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Interferons (IFNs) have long been used as an immunomodulatory

therapy for a large array of acute and chronic viral infections.

However, IFN therapies have been plagued by severe side

effects. The discovery of pathogen recognition receptors (PRR)

rejuvenated the interest for immunomodulatory therapies. The

successes obtained with Toll-like receptor (TLR) agonists in

activating immune cells and as adjuvant for prophylactic

vaccines against different viruses paved the way to targeted

immunomodulatory therapy. Better characterization of

pathogen-induced immune disorders and newly discovered

regulators of innate immunity have now the potential to

specifically withdraw prevailing subversion mechanisms and to

transform antiviral treatments by introducing panviral

therapeutics with less adverse effects than IFN therapies.
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Introduction
The innate immune system is the first line of defense for

organisms that possess an adaptive immune system. It

relies on the presence of specific receptors able to recog-

nize recurring pattern in molecules associated with patho-

gens but not with host cells, allowing discrimination

between self and non-self. These receptors are named

pattern recognition receptors (PRR) and recognized

pathogen-associated molecular patterns (PAMP) to induce

the expression of cytokines and chemokines that restrict

dissemination, eliminate pathogens and instruct pathogen-

specific adaptive immune responses. In the recent years,

tremendous advances in the characterization of PRR

families, nucleic acid sensing, downstream signaling path-

ways and effector responses have revealed essential role of

novel proteins and dynamic protein interactions network in

the triggering of immune responses to intracellular
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pathogen such as viruses. In the near future, targeting

specific regulators of PRR-mediated innate response to

withdraw viral subversion mechanisms, and access to novel

surrogate measurable effector markers, hold the promise of

new panviral therapeutics that will minimize adverse

effects associated with type I IFN therapy. This review

briefly summarizes strategies and challenges of present and

future targeted immunomodulatory therapies according to

our increasing knowledge in regulation of innate immunity

and of virus-induced immune host dysfunction.

Toward a better understanding of the innate
immune response to viral infection
Signaling PPRs include the major families of Toll-like

receptors (TLRs), retinoic acid-inducible gene I (RIG-I)-

like receptors (RLRs) and nucleotide-binding oligomer-

ization domain (NOD)-like receptors (NLRs). Pathogen

sensing takes place in all nucleated cells to generate cell-

intrinsic innate immunity and in professional antigen

presenting cells (APCs) to promote specific adaptive

immune responses. While TLRs sense PAMPs in the

extracellular space and endosomes, RLRs and NLRs

function as pathogen sensors in intracellular compart-

ments [1]. Interestingly, only a few of the known 13

TLRs have the ability to recognize viral molecules:

TLR3 for viral dsRNA, TLR7/8 for viral ssRNA and

TLR9 for viral unmethylated CpG DNA. Three cytosolic

sensors of viral RNA have been characterized thus far:

RIG-I for the sensing of 50 triphosphate structure and

blunt-end base paring, MDA5 for the sensing of long

dsRNA and LGP2 a CARDless regulator of its counter-

parts [2]. Following their activation, the CARD domain of

RIG-I and MDA5 interacts with the CARD domain of the

signaling adaptor MAVS (mitochondrial antiviral sig-

naling protein) [3��]. Both TLR and RLR viral sensing

pathways converge to activate IFN regulatory factor

IRF3-mediated and IRF7-mediated type I IFN (a/b)

antiviral response and NF-kB-mediated inflammatory

pathway [4] (Figure 1). Recent studies aims at better

defining innate immune responses have identified several

novel signaling and regulatory molecules [5]. Global

proteomic analysis has further revealed signaling modules

with high interconnectivity and adaptor proteins regulat-

ing signalosome assembly upon antiviral response and

type I IFN production [6��].

PRR signaling in initiation of specific adaptive
immune response
TLR-mediated and RLR-mediated antiviral responses

take place at the site of infection in nonimmune cells and

resting immune cells, where secreted pro-inflammatory
www.sciencedirect.com
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Figure 1
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cytokines and type I IFNs increase expression of MHC

class II antigens, CD40 and CD86 on APCs [7]. Cytokines

produced at sites of infection play a key role in the

activation and differentiation of dendritic cells (DC),

macrophages, neutrophils and NK cells, all major players

of the innate immune response [8] (Figure 1). When

mature DCs detect virus derived antigens, they migrate

to the lymph nodes to present antigens to CD4+ and

CD8+ T cells and B cells, inducing their activation [9].

Thus, modulation of PRR-mediated antiviral responses

can have important ripple effects on both qualitative and

quantitative aspects of the specific adaptive immune

responses to maximize the therapeutic potential of immu-

nomodulatory drugs [10].

Negative regulation of innate immune
response and pathological consequences
Antiviral innate response must be tightly regulated in

order to prevent uncontrolled production of cytokines
www.sciencedirect.com 
that might have deleterious effects on the host. Type I

IFN signature induced by PRR activation has been

observed in diverse autoimmune disorders including dia-

betes, and is believed to play a role in the induction of

chronic inflammatory disorders such as asthma and

rheumatoid arthritis. In the recent years, a better picture

has emerged in the biology of regulators illustrating the

existence of numerous negative regulators that often play

a nonredundant role and target the same positive regu-

lator [5]. Many negative regulators have been character-

ized that are either involved in direct interaction with

PRRs, dissociation of adaptors complexes, degradation of

signal proteins or transcriptional regulation [12]. Post-

translational modifications (phosphorylation and ubiqui-

tination) have emerged as key mechanisms to regulate

innate immune responses. Degradation of signal proteins

mediated by the ubiquitin-proteasome and autophagy

systems plays crucial roles in negative regulation of

TLR signaling, and unlike disruption of adaptors
Current Opinion in Virology 2012, 2:622–628
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contributes to termination of signaling as these degra-

dations are irreversible [11]. Examples include proteins

SOCS and PIN1 that promote polyubiquitination and

proteasomal degradation of Mal adaptor and IRF3/7

respectively, to suppress type I IFN and antiviral

responses. Recently, miRNAs have also emerged as fine

tuners of innate immune responses, which target mRNAs

encoding TLRs, intracellular signaling proteins and cyto-

kines. Examples include miR-146 that targets IRAK1 and

TRAF6, and miR-155 that targets MYD88, TAB2 and

IKKe [12]. Thus, targeting specific negative regulator of

the innate immune response may offer a new immu-

notherapeutic strategy to treat a range of infectious and

inflammatory diseases [13].

Viral subversion mechanisms
Cellular defence has evolutionarily challenged viruses

that in turn have developed strategies to counteract

innate immune response. Indeed TLR and RLR sen-

sing pathways are fundamental targets for virus-encoded

immune suppression. These viral subversion mechan-

isms include recruitment of ubiquitin proteasome sys-

tem, mimicry of the host cell components and

sequestration and cleavage of key components of the

immune system. One notable example is MAVS adaptor

that is targeted by numerous viruses through proteolytic

cleavage by hepatitis C virus (HCV), hepatitis A virus

(HAV), Coxsackievirus B3 (CVB3), human rhinovirus 1a

(HRV1a) and GB virus B (GBV-B), through decrease of

the mitochondrial membrane potential by influenza A

virus (FLU) or through inhibition of its interaction with

RIG-I by hepatitis B virus (HBV). Processes of viral

evasion are varied and are beyond the scope of this

review, but are recapitulated in Figure 1 (reviewed in

[14]). Importantly, host proteins targeted by multiples

viruses highlight key players of innate immunity, which

represent potential therapeutic targets to restore anti-

viral response and eventually cure cells from viruses.

However, these specific viral evasion strategies must

also be taken into account when developing immuno-

modulatory therapeutics to provide the greatest clinical

benefits.

IFNs: pioneer of panviral therapies
Type I IFNs were rapidly used as a therapeutic agent

against HBV and HCV, and demonstrated antiviral

activity against infection with SARS-CoV [15], FLU

[16], West Nile virus (WNV) [17], yellow fever virus

(YFV) [18] and Ebola virus [19]. Refinement of therapies

was explored with the development of improved IFN

molecules like consensus interferon (CIFN: a completely

synthetic interferon) [20], albinterferon (a fusion protein

between IFNa2a and human albumin) [21] and Y shape

interferon [22]. Recently, virus-induced type III IFNs

(IFN-l1-3: IL-29, IL28A, IL28B) have gained a lot of

interest to treat viral infections since naturally occurring

variants of the IL28B gene have been a major prediction
Current Opinion in Virology 2012, 2:622–628 
factor in spontaneous and treatment-induced clearance of

HCV [23,24]. Early clinical trials of recombinant pegy-

lated-IFN-l1 in HCV-infected patients showed reduced

adverse effects compared to IFN-a, likely linked to

minimal expression of IFN-l receptors in hematopoietic

cells [25,26].

TLR targeted therapies (Table 1)
The discovery of TLRs heralded the rebirth of interest in

innate immunity. Their specificity in recognizing most

classes of pathogens, as well as their role in the patho-

genesis of multiple diseases represent the strongest evi-

dences that TLRs are valuable therapeutic targets. TLR

targeted drugs have been approved and small-molecule

compounds are being investigated in the treatment of

viral infections as stand-alone treatment or adjunct to

direct acting antivirals (DAAs).

Imidazoquinolines

The most advanced examples of TLR agonists are Imi-

quimod (Aldara, 3M) and Resiquimod (R-848, 3M),

which are members of the imidazoquinolinamines

[27�]. Imiquimod is the only approved TLR7 agonist

and is used for topical treatment of external genital

and perianal warts resulting from human papillomavirus

(HPV) infection [28]. Resiquimod is a mixed TLR7/8

agonist that reached phase III trial for the treatment of

genital herpes before being suspended due to a lack of

efficacy [29].

Isatoribine

ANA-773 (Anadys Pharmaceuticals) is a second gener-

ation of orally bioavailable prodrug of isatoribine that

signals through TLR7, which is expressed in B cells

and DCs [30]. In HCV infected patients, ANA-773 was

generally well tolerated and resulted in a significant �1.26

log10 decrease in HCV RNA levels following 10 days of

treatments [31]. ANA-773 is now assessed in phase IIa,

and its efficacy will be evaluated in combination with

ribavirin and DAAs as an IFN replacement.

Immunomodulatory oligonucleotides

Synthetic cytosine-phosphate-guanine containing oligo-

deoxynucleotides (CpG-ODNs) are potent TLR9 ago-

nists, which interact directly with DCs to stimulate

cytokine release and induce adaptive immune responses

[32]. In Phase I clinical trials, subcutaneously adminis-

tration of IMO-2125 (Idera Pharmaceuticals) as mono-

therapy resulted in a more than �1 log10 decrease in HCV

RNA levels in prior nonresponders to PEG-IFN/ribavirin

after 4 weeks [33], and in combination with ribavirin to a

�2.4 log10 decrease in HCV RNA in treatment-naı̈ve

patients at day 29 [34�,35]. On the basis of its efficacy,

IMO-2125 could provide an alternative to IFNs for HCV

therapy. However, Idera Pharmaceuticals delayed a phase

II study after the observation of atypical lymphocytic

proliferation in preclinical toxicology study.
www.sciencedirect.com
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Table 1

Development status of TLR-targeting molecules for treatment of viral infections.

Compound

Imiquimod
(Alara)

Imidazoquinoline HPV TLR7 3M Pharma Marketed

Suspended in
phase III

Phase IIa

Phase I

MarketedGlaxoSmithKlineTLR4HBVAS04 + HBV surface antigenFendrix

Cevarix

Heplisav
(ISS-1018)

Vax125

Vax102

AS04 + HPV 16 & 18 L1 antigen

CpG ODN + HBV surface antigen

Flagellin + FLU HA antigen

Flagellin + FLU M2e antigen

HBV

Influenza

Influenza

HPV TLR4

TLR9

TLR5

TLR5

 GlaxoSmithKline

Dynavax
Technologies

Vaxinnate
Corporation

Vaxinnate
Corporation

Marketed

Phase III

Phase II

Phase I

Suspended in
phase II

3M Pharma

Anadys
Pharmaceuticals

Coley
Pharmaceuticals

Idera
Pharmaceuticals

TLR7/TLR8

TLR7

TLR9

TLR9

HCV

HCV

HCV

HCV, HPVImidazoquinoline

prodrug of isatoribine

CpG ODN

CpG ODN

Resquimod

ANA773

CPG10101

IMO-2125

Class Viral Disease
Antiviral treatments

Vaccine adjuvants

Target Compagny Clinical Status
Vaccine adjuvants using TLR agonists

TLR agonists have been an extensively explored area in

the development of vaccine adjuvants for prophylactic and

therapeutic applications by linking innate and adaptive

immune systems. The proof-of-concept of this approach

was made with the AS04 adjuvant system that combines

monophosphoryl lipid A (MPLA), an agonist of the TLR4

receptor and aluminium salt [36–38]. AS04 has been

approved in prophylactic vaccine against HBV (Fendrix,

GlaxoSmithKline) [39] and HPV 16 and 18 (Cervarix,

GlaxoSmithKline) [40]. The mechanism of action of

AS04 is mediated by a transient and local activation of

NF-kB activity and cytokine production, thus providing an

innate immune signal for optimal activation of APCs [41].

Other notable examples of adjuvants in clinical develop-

ment are Heplisav and VaxInnate. Heplisav is a HBV

vaccine comprised of an immunostimulatory sequence

(ISS-1018, Dynavax Technologies) that targets TLR9 re-

ceptor and HBV surface antigen. In phase III clinical trials,

Heplisav demonstrated earlier and higher protection with

fewer doses than currently licensed vaccines [42�]. Vax-

Innate Corporation is developing vaccines using highly

conserved influenza immunogens fused to TLR5 agonist

Salmonella typhimurium flagellin type 2 as an adjuvant to

potentially protect against all strains of seasonal and pan-

demic FLU strains (VAX102, VAX125, VAX128 and

VAX168) [43–45].
www.sciencedirect.com 
Future immunomodulatory targeted therapy
and panviral approaches (Table 2)
In the past decade, many newly emerging or re-emer-

ging virus infections and fear of future pandemics have

accentuated the need for novel antiviral therapy. Pan-

viral therapeutics with a targeted therapy approach

would be an ideal treatment for acute and chronic viral

infections, either as a standalone treatment or in com-

bination with DAAs. The major challenge in developing

future immunomodulatory therapy will be to minimize

adverse effects. The aggravation of psoriatic plaques in

HPV-infected patients treated with Imiquimod illus-

trates that triggering innate immune responses can lead

to uncontrolled activation of the inflammatory response.

Furthermore, immunomodulatory molecules, such as

peptidoglycans, that bind to multiple PRRs (TLR2,

NOD proteins and peptidoglycan recognition proteins)

increase the risk of undesired side effects. Develop-

ment of therapeutics will require more extensive

structural information of receptor–ligand interaction

to maximize the specificity and avoid undesired inter-

actions.

The selection of specific targets will require a compre-

hensive knowledge of innate immunity signaling path-

ways and regulators that are induced by and common to

numerous viral infections. The mapping of an innate
Current Opinion in Virology 2012, 2:622–628
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Table 2

Current and future development of immunomodulatory targeted therapy [49��,50–56].

Description

Recognition of extracellular PAMPs

Activation leads to pro-inflammatory cytokines
and type I IFNs  production

Set the pace for an adaptive immune response
via T and B cells.

Recognition of intracellular PAMPs

Activation leads to pro-inflammatory cytokines
and type I IFNs production

Modulation of the adaptive immunity
through DC and NK cells

Highly conserved small untranslated RNA species Regulation of innate immune responses

miRNAs can be induced in viral infections

Role in the resolution of inflammation

Each miRNA targets multiple genes

Assess the relative contribution of RLRs
in the regulation of immune cells

Optimize the DC and NK cells mediated
activation of adaptive immunity

small molecules

vaccine adjuvant

small molecules

vaccine adjuvant [55]

Antagomirs

LNA

Minimize inflammatory responses and
adverse effects

Extensive structural and functional studies available [49]

TLR agonists marketed or in phase I-III clinical trials

Structure recently identified [51,52]

ssRNA RIG-I ligand reduces infection
with FLU [53]

RIG-I agonist as adjuvant in FLU vaccine [54]

Restore immunity by counteracting
viral evasion processes

Minimize inflammatory responses and
adverse effects

Restore immunity by counteracting
viral evasion processes

Minimize off target effects

Develop better delivery systems

Induction of gene silencing

Involved in a wide variety of biological processes

Current work Challenges and future work
Toll-like receptors (TLR3/7/8/9) [reviewed in 27]

RIG-I like receptors (RIG-I, MDA5) [reviewed in 50]

miRNA interference [reviewed in 12, 56]

Applications
immune protein interaction network regulating IFNB1

has revealed signaling modules with high interconnectiv-

ity including MAVS, TBK1 and IRAK [6��]. Each module

interacts with many signaling proteins of the pathway

offering multiple drug targets with specific immune

effector function. Using a genome-wide RNAi screen

assessing virus-induced IFNB1 transcription in human

cells, we identified novel proteins and pathways capable

of negatively and positively regulating innate immune

responses (unpublished data). Comprehensive epistasis

analysis of the various regulators acting at different steps

of the antiviral responses from virus sensing, signal propa-

gation/amplification up to feedback regulation, offers

valuable information for selection of drug targets. In

principle, strategies of targeted therapy could include

small molecule-mediated activation of positive regulators

or inhibition of negative regulators. An example of target-

ing a negative regulator could be the immuno-miRNA

miR-155, which is induced by virus infection and down-

regulate MYD88, IRAK3, TAB2 and IKKe gene expres-

sion to suppress TLR signaling [12]. Silencing miR-155

function using antagomirs or locked nucleic acid (LNA)

in infected cells could potentially restore TLR signaling.

A better knowledge of surrogate end point measurable

makers of immune effector function (correlating with

pan antiviral efficacy) in relevant infected biological

material will undoubtedly enhance selection process

and therapeutic value of drug targets. Indeed, microarray

analysis of infected primary cells can be used to identify

early and late response innate immune genes, as well as

virus-mediated inhibition of these genes [46–48].

Finally, the knowledge of virus-induced immune host
Current Opinion in Virology 2012, 2:622–628 
dysfunction and of immune proteins targeted by

multiples viruses will validate key viral host interfaces,

leading to hypothesis-driven selection of therapeutic

targets intended to restore innate immune responses.

Conclusions
TLRs agonists reflect substantial promise as therapeutic

targets and demonstrate the huge potential of targeting

innate immunity in fighting viral infections. In the future,

integration of structural, proteomics and functional geno-

mics data will pave the way to the identification of key

regulators of innate immunity. Targeting immune regu-

lators that promote PRR signaling to maintain transient

activation of innate immune responses upon viral infec-

tion should pioneer the discovery of panviral thera-

peutics. Such targeted immunomodulatory therapy

approach could change the way we treat infectious dis-

eases by allowing a single treatment to be effective

against numerous viruses, with minimal viral break-

through. In the near future, the increasing availability

and potency of new targeted immunomodulatory panviral

therapeutics could allow the re-thinking of temporal

aspects of treatments that, in combination with available

DAAs, could achieve viral eradication. The ultimate goal

is to shape TLR-dependent and RLR-dependent innate

immune responses to restore antiviral effects and to

generate an optimal global immune response, while con-

trolling inflammation.
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