 99mTc-

HMPAO-WBCs include high-resolution images and the

capacity of the technique to detect abnormalities within a

few hours of injection. Disadvantages include label insta-

bility and the short half-life of 99mTc, which limits the

possibility of performing delayed imaging. When per-

forming bone marrow imaging, an interval of 48–72 h is

required between the two imaging procedures [2].

In the brain, MRI can, in most cases, differentiate

tumors from abscesses. When MRI cannot be performed or

is not diagnostic, WBC imaging is a useful alternative,

being both sensitive and specific. WBC uptake has been

observed in some tumors, but usually is less intense than

that observed in abscesses. High- or medium-dose steroid

treatment may decrease sensitivity [4–6].

Pneumonia is easily and accurately diagnosed with

morphological imaging tests and consequently molecular

imaging rarely is needed to diagnose pulmonary infection.

Focal pulmonary activity on WBC images that is segmental

or lobar in appearance indicates a high likelihood of pyo-

genic infection. Diffuse, bilateral pulmonary uptake is

associated with numerous conditions including opportu-

nistic infection, pulmonary drug toxicity and acute respi-

ratory distress syndrome (ARDS), but almost never with

bacterial pneumonia [7].

Radionuclide imaging, traditionally, has played a lim-

ited role in diagnosing bacterial endocarditis; recent data

suggest, however, that 99mTc-HMPAO-WBC SPECT/CT

contributes useful information in patients suspected of

having this condition [8]. The value of WBC imaging for

diagnosing complications of bacterial endocarditis, such as

myocardial abscesses and mycotic aneurysms, is already

well established [2, 9]. WBC imaging is also useful for

diagnosing prosthetic vascular graft infection. The reported

sensitivity, which in most series exceeds 90 %, is not

affected by antibiotic therapy or duration of symptoms.

Specificity ranges from 50 to 100 %. False-positive results

are associated with lymphoceles, perigraft hematomas,

thrombosed grafts, bleeding, pseudoaneurysms and unin-

fected grafts \1-month-old [2].

In the postoperative patient, morphological imaging

techniques cannot consistently separate abscesses from

other fluid collections, or even from normal postoperative

changes. WBC imaging provides physiological information

and is complementary to these techniques [10].
99mTc-HMPAO-WBC imaging, the radionuclide study

of choice for inflammatory bowel disease (IBD), is very

sensitive and can be used as a screening test. In patients

thought to have ulcerative, or indeterminate, colitis, skip

areas of activity in the colon, or the presence of small

bowel activity, support the diagnosis of Crohn’s disease.

The test is useful in patients who cannot or will not

undergo endoscopy or contrast radiography can be used to

monitor response to therapy and can impact on patient

management by differentiating active inflammation from

scarring. Imaging at multiple time points and SPECT both

increase sensitivity. 99mTc-HMPAO-WBC is more sensi-

tive for lower than for upper gastrointestinal tract disease.

Its sensitivity may be affected adversely by concomitant

corticosteroid administration [11].

WBC imaging of diabetic pedal osteomyelitis has been

extensively investigated. The sensitivity of 111In-WBC in

diabetic foot infections ranges from 72 to 100 % and the

specificity from 67 to 100 %. The sensitivity and specificity

of 99mTc-HMPAO-WBC range from 86 to 93 % and from 80
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to 98 %, respectively. SPECT/CT improves test accuracy

[12–15] (Fig. 2). In a recent investigation, 99mTc-HMPAO-

WBC imaging was found to be more accurate than [18F]FDG

PET/CT for diagnosing pedal osteomyelitis in diabetics [16].

WBC imaging is not useful for diagnosing spinal oste-

omyelitis; 50 % or more of these cases present as non-

specific areas of decreased or absent activity. [18F]FDG

PET, or alternatively 67Ga-citrate scintigraphy, is the pre-

ferred nuclear medicine test for this indication [17].

WBC imaging, the procedure of choice for diagnosing

complicating osteomyelitis, is frequently performed toge-

ther with colloid bone marrow imaging. The reason for this

is that WBCs accumulate not only in sites of infection, but

also in the bone marrow. The normal distribution of he-

matopoietically active bone marrow in adults is variable.

Systemic diseases such as sickle cell and Gaucher disease

produce generalized alterations in marrow distribution;

fractures, orthopedic hardware and neuropathic joints cause

localized alterations. The normal distribution of hemato-

poietically active marrow in children varies with age.

Consequently, it may not be possible to determine whether

an area of activity on a WBC image represents infection or

marrow. Performing 99mTc-colloid bone marrow imaging

overcomes this problem. Both WBCs and colloid accu-

mulate in marrow; WBCs also accumulate in infection, but

colloid does not. The combined study is positive for

infection when activity is present on the WBC image

without corresponding activity on the marrow image. Any

other pattern is negative for infection. The combined study

has been most extensively investigated in prosthetic joint

infections, but is valuable in any condition that affects

marrow distribution, showing an overall accuracy of

approximately 90 % [18] (Fig. 3).

As an alternative to marrow imaging, dual time point

imaging (delayed images obtained 3–4 h after reinjection

and late images 20–24 h after reinjection), with acquisi-

tion times corrected for 99mTc decay, has been suggested.

Decay-corrected images avoid operator bias and the fact

of using the same count scale in all images facilitates

Fig. 2 Soft tissue infection,

right great toe. There is focally

increased activity (arrows) in

the right great toe on the dorsal

and plantar images (a) obtained

approximately 6 h after

injection of 99mTc-

exametazime-labeled

autologous leukocytes. It is not

possible to determine whether

the infection involves bone. The

SPECT/CT (b) confirms that the

infection (arrows) is confined to

the soft tissues

Fig. 3 a Hypercellular bone marrow. On the 111In-labeled leukocyte

image (left), acquired 24 h after injection of autologous labeled

leukocytes, there is focally increased activity in the left shoulder of a

patient with sickle cell disease, who presented with fever and left

shoulder pain. The distribution of activity is virtually identical on the

bone marrow image (right), which was performed immediately after

the labeled leukocyte imaging, and 1 h after injection of 99mTc-sulfur

colloid and hence the test is negative for osteomyelitis. The increased

activity in the left shoulder is the result of localized marrow

hyperplasia. b Osteomyelitis, left shoulder. On the 99mTc-exameta-

zime image (left), acquired approximately 16 h after injection of

labeled autologous leukocytes, there is focally increased activity in

the left shoulder (arrow) of a patient who presented with shoulder

pain, fever and positive blood cultures. On the bone marrow image

(right), which was performed 1 h after injection of 99mTc-sulfur

colloid and 2 days after the labeled leukocyte study, the left shoulder

is photopenic (arrow) and the test is positive for osteomyelitis
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image interpretation. Increasing uptake, either in size or

over time, is considered positive for infection; lack of

uptake or decreasing uptake over time is classified as

negative for infection. Dual time point imaging with

decay-corrected acquisition times may decrease the need

for complementary bone marrow imaging, thereby

reducing costs as well as radiation exposure to both

patients and personnel [19].

In vivo labeled leukocytes Besilesomab (Scintimun�), a

150 kDa murine monoclonal antibody of the IgG1 kappa

isotype, binds to non-specific cross-reacting antigen-95

(NCA-95), an epitope expressed on cell membranes of

granulocytes and granulocyte precursors. About 10 % of

injected activity is neutrophil bound by 45 min, while

20 % circulates freely and presumably localizes in

inflammatory foci through non-specific mechanisms.

Studies usually become positive within 6 h of injection;

next-day imaging increases the sensitivity of the test [20].

In one investigation, 99mTc-besilesomab was more sen-

sitive (75 vs 59 %), but less specific (72 vs 80 %) than
99mTc-HMPAO-WBC for diagnosing appendicular osteo-

myelitis [21]. 99mTc-besilesomab has a level of accuracy

similar to that of in vitro labeled WBC imaging for diag-

nosing diabetic pedal osteomyelitis. Results in suspected

prosthetic joint infection have been variable. Combining

the test with bone scintigraphy, performing semiquantita-

tive analysis and incorporating SPECT/CT into the imag-

ing protocol may improve the accuracy [2, 22, 23].
99mTc-besilesomab accurately diagnoses appendicitis,

contributes useful information in patients with pyrexia of

unknown origin and may be a useful screening test for

acute myocarditis. It is less accurate than 99mTc-WBC in

inflammatory bowel disease [24–26].

A significant disadvantage of 99mTc-besilesomab is the

incidence of human antimurine antibody (HAMA)

response, which ranges from \5 % in patients receiving a

single dose of 125 lg of antibody to more than 30 % in

patients receiving repeated injections [20]. To minimize

potential problems, patients should be prescreened for

HAMA, a maximum of 250 lg antibody should be injected

and repeated administrations should be avoided.

Fanolesomab (LeuTech�, NeutroSpec�) is a

900 kDa M class immunoglobulin that exhibits a high

affinity for 3-fucosyl-N-acetyl lactosamine contained in the

CD15 antigen expressed on human leukocytes. Accumu-

lation in infection is via binding to circulating neutrophils

that subsequently migrate to infection and bind to neutro-

phils and neutrophil debris already sequestered in an

infection. 99mTc-fanolesomab accurately diagnoses atypi-

cal appendicitis as well as musculoskeletal and prosthetic

vascular graft infections. Following reports of serious and

life-threatening cardiopulmonary events, including two

fatalities shortly after administration, 99mTc-fanolesomab

was withdrawn from the market [2].

Sulesomab (Leukoscan�) is a 50 kDa fragment antigen

binding (Fab0) portion of an IgG1 class murine monoclonal

antibody that binds to normal cross-reactive antigen-90

(NCA-90) present on leukocytes. Approximately, 3–6 % of

the injected activity is associated with circulating neutro-

phils; at 24 h after injection, about 35 % of the remaining

activity is in the bone marrow. Initial investigations sug-

gested that sulesomab binds to circulating neutrophils that

migrate to foci of infection and to leukocytes already

present at the site of infection. Recent data, however,

suggest that the accumulation in infection is non-specific

[2].

Most investigations have found that 99mTc-sulesomab is

sensitive for diagnosing musculoskeletal infection. Speci-

ficity is variable, especially in suspected prosthetic joint

infection. 99mTc-sulesomab is comparable to in vitro

labeled WBC imaging for diagnosing pedal osteomyelitis

in diabetics (Fig. 4). The test is reasonably accurate for

diagnosing soft tissue infections and pyrexia of unknown

origin, but is less useful for inflammatory bowel disease

[2]. 99mTc-sulesomab may have a role in implanted deep

brain stimulation device infections. Imaging results corre-

late well with the presence and extent of infection, thereby

facilitating patient management [27].

Most techniques for labeling leukocytes in vivo use

antigranulocyte antibodies or antibody fragments. Cyto-

kines, low molecular weight proteins that interact with

specific cell-surface receptors on specific cell populations,

also have been investigated.

Interleukin 8 (IL-8) is a member of the CXC subfamily

of chemotactic cytokines that binds with high affinity to the

CXC type I (IL-8 type A) and CXC type II (IL-8 type B)

receptors expressed on neutrophils and monocytes. The

agent is well tolerated, rapidly accumulates at sites of

infection and clears rapidly from the blood pool and non-

target tissues. In a rabbit model of acute osteomyelitis,
99mTc-IL-8 clearly showed the area of osteomyelitis [28–

30].

Although the majority of investigations have focused on

labeling granulocytes for infection localization, some

investigators have used labeled lymphocytes to study

inflammatory conditions. Interleukin 2 (IL-2) is synthe-

sized and secreted by T lymphocytes and binds with high

affinity to IL-2 receptors expressed by activated lympho-

cytes during inflammation. Radioabeled IL-2 allows visu-

alization of both lymphocytic infiltration and T cell

lymphocyte activation and has been used in several

inflammatory diseases characterized by chronic lympho-

cytic infiltration, such as Takayasu’s arteritis, diabetes

mellitus, celiac disease, Crohn’s disease, autoimmune

thyroid diseases and atherosclerosis [31].
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Infection-specific agents

Radiolabeled antibiotics

None of the clinically available agents is truly specific for

infection, and the search continues for such an agent.

Radiolabeled antibiotics have been investigated as

‘‘infection-specific’’ tracers. Presumably, the labeled anti-

biotic is incorporated into, and metabolized by, bacteria

and assuming that uptake is proportional to the number of

microorganisms present, the measured radioactivity would

accurately and specifically localize infection. The most

extensively investigated radiolabeled antibiotic, 99mTc-

ciprofloxacin, was initially reported to be both sensitive

and specific for infection [32, 33]. Subsequent investiga-

tions, however, raised serious doubts about this agent as an

infection-specific tracer and much of the original enthusi-

asm for radiolabeled antibiotics as diagnostic tools has

waned [34–36].

111In-Biotin

Biotin is necessary for cell growth, fatty acid production

and metabolism of fats and amino acids, and it serves as a

growth factor for certain bacteria. 111In-Biotin, alone or in

combination with streptavidin, accurately diagnoses spinal

infections and may be a useful alternative to [18F]FDG PET

and 67Ga-citrate imaging. 111In-Biotin does not accumulate

in normal bone or marrow, so there are no anatomical

landmarks, and SPECT/CT is especially helpful for cor-

rectly localizing foci of 111In-Biotin accumulation and

guiding the selection of therapy [37, 38].

Radiolabeled antimicrobial peptides

Antimicrobial peptides are critical to the biological

defenses of multicellular organisms. They are produced by

various cells, including phagocytes, and endothelial and

epithelial cells, and bind to the bacterial cell membrane.

Their expression may be constant or induced on contact

with microbes; they may also be transported to sites of

infection by leukocytes [39].

Radiolabeled synthetic fragments of ubiquicidin (UBI),

a naturally occurring human antimicrobial peptide that

targets bacteria, possess the ability to differentiate infection

from sterile inflammation [40]. 99mTc-UBI 29–41 may be

useful for monitoring the efficacy of antibacterial agents in

infections caused by Staphylococcus aureus [41, 42]. In an

animal model of prosthetic joint infection, all six infected

devices were positive on day 9, but only four of the six

were positive on day 20. The decreased sensitivity over

time may have been related to effects of the protective

glycocalyx secreted by the bacteria [43].

Available human data are encouraging. In six children

with suspected osteomyelitis, tracer cleared rapidly from

the circulation with a mean residence time of about 30 min.

Approximately, 85 % of the injected activity was elimi-

nated by renal clearance within 24 h. There was minimal

accumulation in non-target tissues with an average target/

non-target ratio of 2.18 ± 0.74 in positive lesions at 2 h

[39]. The sensitivity, specificity and accuracy of 99mTc-

UBI 29–41 in 18 patients suspected of having various

infections were 100, 80 and 94.4 %, respectively. Optimal

visualization of abnormalities occurred about 30 min after

injection [44]. 99mTc-UBI 29–41 detected five out of six

cases of mediastinitis among 13 patients who had recently

undergone cardiac surgery [45]. A recent meta-analysis

reported that the pooled sensitivity, specificity and accu-

racy of 99mTc-ubiqicidin were 94.5, 92.7 and 93.7 % [46].
99mTc-labeled recombinant human beta-defensin-3

(HBD-3) that exerts bactericidal effects on Gram-positive

and Gram-negative bacteria has also been investigated. By

3 h after injection, tracer uptake in a Staphylococcus aur-

eus infection model was significantly higher than that in

sterile inflammation [47].

Positron-emitting (PET) tracers

In general, positron emission tomography (PET) offers

several advantages over SPECT imaging. PET provides

three-dimensional images of the whole body with superior

resolution and facilitates [especially, when combined with

CT (PET/CT)] precise localization of abnormal uptake.

Furthermore, semiquantitative analysis is more readily

available and could be helpful for differentiating between

Fig. 4 Diabetic pedal osteomyelitis. There is focally increased

radionuclide uptake in the right fourth toe (arrowheads) on images

acquired approximately 1 h after injection of 99mTc-sulesomab.

Published data suggest that the accuracy of 99mTc-sulesomab for

diagnosing pedal osteomyelitis in diabetics is similar to that of in vitro

labeled leukocytes
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infections and other causes of uptake, as well for moni-

toring response to therapy.

Non-specific agents

[18F]Fluorodeoxyglucose

[18F]FDG, a well-established tool in oncology, has been an

increasing focus of attention in the field of infection and

inflammation imaging over the past decade, since

[18F]FDG also accumulates in activated leukocytes, which

use glucose as an energy source only after activation during

their metabolic burst [31]. Transport of [18F]FDG across

the cell membrane is mediated by glucose transporter

proteins (GLUT). Intracellular [18F]FDG is phosphorylated

by the enzyme hexokinase and trapped in the cell. With the

exception of a few organs, physiological uptake of

[18F]FDG is low and clearance from non-target tissue is

rapid, resulting in relatively high target-to-background

ratios. With the new hybrid PET/CT systems, diagnostic

evaluation can be completed in a single visit in just 1–2 h

(including the waiting time, after injection, necessary for

sufficient tracer uptake). Compared with many other

radiopharmaceuticals, [18F]FDG has a very favorable

dosimetry. It is very sensitive and in most situations has a

high negative predictive value. There are, however, limi-

tations to this agent, notably its specificity. [18F]FDG PET

merely detects enhanced glucose metabolism and is

therefore unable to discriminate reliably between infection/

inflammation, malignancy and any other hypermetabolic

state. [18F]FDG also cannot distinguish between different

inflammatory pathways, which can be relevant in some

clinical situations [31].

Combined EANM/SNMMI guidelines for the use of

[18F]FDG in infection and inflammation have been pub-

lished. Major indications are peripheral bone osteomyelitis

(non-postoperative, non-diabetic foot) (Fig. 5), sarcoidosis

(Fig. 6), suspected spinal infection (Fig. 7), evaluation of

fever of unknown origin (FUO), evaluation of metastatic

Fig. 5 Right femur osteomyelitis. There is focal hypermetabolism

(arrows) in the lateral condyle of the distal right femur on the coronal

and sagittal [18F]FDG PET images of a 12-year-old leukopenic

patient with Staphylococcus aureus bacteremia and right knee pain.

Imaging was performed approximately 1 h after [18F]FDG injection

Fig. 6 Sarcoidosis. Anterior maximum intensity projection image

(MIP) acquired approximately 1 h after [18F]FDG injection demon-

strates innumerable pulmonary and cutaneous foci of hypermetabo-

lism in a patient with disseminated active sarcoidosis
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infection and high-risk patients with bacteremia, and pri-

mary evaluation of suspected vasculitis (Fig. 8) [48].

[18F]FDG may be useful for diagnosing infected hepatic

and renal cysts, infected intravascular devices and AIDS-

associated opportunistic infections and for assessing

tuberculous lesions. Sufficient evidence-based data for

these indications, however, are currently lacking [48].

While specificity is usually the limiting factor in

[18F]FDG imaging, there are some situations in which the

limitation is low sensitivity, e.g., in prosthetic joint infec-

tions, diabetic foot infections and in the evaluation of

medium- and small-vessel vasculitis [49].

[18F]FDG-labeled leukocytes

Leukocytes have been labeled in vitro with [18F]FDG in an

attempt to develop a more specific PET tracer. Whole-body

and organ dosimetry are comparable to those of conven-

tional doses of 111In-WBCs [50]. Initial results were

encouraging [51, 52]. However, the labeling efficiency is

low and may be affected by blood glucose levels [53]. In

some indolent infections, labeled leukocyte accumulation

is slow and imaging at later time points (e.g., 24 h) may be

necessary to detect the abnormality. Given the short half-

life of 18F (110 min), it is technically not feasible to per-

form imaging much later than 4–5 h after injection.

Although there are some data indicating different distri-

bution patterns between [18F]FDG and [18F]FDG-labeled

leukocytes (suggesting improved specificity of the coupled

tracer), well-designed clinical trials demonstrating an

Fig. 7 Spinal osteomyelitis/

infected spinal hardware. On the

sagittal images from the PET/

CT scan, performed

approximately 1 h after

[18F]FDG injection, there is

spinal hypermetabolism

extending from approximately

T11 to L3 (arrows), with a

maximum SUV of 9.3 (color

figure online)

Fig. 8 Giant cell arteritis. Note the intense, relatively homogeneous

[18F]FDG accumulation in the carotid and subclavian arteries, as well as

in the aortic arch, thoracic and abdominal aorta, and the iliac and femoral

arteries. Imaging was performed about 1 h after injection of tracer
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added value of [18F]FDG-labeled leukocytes versus

[18F]FDG are lacking [54, 55].

Copper-64-labeled agents

Copper-64 (64Cu), theoretically, is one of the more suitable

PET isotopes for imaging purposes. Its physical half-life of

12.7 h makes it a suitable tracer for imaging infectious and

inflammatory diseases. In ten volunteers, leukocytes were

labeled in vitro with 64Cu, In and [18F]FDG. 64Cu-WBC

labeling efficiency and viability were comparable or

superior to those of 111In-WBC and significantly higher

than those of [18F]FDG-WBC. 64Cu was retained inside the

cells without evident toxicity. These data suggest that
64Cu-labeled leukocytes may potentially be useful for

imaging inflammation and infection and further investiga-

tion is warranted [56].

However, the shortage of appropriate chelating agents

has, to date, limited the wider application of 64Cu [57].

New developments in 64Cu imaging focus primarily on

cancer research. 64Cu-labeled natriuretic peptide is a

potential tracer for the in vivo imaging of atherosclerotic

plaques [58]. Mice with induced colitis, compared with

control groups, were found to show higher uptake of a
64Cu-labeled anti-b7 integrin antibody [59]. Recently, in an

in vitro investigation, chitosan-coated magnetic 64Cu

nanoparticles were found to be taken up by granuloctyes

through phagocytosis, and showed a high stability (of up to

80 %) of retained activity after 24 h of incubation [60].

Gallium-68 citrate

The imaging characteristics of the positron emitter gallium-

68 (68Ga) are superior to those of 67Ga by virtue of the

higher spatial resolution and quantitative features of PET in

comparison with single-photon imaging. 68Ga-citrate has

suitable radiophysical and radiopharmaceutical properties:

high positron yield and a half-life of 68 min, and thus,

showing rapid blood clearance, quick diffusion and target

localization, is able to match the pharmacokinetics of many

peptides and other small molecules [61]. In addition, this

agent can be generator produced, and several generators are

commercially available.
68Ga-citrate is produced with high radiochemical yield

and purity and can be used in the detection of inflammatory

and infectious diseases [62]. However, large clinical trials

are still lacking. The largest series to date consisted of 31

patients with suspected osteomyelitis or discitis who

underwent a total of 40 68Ga-citrate PET/CT scans. An

overall accuracy of 90 % was found, and the authors stated

that the possible role of 68Ga-citrate in the diagnosis of

bone infections was confirmed [63]. While 68Ga-citrate

may be superior to 67Ga-citrate, to adequately assess its

value as an inflammation/infection imaging agent it must

be compared to [18F]FDG, which, when available, has

replaced 67Ga.

It is likely that if 68Ga-citrate is to be useful in inflam-

mation/infection imaging, it will need to be complexed

with other agents. Some molecules have, in fact, been

complexed with 68Ga for this purpose. 68Ga-apo-transfer-

rin, for example, detected Staphylococcus aureus infection

in a rat model within an hour of injection [64]. The specific

detection of Aspergillus fumigatus infection in rodent

models using 68Ga-labeled siderophores has also been

described [65, 66].

Infection-specific agents

124I-FIAU

The radioiodinated thymidine analog fialuridine (FIAU) is

a tracer that has been developed for reporter genes, for cells

that were transfected with herpes simplex virus thymidine

kinase (HSV-TK). FIAU, because of the homology

between viral and bacterial TK, is also a specific substrate

of bacterial TK [67]. Localized infections caused by five

genera of bacteria have been imaged successfully with 125I-

FIAU [68]. Data also suggest that this tracer can be used to

monitor the efficacy of antimicrobial therapy, because in a

preclinical model of lung infection 125I-FIAU signal

intensity was proportional to the bacterial load. It was

suggested that imaging with FIAU could potentially be

used to evaluate the efficacy of newly developed antibiotics

[69]. The feasibility of using 124I-FIAU for diagnosing

infection in humans was demonstrated in an investigation

of nine subjects, including eight with suspected musculo-

skeletal infection and one healthy control. All patients with

proven musculoskeletal infections demonstrated 124I-FIAU

accumulation at the site of infection by 2 h after injection.

There was no abnormal tracer uptake in the one control and

there were no adverse reactions among any of the subjects

[70]. The role of 124I-FIAU as a diagnostic imaging agent

for diagnosing prosthetic joint infection is under

investigation.

Therapy

As is evident from this review, SPECT and PET tracers

play an important role in the diagnosis of inflammation and

infection. Though less extensively investigated, molecular

imaging also has the potential to guide therapeutic man-

agement and to assess response to therapy. Imaging with

the radiolabeled anti-tumor necrosis factor alpha (anti-

TNFa) monoclonal antibodies infliximab and adalimumab,

for example, has been shown to be of value both for
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identifying patients with Crohn’s disease and rheumatoid

arthritis who would benefit from anti-TNFa therapy, and

for monitoring response to treatment [71, 72].

The ability of receptor-based molecular imaging agents

to target molecules and cells involved in inflammation and

infection has the potential to facilitate the selection of

patients for receptor-targeted therapy, and, by monitoring

changes in intensity of uptake during and after therapy, to

predict response as well as relapse.
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