Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2019 Mar 26;19:101109. doi: 10.1016/j.bcab.2019.101109

Diarylheptanoids as nutraceutical: A review

G Ganapathy 1, R Preethi 1, JA Moses 1, C Anandharamakrishnan 1,
PMCID: PMC7102868  PMID: 32288931

Abstract

Phenolic compounds are naturally occurring compounds present ubiquitously in plants. They have potential health benefits and substantiate evidence for their nutraceutical applications. Diarylheptanoids are part of the broad class of plant phenolics with structurally divergent compounds. They have been used in traditional medicines and homemade remedies to treat various ailments, as organoleptic additives in foods, and also for aesthetic purposes. With their potential therapeutic and organoleptic characteristics, diarylhepatanoids can be rightly termed as nutraceuticals. This review summarizes the wide range of pharmacological activities of diarylhepatanoids and nutraceutical formulations, with relevance to human health.

Keywords: Diarylheptanoids, Phenols, Nutraceuticals, Human health

1. Introduction

Phenolic compounds have been well investigated for their disease prevention and health promoting effects based on epidemiological studies using both in-vitro and in-vivo methods (Vauzour et al., 2010; Kyselova, 2011; Działo et al., 2016). Most of them have been used in traditional medicine formulation and in pharmaceutical preparations (Asif, 2015; Tungmunnithum et al., 2018). They comprise of a wide range of compounds from simple phenols to complex polyphenols, such as phenolic acids, flavonoids, lignans and stilbenes (Lin et al., 2016; Ciulu et al., 2018). Diarylheptanoids are complex phenolic compounds having the skeletal structure of two aromatic rings conjugated with seven carbon chains (Brand et al., 2006; Amalraj et al., 2017). They are structurally diverse and have been isolated from seeds, fruits, leaves, roots, rhizomes and barks of plants of different families such as Myricaceae, Betulaceae, Zingiberaceae, Aceraceae, Leguminosae and Burseraceae (Per et al., 2002; Kawai et al., 2008; Ibrahim et al., 2017). More than 400 diarylheptanoids have been identified till now and most compounds occur in Zingiber, Betula and Alnus species (Vidaković et al., 2017; Alberti et al., 2018). These species exhibit characteristic aroma, and also act as colouring agents. Mostly, Zingiber and Curcuma rhizomes have been used as seasoning spices and as ingredients in folk medicines and traditional Asian medicines (Kunnumakkara et al., 2009). Organoleptic characteristics are attributed to the presence of diarylheptanoids. Singldinger et al. (2017) identified asadanin, a cyclic diarylhepatanoids responsible for the bitter off-taste in Corylus avellana.

2. Diarylheptanoids and dietary supplements

Nutraceuticals are bioactive compounds or extracts with scientifically evident health benefits (Cencic and Chingwaru, 2010; El-Sohaimy, 2012; Nasri et al., 2014). A dietary supplements, are available in the form of tablets, capsules or syrups targeting disease prevention and treatment (Caleja et al., 2017; Dutta et al., 2019). Epidemiological studies show that dietary supplementation of nutraceuticals such as catechins, linolenic acid, anthocyanin, lycopene, resveratrol and saponin glycosides can decrease the incidence of diseases (Cencic and Chingwaru, 2010; Aschemann-Witzel and Grunert, 2015; Ruchi, 2017). Studies have shown that nutraceuticals have the property to inhibit prostate cancer growth (Salami et al., 2013), protect against cardiovascular disease (Sosnowska et al., 2017), control cholesterol levels (Cicero et al., 2012) and andrologic disorders (Tamler and Mechanick, 2007), maintain gastrointestinal health (Romano et al., 2012) and retard degenerative disorders (Pasrija et al., 2015). Diarylheptanoids, also known as dipheylheptanoids, fall under the class of plant secondary metabolites derived from various plant sources (Table 1 ). It constitutes two phenolic aromatic rings linked by a linear seven-carbon chains. It can be either open chain or macrocyclic diarylheptanoids (Fig. 1 ) (Keserü and Nógrádi, 1995). Studies have also shown the health benefits of diarylheptanoids. Among nutraceuticals, curcumin is an important diarylheptanoid compound, studied extensively for its role in protection against many diseases (Kunnumakkara et al., 2017). Extracts of Alpinia officinarum contain diarylheptanoids, and are prepared as a health supplement capsule (Dong et al., 2015). Diarylheptanoids isolated from Alnus glutinosa have shown to protect non-cancerous dividing cells during cancer treatment (Dinić et al., 2015). Winuthayanon et al. (2009) showed the estrogenic activity of diarylheptanoids isolated from C. comosa and its role in postmenopausal hormone therapy. Cassumunarin gives excellent anti-oxidant properties (Jitoe et al., 1994), Cassumunins A, B and C isolated from Zingiber cassumunar showed stronger antioxidant activities than that of curcumin (Masuda and Jitoe, 1994), and studies have shown the therapeutic benefits of gingerenones (Suk et al., 2017) and platyphylloside (Karri et al., 2019) in treating obesity (see Table 2, Table 3).

Table 1.

Major plant sources of diarylheptanoids (Source: Lv and She, 2012).

Compounds Resource
(−)-centrolobol Centrolobium robustum
(+)-centrolobol Centrolobium tomentosum, Centrolobium paraense
Diospongin C Dioscorea spongiosa
Betulaplatoside Ia Betula platyphylla
Betulaplatoside Ib
(3S)-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)heptan-3-ol Curcuma kwangsiensis
(3R)-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)heptan-3-ol
(3S)-3-acetoxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)heptanes
(3R)-3-acetoxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)heptanes
(3S)-1,7-bis(4-hydroxyphenyl)-(6E)-6-hepten-3-ol
(3R)-1-(3,4-dihydroxyphenyl)-7-phenyl-(6E)-6-hepten-3-ol
1,7-bis(4-hydroxy-3-methoxyphenyl)-4,6-heptadien-3-one Curcuma longa
1-(4-hydroxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)-1,4,6-heptatrien-3-one
1,7-bis(4-hydroxy-3-methoxyphenyl)-1,4,6-heptatrien-3-one
1,5-dihydroxy-1,7-bis(4-hydroxyphenyl)-4,6-heptadiene-3-one
Dihydrodemethoxycurcumin
1-hydroxy-1-(4-hydroxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)-6-hepten-3,5-dione
3,5-diacetoxy-1-(3,4-dihydroxyphenyl)-7-(3,4-dihydroxy-5-methoxyphenyl)heptanes Zingiber officinale
3,5-diacetoxy-1,7-bis(3,4-dihydroxy-5-methoxyphenyl)heptane
3,5-diacetoxy-7-(3,4-dihydroxy-5-methoxyphenyl)-1-(4-hydroxy-3,5-dimethoxyphenyl)heptanes
(3R,5S)-dihydroxy-1-(4-hydroxy-3-methoxyphenyl)-7-(3,4-dihydroxyphenyl)heptanes Zingiber ottensii
Cassumunin A, B, C Zingiber cassumunar
Juglanol A 5-O-β-d-xylopyranoside Juglans mandshurica
1-(4″-methoxyphenyl)-7-(4′-hydroxyphenyl)-(E)-hept-2-ene Pleuranhodium racemigerum
Oregonoside A, B Alnus rubra
Epihirsutanonol Alnus japonica
1,7-diphenyl-3,5-heptanedione Alpinia conchigera
Katsumain A, B Alpinia katsumadai
Letestuianin C Aframomum letestuianum
Mistletonone Viscum coloratum
2,3,7-trihydroxy-5-(3,4-dihydroxy-E-styryl)-6,7,8,9-tetrahydro-5H-benzocycloheptene Amomum subulatum
16-methoxy acerogenin B 9-O-β-d-apiofuranosyl-6)-β-d-glucopyranoside Myrica rubra
Myricanol 5-O-β-d-glycopyranosyl-(1–3)-β-d-glucopyranoside
Nanaone Myrica nana
11-oxo-3,8,9,17-tetrahydroxy-[7,0]-metacyclophane Corylus sieboldiana
11-oxo-3,12,17-trihydroxy-9-ene-[7,0]-metacyclophane

Fig. 1.

Fig. 1

Structure of diarylheptanoids (a) open (b) macrocyclic.

Table 2.

Diarylheptanoid rich plant species used in traditional medicines in different countries.

Taxon Plant part used Purpose/target Country/region References
Alpinia officinarum Rhizomes Stomach ache and cold China Basri et al. (2017)
Alpinia galangal; Alpinia oxyphylla; Alpinia conchigera Joint pain, cold and gastrointestinal disorder Vietnam Hanh et al. (2014)
C. longa Gastric disorders, inflammation India, china and South Asian countries Prasad and Aggarwal (2011)
Tacca chantrieri Gastric ulcers, enteritis and hepatitis China Yokosuka et al. (2002)
Z. officinale Headaches, nausea, rheumatism and cold India, China Mishra et al. (2012)
Alpinia katsumadai Seeds Emesis and gastric disorders China Lee et al. (2003)
Alnus japonica Bark Cancer and hepatitis Korea Sati et al. (2011); Kim et al. (2004)
Alnus nepalensis Dysentery, stomach ache, and diarrhea India Changkija (1999)
Alnus glutinosa Mouth, throat inflammation and skin diseases Britain, Western Asia, North Africa, European countries Sati et al. (2011)
Alnus glutinosa Swelling, inflammation, and rheumatism India Sati et al. (2011)
Alnus hirsuta Fever, hemorrhage, alcoholism, and diarrhea Korea and China Sati et al. (2011)
Myrica esculenta Asthma and bronchitis India Patel et al. (2010)
Garuga pinnata Corneal opacity and also pulmonary infections India Changkija (1999)
M. rubra Astringent, antidote, and diarrhea Japan Akazawa et al. (2010)
Garuga pinnata Leaf Asthma India Shirwaikar et al. (2006)
A. nepalensis Dysentery, stomach ache, and diarrhea India Changkija (1999)
Acer nikoense Hepatic disorders Japan Omar (2013)

Table 3.

Pharmacological profile of diarylheptanoids.

2.

2.

2.

2.

2.

2.

2.

2.

3. Pharmacological activities of diarylheptanoid

Diarylheptanoid compounds possess numerous therapeutic benefits, including anti-inflammatory, anti-ulcer, anti-cathartic, anti-emetic, di-uretic, choleretic, hepato-protective, cholesterol level lowering, anti-bacterial, anti-fungal, analeptic and anti-diabetic activities. These are discussed below:

3.1. Anti-inflammatory activity

Diarylheptanoids exhibit significant anti-inflammatory properties. Hirsutenone isolated from the bark of A. japonica could suppress early T-cell activation; thereby, inhibiting the degranulation of mast cells, making it a potential candidate for treating atopic dermatitis (Jeong et al., 2010). Cyclic diarylheptanoid, acerogenin M isolated from the methanol extract of Acer nikoense stem bark (Akihisa et al., 2006), oregonin, a diarylheptanoid derivative isolated from Alnus formosana (Lee et al., 2005) and cassumunarins A, B, and C from Z. cassumunar inhibit edema formation, exhibiting strong anti-inflammatory activity than curcumin (Masuda et al., 1995); diarylheptanoid, 7-(4′-hydroxy-3′-methoxyphenyl)-1-phenylhept-4-en-3-one from A. officinarum (Yadav et al., 2003) and cyclic diarylheptanoids isolated from the stem bark of A. nikoense such as acerosides B1 and B2, and aceroketosides inhibit the release of β-hexosaminidase (Morikawa et al., 2003). Diarylheptanoids isolated from bark of A. hirsuta, especially oregonin and hirsutanonol showed high anti-inflammatory activity by inhibiting the cyclooxygenase-2 expression (Lee et al., 2000). Similarly diarylheptanoid glycosides such as myricanol and myricanone isolated from M. rubra can inhibit the release of β-hexosaminidase from RBL-2H3 cells (Masuda et al., 2002). Blepharocalyxins A and B from Alpinia blepharocalyx exhibit inhibitory effects on nitric oxide production in endotoxin-activated murine macrophages (Kadota et al., 1996).

3.2. Anti-oxidant activity

Diarylheptanoids acts as potent antioxidants. Studies have reported the free oxygen radicals scavenging activity of curcumin (Unnikrishnan and Rao, 1995; Jayaprakasha et al., 2006; Ak and Gülçin, 2008). Mistletonone exhibited scavenging capability both on hydroxyl radicals and superoxide anion radicals as compared with standard (−)-epigallocatechin gallate (Yao et al., 2007). Cassumunin A, B, C and cassumunarin A, B, C isolated from Zingiber cassumunar are also potent antioxidants showing stronger or equal antioxidant activity as that of curcumin (Nagano et al., 1997; Masuda et al., 1995). Diarylheptanoids isolated from Z. officinale especially 5-[4-hydroxy-6-(4-hydroxyphenethyl)tetrahydro-2H-pyran-2-yl]-3- methoxybenzene-1,2-diol, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-7-(3,4-dihydroxyphenyl) heptan-3-one and 1,5-epoxy-3-hydroxy-1- (4,5-dihydroxy-3-methoxyphenyl)-7-(3,4-dihydroxyphenyl) heptanes are capable of scavenging superoxide anion radicals and inhibiting the formation of lipid peroxides in liver microsomes (Tao et al., 2008).

3.3. Cytotoxicity and anti-carcinogenic activity

Diarylheptanoids also shows cytotoxicity and anti-cancer effects. 7-(4″-hydroxy-3″-methoxyphenyl)-1-phenyl-4E-hepten-3-one and (5R)-5-methoxy-7-(4″-hydroxy-3″ methoxyphenyl)-1-phenyl-3-heptanone isolated from A. officinarum were proven to have potent cytotoxicity (Tabata et al., 2009). Diarylheptanoid 1-(4-hydroxy-3-methoxyphenyl)-7-(3,4-dihydroxyphenyl)-4E-en-3-heptanone caused cytotoxic effect in SH-SY5Y cells by arresting the cell cycle and inducing apoptosis (Tian et al., 2009). (3S)-1,7-bis(4-hydroxyphenyl)-(6E)- 6-hepten-3-ol, centrolobol and (3S)-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-(6E)-6-hepten-3-ol isolated from rhizomes of Curcuma elata showed cytotoxic activity against NCI—H187 cell lines (Chokchaisiri et al., 2014). Diarylheptanoids isolated from the sea grass Cymodocea nodosa exhibited cytotoxic activity. Cymodienol exhibited stronger effect; whereas, cymodiene showed moderate activity (Kontiza et al., 2005). Rubanol from M. rubra showed cytotoxicity against Lun-06, Neu-04, and Bre-04 cell lines (Wang and Liu, 2008). Myricanone, a cyclic diarylheptanoid, showed anti-cancer effects on cancer cell lines HeLa and PC3 (Paul et al., 2013). Epicalyxin F and calyxin I isolated from ethanol extracts of A. blepharocalyx seeds exhibited potent anti-proliferative activity against human HT-1080 fibrosarcoma and murine colon 26-L5 carcinoma cells (Gewali et al., 1999; Ali et al., 2001). Blepharocalyxins D, E isolated from the ethanol extract of A. blepharocalyx seeds exhibited significant anti-proliferative activity against murine colon 26-L5 carcinoma and human HT-1080 fibrosarcoma cells, with ED50 values of 3.61 and 9.02 μM, respectively (Tezuka et al., 2000). Methanolic extract of dried fruits of A. oxyphylla showed potential chemo-preventive and anti-tumorigenic activities (Lee et al., 1998). Diarylheptanoid compounds isolated from the rhizomes of T. chantrieri exhibited considerable cytotoxic activities against HSC-2 human oral squamous carcinoma cells than against normal human gingival fibroblasts. Other studies confirmed curcumin as a potent anticarcinogenic compound (Surh et al., 2001; Shao et al., 2002; Park et al., 2013; Vallianou et al., 2015).

3.4. Anti-coagulant activity

Curcumin could restrict collagen and adrenaline-induced platelet aggregation in vitro as well as in vivo in rat thoracic aorta (Srivastava et al., 1986). Bisdemethoxycurcumin, a derivate of curcumin, inhibited the thrombin and activated factor X activity, helping to prolong the thromboplastin time and prothrombin time effect. These are preferred to patients prone to vascular thrombosis, requiring anti-coagulant therapy (Kim et al., 2012). 1, 7-bis (4-hydroxyphenyl)-3- hydroxy-1,3-heptadien-5-one isolated from A. blepharocalyx showed antiplatelet activity (Doug et al., 1998). Keihanian et al. (2018) reported anti-coagulant activities of curcumin and its role in treatment of cardiovascular diseases.

3.5. Anti-adipogenic effect

Platyphylloside isolated from Betula platyphylla showed potent anti-adipogenic activities by inhibiting adipocyte differentiation in 3T3-L1 cells (Lee and Sung, 2016). Diarylheptanoids isolated from A. hirsuta leaves, particularly platyphyllonol-5-O-b-d-xylopyranoside showed high adipocyte differentiation (Lee et al., 2013). Methanol extract of A. japonica fruits, especially, 4-hydroxy-alnus-3,5-dione, exhibited the significant anti-adipogenic effects (Sung and Lee, 2015). Zhang et al. (2018) extracted five different diarylheptanoids, such as trans-(4R,5S)-epoxy-1,7-diphenyl3-heptanone, 7-(4″-hydroxy-3″-methoxyphenyl)-1-phenylhepta-4E, 6E-dien-3-one and 5-hydroxy-1,7-diphenyl-3-heptanone, 1,7-diphenyl-4E-en3-heptanone and 5-methoxy-1,7-diphenyl-3-heptanone from the aqueous extract of A. officinarum; all these compounds exhibited significant differentiation-promoting activity in 3T3-L1 preadipocytes.

3.6. Anti-microbial activity

Diarylheptanoids have also been investigated for anti-bacterial, anti-fungal, anti-viral activities.

a) Anti-bacterial activity.

Diarylheptanoids isolated from A. officinarum especially 5-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1-phenyl-3-heptanone, showed anti-Helicobacter pylori activity (Lee et al., 2009). Curcumin can inhibit the growth of several bacteria species like Streptococcus, Staphylococcus and Lactobacillus (Bhavani-Shankar and Sreenivasamurthy, 1979). It can also prevent growth of Helicobacter pylori, in vitro (Mahady et al., 2002). Diarylheptanoids such as gingerenones A, B and C as well as isogingerenone isolated from Zingiber officinarum, show moderate anti-fungal activity (Endo et al., 1990). Cyclic diarylheptanoids garuganin I isolated from Garuga pinnata and G. gamblei exhibit anti-bacterial activity (Keserü and Nógrádi, 1993), Another diarylheptanoid, 9′-Desmethylgaruganin I, isolated from G. pinnata showed moderate anti-microbial activity against a wide range of gram-positive and gram-negative bacteria and fungi (Khatun et al., 2013).

b) Anti-fungal activity.

Studies have shown that ether and chloroform extracts, and the oil of C. longa have antifungal effects (Banerjee and Nigam, 1978); particularly, curcumin has anti-fungal effects (Wuthi-Udomler et al., 2000). Turmeric oil is found to be active against Aspergillus flavus, Aspergillus parasiticus, Fusarium moniliforme and Penicillium digitatum (Jayaprakasha et al., 2001).

c) Anti-viral activity.

Hirsutenone exhibits strong papain-like protease inhibitory activity in suppressing the replication of the severe acute respiratory syndrome coronavirus (SARS-CoV). It can act as a potential drug target for the treatment of SARS. (Park et al., 2012). Curcumin inhibits epstein-barr virus key activator, Bam H fragment z left frame 1 (BZLF1) protein transcription in Raji DR-LUC cells (Hergenhahn et al., 2002). It also shows anti-HIV (human immunodeficiency virus) activity by inhibiting the HIV-1 integrase needed for viral replication (Mazumdar et al., 1995; De Clercq, 2000).

3.7. Anti-parasitic activity

Diarylheptanoids glycosides isolated from the ethyl acetate extract of Pyrostria major leaf show moderate anti-plasmodial activities; particularly (3S,5S)-3,5-dihydroxy1-(3-hydroxy-4-methoxyphenyl)-7-(4-methoxyphenyl) heptyl 3-O-β-d-glucopyranoside shows potential anti-leishmanial activity (Beniddir et al., 2012). Studies confirm that curcumin has anti-leishmanial (Koide et al., 2002) and anti-Plasmodium falciparum activity (Rasmussen et al., 2000). Further, studies have shown that diarylheptanoid structure related to curcumin show anti-leishmanial activity against Leishmania species such as L. amazonensis, L. braziliensis and L. chagasi through both in vitro and in vivo methods (Alves et al., 2003).

3.8. Anti-fibrotic effect

Diarylheptanoids constituents of B. platyphylla showed anti-fibrotic effect. Particularly, the n-butanol fraction containing 1,7-bis-(4-hydroxyphenyl)-5-hepten-3-one significantly decreased the collagen content and increased the caspase-3/7 activity (Lee et al., 2012). In another study, curcumin could suppress bleomycin-induced pulmonary fibrosis in rats (Srivastava et al., 1985; Punithavathi et al., 2000). Dehydrohirsutanonol, an active constituent isolated from A. firma exhibits anti-fibrotic activity and can be recommended as a therapeutic agent for liver fibrosis (Lee et al., 2011). Crude fractions of Curcuma species such as C. aromatica, C. longa, C. caesia, C. amada and C. zedoria with diarylheptanoids have been dialyzed and investigated for their coagulation cascade with respect to pro-coagulant activity. Results confirmed reducing clotting time, confirming its fibrino-genolytic acitivty (Shivalingu et al., 2015).

3.9. Hepatoprotective activity

Diarylheptanoids, such as epihirsutanonol and alusenone isolated from A. japonica show hepato-protective properties (Tung et al., 2010). Ethyl acetate extracts of A. hirsuta containing diarylheptanoid glycoside, (5S)—O-methylhirsutanonol showed strong hepatoprotective effects (Park et al., 2010). Betulaplatosides Ia and Ib isolated from methanolic extract of B. platyphylla bark showed concentration dependent hepatoprotective activity (Matsuda et al., 1998). Curcumin, bisdemethoxycurcumin and demethoxycurcumin exhibit strong anti-hepatotoxic activity on tacrine induced cytoxicity in human liver derived Hep G2 cells (Song et al., 2001).

3.10. Melanogenesis inhibitory

Cyclic and acyclic diarylheptanoids aceroside I and acerogenin M isolated from the ethyl acetate fraction of the methanol extract of A. nikoense showed melanogenesis inhibitory effects with less toxicity to the cells (Akazawa et al., 2006). Methanol extracts of M. rubra bark exhibit potent inhibitory activity with reduction of melanin content (Akazawa et al., 2010). Diarylheptanoids isolated from A. hirsuta such as (5R)-l,7-bis (3,4-dihydroxyphenyl)-heptane-5-O-I ∼ -D-glucoside, (5R)- 1,7-bis (3,4-dihydroxyphenyl)-heptane-5-ol, oregonin and hirsutanonol showed melanogenesis inhibitory activity (Cho et al., 2002). Methanolic extract from the dried rhizomes of Curcuma comosa showed melanogenesis effect, particularly, (3R)-1,7-bis(4-hydroxyphenyl)-(6E)-6-hepten-3-ol exhibits strong inhibitory effects (Matsumoto et al., 2013).

3.11. Estrogenic activity

Diarylheptanoids isolated from Aframomum melegueta showed anti-estrogenic activity as compared through in silico approaches. Dihydrogingerenone A, dihydrogingerenone B, 3,5-diacetoxy-1-(3’,4’ - dihydroxyl phenyl)-7-(3″,4″-dihydroxy-5″-methoxyphenyl) heptanes are examples (El-Halawany and Hattori, 2012). (3R) −1,7-diphenyl-(4E,6E) −4,6-heptadien-3-ol, isolated from C. comosa showed estrogenic activity, both in vitro and in vivo, by inducing estradiol-regulated endogenous genes in MCF-7 cells (Winuthayanon et al., 2009).

3.12. Anti-diabetic effects

Diarylheptanoid 1,7-bis-(3,4-dihydroxyphenyl)-heptane-3-one-5-O-β-d-xylopyranoside isolated from the stem bark of A. hirsuta increases the glucose uptake in human hepatocarcinoma HepG2 cells and thereby improves glucose metabolism (Hu and Wang, 2011). Curcumin decreases advanced glycation end-product induced complications in diabetes mellitus (Sajithlal et al., 1998). Studies also prove that it decreases blood sugar level in alloxan-induced diabetes in rat (Arun and Nalini, 2002). It can also prevent galactose-induced cataract formation at very low doses (Suryanarayana et al., 2003).

3.13. Other bioactivities of diarylheptanoid

Diarylheptanoids also possess various other potential pharmacological activities. Anti-ulcerogenic studies have shown gastroprotective and antiulcerogenic effect of curcumin by induction of angiogenesis in the granular tissue of ulcers. It has excellent therapeutic potential in restoration of Helibacter pylori induced gastric damage (Tuorkey and Karolin, 2009; Mei et al., 2009). Curcumin inhibits 5 alpha reductase activity, normally involved in the conversion of testosterone to 5a-dihydrotestosterone (Liao et al., 2001). It affects the mobility of human spermatozoa and its function in vitro and in vivo fertility (Naz and Lough, 2014). Studies have demonstrated the potential of curcumin for the development of a novel intravaginal contraceptive (Zhang et al., 2017). Diarylheptanoids isolated from D. spongiosa such as diospongin B and C are found to exhibit anti-osteoporotic activity by inhibiting the release of 45Ca on the resorption of bone tissues, the same was compared with standard drug elcitonin (Yin et al., 2004a). The aqueous extract of D. spongiosa exhibits significant induction of osteoblast proliferation, also inhibiting osteoclast formation against less cytotoxicity in osteoblast and bone marrow cells (Yin et al., 2004b).

4. Conclusion

There is an increasing awareness and expectancy for safe and healthy foods among public, and this has been the driving force for the incorporation of bioactive compounds in food matrices. Diarylheptanoids have a wide spectrum of health-promoting properties and are also an indispensable component in a variety of pharmaceutical, medicinal and cosmetic applications. They are found to be a key bioactive ingredient in traditional and folk medicines formulation for treating various diseases. They can be used as alternative sources for therapeutics/nutraceuticals. Further research is needed to best utilize diarylheptanoids in diet, with the focus to promote human health and wellness.

References

  1. Ak T., Gülçin İ. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 2008;174(1):27–37. doi: 10.1016/j.cbi.2008.05.003. [DOI] [PubMed] [Google Scholar]
  2. Akazawa H., Akihisa T., Taguchi Y., Banno N., Yoneima R., Yasukawa K. Melanogenesis inhibitory and free radical scavenging activities of diarylheptanoids and other phenolic compounds from the bark of Acer nikoense. Biol. Pharma. Bull. 2006;29:1970–1972. doi: 10.1248/bpb.29.1970. [DOI] [PubMed] [Google Scholar]
  3. Akazawa H., Fujita Y., Banno N., Watanabe K., Kimura Y., Manosroi A., Manosroi J., Akihisa T. Three new cyclic diarylheptanoids and other phenolic compounds from the bark of Myrica rubra and their melanogenesis inhibitory and radical scavenging activities. J. Oleo. 2010;59(4):213–221. doi: 10.5650/jos.59.213. [DOI] [PubMed] [Google Scholar]
  4. Akihisa T., Taguchi Y., Yasukawa K., Tokuda H., Akazawa H., Suzuki T., Kimura Y. Acerogenin M, a cyclic diarylheptanoid, and other phenolic compounds from Acer nikoense and their anti-inflammatory and anti-tumor-promoting effects. Chem. Pharm. Bull. 2006;54(5):735–739. doi: 10.1248/cpb.54.735. [DOI] [PubMed] [Google Scholar]
  5. Alberti Á., Riethmüller E., Béni S. Characterization of diarylheptanoids: an emerging class of bioactive natural products. J. Pharm. Biomed. Anal. 2018;147:13–34. doi: 10.1016/j.jpba.2017.08.051. [DOI] [PubMed] [Google Scholar]
  6. Ali M.S., Banskota A.H., Tezuka Y., Saiki I., Kadota S. Antiproliferative activity of diarylheptanoids from the seeds of Alpinia blepharocalyx. Biol. Pharma. Bull. 2001;24(5):525–528. doi: 10.1248/bpb.24.525. [DOI] [PubMed] [Google Scholar]
  7. Alves L.V., do Canto-Cavalheiro M.M., Cysne-Finkelstein L., Leon L. In vitro antiproliferative effects of several diaryl derivatives on Leishmania spp. Biol. Pharma. Bull. 2003;26(4):453–456. doi: 10.1248/bpb.26.453. [DOI] [PubMed] [Google Scholar]
  8. Amalraj A., Pius A., Gopi S., Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives–A review. J. Tradit. Complement Med. 2017;7(2):205–233. doi: 10.1016/j.jtcme.2016.05.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Arun N., Nalini N. Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats. Plant Foods Hum. Nutr. 2002;57:41–52. doi: 10.1023/a:1013106527829. [DOI] [PubMed] [Google Scholar]
  10. Aschemann-Witzel J., Grunert K.G. Resveratrol food supplements: a survey on the role of individual consumer characteristics in predicting the attitudes and adoption intentions of US American and Danish respondents. BMC Public Health. 2015;15(1):110. doi: 10.1186/s12889-015-1348-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Asif M. Chemistry and antioxidant activity of plants containing some phenolic compounds. Chem. Int. 2015;1(1):35–52. [Google Scholar]
  12. Banerjee A., Nigam S.S. Antimicrobial efficacy of the essential oil of Curcuma longa. Indian J. Med. Res. 1978;68:864–866. [PubMed] [Google Scholar]
  13. Basri A.M., Taha H., Ahmad N. A review on the pharmacological activities and phytochemicals of Alpinia officinarum (Galangal) extracts derived from bioassay-guided fractionation and isolation. Pharm. Rev. 2017;11(21):43–56. doi: 10.4103/phrev.phrev_55_16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Beniddir M.A., Grellier P., Rasoanaivo P., Loiseau P.M., Bories C., Dumontet V., Guéritte F., Litaudon M. Diarylheptanoid glucosides from Pyrostria major and their antiprotozoal activities. Eur. J. Org. Chem. 2012;5:1039–1046. [Google Scholar]
  15. Bhavani-Shankar T.N., Sreenivasamurthy V. Effect of turmeric (Curcuma longa) fractions on the growth of some intestinal and pathogenic bacteria in-vitro. Indian J. Exp. Biol. 1979;17:1363–1366. [PubMed] [Google Scholar]
  16. Brand S., Hölscher D., Schierhorn A., Svatoš A., Schröder J., Schneider B. A type III polyketide synthase from Wachendorfia thyrsiflora and its role in diarylheptanoid and phenylphenalenone biosynthesis. Planta. 2006;224:413–428. doi: 10.1007/s00425-006-0228-x. [DOI] [PubMed] [Google Scholar]
  17. Caleja C., Ribeiro A., Filomena Barreiro M., Ferreira I.C.F.R. Phenolic compounds as nutraceuticals or functional food ingredients. Curr. Pharmaceut. Des. 2017;23(19):2787–2806. doi: 10.2174/1381612822666161227153906. [DOI] [PubMed] [Google Scholar]
  18. Cencic A., Chingwaru W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients. 2010;2(6):611–625. doi: 10.3390/nu2060611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Changkija S. Folk medicinal plants of the Nagas in India. Asian Folklore Stud. 1999;58:205–230. [Google Scholar]
  20. Cho S.M., Kwon Y.M., Lee J.H., Yon K.H., Lee M.W. Melanogenesis inhibitory activities of diarylheptanoids fromalnus hirsuta turcz in B16 mouse melanoma cell. Arch Pharm. Res. (Seoul) 2002;25(6):885–888. doi: 10.1007/BF02977009. [DOI] [PubMed] [Google Scholar]
  21. Chokchaisiri R., Pimkaew P., Piyachaturawat P., Chalermglin R., Suksamrarn A. Cytotoxic sesquiterpenoids and diarylheptanoids from the rhizomes of Curcuma elata roxb. Record Nat. Prod. 2014;8(1):46–50. [Google Scholar]
  22. Cicero A.F., Tartagni E., Borghi C. Nutraceuticals with lipid-lowering activity: do they have any effect beyond cholesterol reduction? Clin. Lipidol. 2012;7(5):549–559. [Google Scholar]
  23. Ciulu M., Cádiz-Gurrea M., Segura-Carretero A. Extraction and analysis of phenolic compounds in rice: a review. Molecules. 2018;23(11):2890–2910. doi: 10.3390/molecules23112890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. De-Clercq E. Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. Med. Res. Rev. 2000;20:323–349. doi: 10.1002/1098-1128(200009)20:5<323::aid-med1>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  25. Dinić J., Ranđelović T., Stanković T., Dragoj M., Isaković A., Novaković M., Pešić M. Chemo-protective and regenerative effects of diarylheptanoids from the bark of black alder (Alnus glutinosa) in human normal keratinocytes. Fitoterapia. 2015;105:169–176. doi: 10.1016/j.fitote.2015.07.003. [DOI] [PubMed] [Google Scholar]
  26. Dong G.Z., Lee S.Y., Zhao H.Y., Lee Y.I., Jeong J.H., Jeon R., Lee H.J., Ryu J.H. Diarylheptanoids from lesser galangal suppress human colon cancer cell growth through modulating Wnt/β-catenin pathway. J. Funct. Foods. 2015;18:47–57. [Google Scholar]
  27. Doug H., Chen S.X., Xu H.X., Kadota S., Namba T. A new antiplatelet diarylheptanoid from Alpinia blepharocalyx. J. Nat. Prod. 1998;61(1):142–144. doi: 10.1021/np970293i. [DOI] [PubMed] [Google Scholar]
  28. Dutta S., Moses J.A., Anandharamakrishnan C. Encapsulation of nutraceutical ingredients in liposomes and their potential for cancer treatment. Nutr. Canc. 2019:1–15. doi: 10.1080/01635581.2018.1557212. [DOI] [PubMed] [Google Scholar]
  29. Działo M., Mierziak J., Korzun U., Preisner M., Szopa J., Kulma A. The potential of plant phenolics in prevention and therapy of skin disorders. Int. J. Mol. Sci. 2016;17(2):160. doi: 10.3390/ijms17020160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. El-Halawany A.M., Hattori M. Anti-oestrogenic diarylheptanoids from Aframomum melegueta with in silico oestrogen receptor alpha binding conformation similar to enterodiol and enterolactone. Food Chem. 2012;134(1):219–226. [Google Scholar]
  31. El-Sohaimy S.A. Functional foods and nutraceuticals-modern approach to food science. World Appl. Sci. J. 2012;20(5):691–708. [Google Scholar]
  32. Endo K., Kanno E., Oshima Y. Structures of antifungal diarylheptenones, gingerenones A, B, C and isogingerenone B, isolated from the rhizomes of Zingiber officinale. Phytochemistry. 1990;29(3):797–799. [Google Scholar]
  33. Gewali M.B., Tezuka Y., Banskota A.H., Ali M.S., Saiki I., Dong H., Kadota S. Epicalyxin F and Calyxin I: two novel antiproliferative diarylheptanoids from the seeds of Alpinia blepharocalyx. Org. Lett. 1999;1(11):1733–1736. doi: 10.1021/ol990260p. [DOI] [PubMed] [Google Scholar]
  34. Hanh N.P., Binh N.Q., Adhikari B.S. Distribution of Alpinia (Zingiberaceae) and their use pattern in vietnam. J. Biodivers. Endanger Species. 2014;2:121. doi: 10.4172/2332-2543.1000121. [DOI] [Google Scholar]
  35. Hergenhahn M., Soto U., Weninger A., Polack A., Hsu C.H., Cheng A.L., Rösl F. The chemopreventive compound curcumin is an efficient inhibitor of Epstein‐Barr virus BZLF1 transcription in Raji DR‐LUC cells. Mol. Carcinog. 2002;33(3):137–145. doi: 10.1002/mc.10029. [DOI] [PubMed] [Google Scholar]
  36. Hu W., Wang M.H. Diarylheotanoid from Alnus hirsuta improves glucose metabolism via insulin signal transduction in human hepatocarcinoma (HepG2) cells. Biotechnol. Bioproc. Eng. 2011;16(1):120–126. [Google Scholar]
  37. Ibrahim S.R., Mohamed G.A., Khedr A.I., Aljaeid B.M. Anti-oxidant and anti-inflammatory cyclic diarylheptanoids from Alnus japonica stem bark. Int. J. Pharmacol. Res. 2017;16:83–91. [PMC free article] [PubMed] [Google Scholar]
  38. Jayaprakasha G.K., Negi P.S., Anandharamakrishnan C., Sakariah K.K. Chemical composition of turmeric oil – a byproduct from turmeric oleorsin industry and its inhibitory activity against different fungi. Z. Naturforsch. C Biosci. 2001;56:40–44. doi: 10.1515/znc-2001-1-207. [DOI] [PubMed] [Google Scholar]
  39. Jayaprakasha G.K., Rao L.J., Sakariah K.K. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxy curcumin. Food Chem. 2006;98:720–724. [Google Scholar]
  40. Jeong M.S., Choi S.E., Kim J.Y., Kim J.S., Kim E.J., Park K.H., Lee D.I., Joo S.S., Lee C.S., Bang H., Lee M.K. Atopic dermatitis-like skin lesions reduced by topical application and intraperitoneal injection of Hirsutenone in NC/Nga mice. Clin. Dev. Immunol. 2010;2010 doi: 10.1155/2010/618517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Jitoe A., Masuda T., Mabry T.J. Novel antioxidants, cassumunarin A, B, and C, from Zingiber cassumunar. Tetrahedron Lett. 1994;35(7):981–984. [Google Scholar]
  42. Kadota S., Prasain J.K., Li J.X., Basnet P., Dong H., Tani T., Namba T. Blepharocalyxins A and B, novel diarylheptanoids from Alpinia blepharocalyx, and their inhibitory effect on NO formation in murine macrophages. Tetrahedron Lett. 1996;37(40):7283–7286. [Google Scholar]
  43. Karri S., Sharma S., Hatware K., Patil K. Natural anti-obesity agents and their therapeutic role in management of obesity: a future trend perspective. Biomed. Pharmacother. 2019;110:224–238. doi: 10.1016/j.biopha.2018.11.076. [DOI] [PubMed] [Google Scholar]
  44. Kawai S., Nakata K., Ohashi M., Nishida T. Myricanol and myricanone biosynthesis in Myrica rubra: incorporation of two molecules of 4-coumaric acid. J. Wood Sci. 2008;54(3):256–260. [Google Scholar]
  45. Keserü G.M., Nógrádi M. Prediction of antibacterial activity of some diarylheptanoids isolated from Garuga species by molecular mechanics and molecular orbital calculations. J. Mol. Struct. Theochem. 1993;286:259–265. [Google Scholar]
  46. Keserü G.M., Nógrádi M. vol. 17. 1995. The chemistry of natural diarylheptanoids; pp. 357–394. (Studies in Natural Products Chemistry). [Google Scholar]
  47. Khatun M.T., Siddiqi M.M.A., Al-Mansur M.A., Sohrab M.H., Rahman A.M., Hasan C.M., Chowdhury A.S. New diarylheptanoid from Garuga pinnata roxb. Dhaka University J. Sci. 2013;61(2):131–134. [Google Scholar]
  48. Keihanian F., Saeidinia A., Bagheri R.K., Johnston T.P., Sahebkar A. Curcumin, hemostasis, thrombosis, and coagulation. J. Cell. Physiol. 2018;233(6):4497–4511. doi: 10.1002/jcp.26249. [DOI] [PubMed] [Google Scholar]
  49. Kim S.T., Kim J.D., Ahn S.H., Ahn G.S., Lee Y.I., Jeong Y.S. Hepatoprotective and antioxidant effects of Alnus japonica extracts on acetaminophen‐induced hepatotoxicity in rats. Phytother Res. 2004;18(12):971–975. doi: 10.1002/ptr.1540. [DOI] [PubMed] [Google Scholar]
  50. Kim Y.J., You Y.H., Jun W.J. Hepatoprotective activity of fermented Curcuma longa L. on galactosamineintoxicated rats. Korean Soc. Food Sci. Nut. 2012;41:790–795. [Google Scholar]
  51. Koide T., Nose M., Ogihara Y., Yabu Y., Ohta N. Leishmanicidal effect of curcumin in-vitro. Biol. Pharm. Bull. 2002;25:131–133. doi: 10.1248/bpb.25.131. [DOI] [PubMed] [Google Scholar]
  52. Kontiza I., Vagias C., Jakupovic J., Moreau D., Roussakis C., Roussis V. Cymodienol and cymodiene: new cytotoxic diarylheptanoids from the sea grass Cymodocea nodosa. Tetrahedron Lett. 2005;46(16):2845–2847. [Google Scholar]
  53. Kunnumakkara A.B., Bordoloi D., Padmavathi G., Monisha J., Roy N.K., Prasad S., Aggarwal B.B. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br. J. Pharmacol. 2017;174(11):1325–1348. doi: 10.1111/bph.13621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Kunnumakkara A.B., Koca C., Dey S., Gehlot P., Yodkeeree S., Danda D., Sung B., Aggarwal B.B. Molecular Targets and Therapeutic Uses of Spices. Modern Uses for Ancient Medicine. 2009. Traditional uses of spices: an overview. [DOI] [Google Scholar]
  55. Kyselova Z. Toxicological aspects of the use of phenolic compounds in disease prevention. Interdiscip. Toxicol. 2011;4:173–183. doi: 10.2478/v10102-011-0027-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Lee C.J., Lee S.S., Chen S.C., Ho F.M., Lin W.W. Oregonin inhibits lipopolysaccharide‐induced iNOS gene transcription and upregulates HO‐1 expression in macrophages and microglia. Br. J. Pharmacol. 2005;146:378–388. doi: 10.1038/sj.bjp.0706336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Lee H.B., Lee H.K., Kim J.R., Ahn Y.J. Anti-Helicobacter pylori diarylheptanoid identified in the rhizome of Alpinia officinarum. J. Korean Soc. Appl. Biol. Chem. 2009;52(4):367–370. [Google Scholar]
  58. Lee M., Sung S.H. Platyphylloside isolated from Betula platyphylla inhibit adipocyte differentiation and induce lipolysis via regulating adipokines including PPARγ in 3T3-L1 Cells. Phcog. Mag. 2016;12(48):276–281. doi: 10.4103/0973-1296.192208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Lee M., Lee M.K., Kim Y.C., Sung S.H. Antifibrotic constituents of Alnus firma on hepatic stellate cells. Bioorg. Med. Chem. Lett. 2011;21(10):2906–2910. doi: 10.1016/j.bmcl.2011.03.074. [DOI] [PubMed] [Google Scholar]
  60. Lee E., Park K.K., Lee J.M., Chun K.S., Kang J.Y., Lee S.S., Surh Y.J. Suppression of mouse skin tumor promotion and induction of apoptosis in HL-60 cells by Alpinia oxyphylla Miquel (Zingiberaceae) Carcinogenesis. 1998;19(8):1377–1381. doi: 10.1093/carcin/19.8.1377. [DOI] [PubMed] [Google Scholar]
  61. Lee M., Park J.H., Min D.S., Yoo H., Park J.H., Kim Y.C., Sung S.H. Antifibrotic activity of diarylheptanoids from Betula platyphylla toward HSC-T6 cells. Biosci. Biotechnol. Biochem. 2012;76(9):1616–1620. doi: 10.1271/bbb.110887. [DOI] [PubMed] [Google Scholar]
  62. Lee M.W., Kim J.H., Jeong D.W., Ahn K.H., Toh S.H., Surh Y.J. Inhibition of cyclooxigenase-2 expression by diarylheptanoids from the bark of Alnus hirsuta var. Sibirica. Biol. Pharm. Bull. 2000;23:517–518. doi: 10.1248/bpb.23.517. [DOI] [PubMed] [Google Scholar]
  63. Lee S.E., Shin H.T., Hwang H.J., Kim J.H. Antioxidant activity of extracts from Alpinia katsumadai seed. Phytother Res. 2003;17(9):1041–1047. doi: 10.1002/ptr.1291. [DOI] [PubMed] [Google Scholar]
  64. Lee M., Song J.Y., Chin Y.W., Sung S.H. Anti-adipogenic diarylheptanoids from Alnus hirsuta f. sibirica on 3T3-L1 cells. Bioorg. Med. Chem. Lett. 2013;23(7):2069–2073. doi: 10.1016/j.bmcl.2013.01.127. [DOI] [PubMed] [Google Scholar]
  65. Liao S., Lin J., Dang M.T., Zhang H., Kao Y.H., Fukuchi J., Hiipakka R.A. Growth suppression of hamster flank organs by topical application of catechins, alizarin, curcumin, and myristoleic acid. Arch. Dermatol. Res. 2001;293:200–205. doi: 10.1007/s004030000203. [DOI] [PubMed] [Google Scholar]
  66. Lin D., Xiao M., Zhao J., Li Z., Xing B., Li X., Kong M., Li L., Zhang Q., Liu Y., Chen H. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules. 2016;21(10):1374. doi: 10.3390/molecules21101374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Lv H., She G. Naturally occurring diarylheptanoids-A supplementary version. Record Nat. Prod. 2012;6(4):321–333. [Google Scholar]
  68. Mahady G.B., Pendland S.L., Yun G., Lu Z.Z. Turmeric (Curcuma longa) and curcumin inhibit the growth of Helicobacter pylori, of group 1 carcinogen. Anticancer Res. 2002;22:4179–4181. [PubMed] [Google Scholar]
  69. Masuda T., Jitoe A. Antioxidative and antiinflammatory compounds from tropical gingers: isolation, structure determination, and activities of cassumunins A, B, and C, new complex curcuminoids from Zingiber cassumunar. J. Agric. Food Chem. 1994;42(9):1850–1856. [Google Scholar]
  70. Masuda H., Morikawa T., Tao J., Ueda K., Yoshikawa M. Bioactive constituents of Chinese natural medicines. VII. Inhibitors of degranulation in RBL-2H3 cells and absolute stereostructures of three new diarylheptanoid glycosides from the bark of Myrica rubra. Chem. Pharm. Bull. 2002;50(2):208–215. doi: 10.1248/cpb.50.208. [DOI] [PubMed] [Google Scholar]
  71. Masuda T., Jitoe A., Mabry T.J. Isolation and structure determination of cassumunarins A, B, and C: new anti-inflammatory antioxidants from a tropical ginger, Zingiber cassumunar. J. Am. Oil Chem. Soc. 1995;72(9):1053–1057. [Google Scholar]
  72. Matsuda H., Ishikado A., Nishida N., Ninomiya K., Fujiwara H., Kobayashi Y., Yoshikawa M. Hepatoprotective, superoxide scavenging, and antioxidative activities of aromatic constituents from the bark of Betula platyphylla var. japonica. Bioorg. Med. Chem. Lett. 1998;8(21):2939–2944. doi: 10.1016/S0960-894X(98)00528-9. [DOI] [PubMed] [Google Scholar]
  73. Matsumoto T., Nakamura S., Nakashima S., Yoshikawa M., Fujimoto K., Ohta T., Morita A., Yasui R., Kashiwazaki E., Matsuda H. Diarylheptanoids with inhibitory effects on melanogenesis from the rhizomes of Curcuma comosa in B16 melanoma cells. Bioorg. Med. Chem. Lett. 2013;23(18):5178–5181. doi: 10.1016/j.bmcl.2013.07.010. [DOI] [PubMed] [Google Scholar]
  74. Mazumdar A., Raghavan K., Weinstein J., Kohn K.W., Pommer Y. Inhibition of human immunodeficiency virus type-1 integrase by curcumin. Biochem. Pharmacol. 1995;49:1165–1170. doi: 10.1016/0006-2952(95)98514-a. [DOI] [PubMed] [Google Scholar]
  75. Mei X., Xu D., Wang S., Xu S. Pharmacological researches of curcumin solid dispersions on experimental gastric ulcer. Zhongguo Zhongyao Zazhi. 2009;34:2920–2923. [PubMed] [Google Scholar]
  76. Mishra R.K., Kumar A., Kumar A. Pharmacological activity of Zingiber officinale. Int. J. Pharm. Chem. Biol. Sci. 2012;1(3):1073–1078. [Google Scholar]
  77. Morikawa T., Tao J., Ueda K., Matsuda H., Yoshikawa M. Medicinal foodstuffs. XXXI. Structures of new aromatic constituents and inhibitors of degranulation in RBL-2H3 cells from a Japanese folk medicine, the stem bark of Acer nikoense. Chem. Pharm. Bull. 2003;51(1):62–67. doi: 10.1248/cpb.51.62. [DOI] [PubMed] [Google Scholar]
  78. Nagano T., Oyama Y., Kajita N., Chikahisa L., Nakata M., Okazaki E., Masuda T. New curcuminoids isolated from Zingiber cassumunar protect cells suffering from oxidative stress: a flow-cytometric study using rat thymocytes and H202. Jap. J. Pharmacol. 1997;75(4):363–370. doi: 10.1254/jjp.75.363. [DOI] [PubMed] [Google Scholar]
  79. Nasri H., Baradaran A., Shirzad H., Rafieian-Kopaei M. New concepts in nutraceuticals as alternative for pharmaceuticals. Int. J. Prev. Med. 2014;5(12):1487–1499. [PMC free article] [PubMed] [Google Scholar]
  80. Naz R.K., Lough M.L. Curcumin as a potential non-steroidal contraceptive with spermicidal and microbicidal properties. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014;176:142–148. doi: 10.1016/j.ejogrb.2014.01.024. [DOI] [PubMed] [Google Scholar]
  81. Omar R. 2013. Compounds from A. Platanoides Bark, V. Corymbosum Roots & Topical Formulations Using Maple Syrup.https://digitalcommons.uri.edu/oa_diss/46 Open Access Dissertations. Paper 46. [Google Scholar]
  82. Pasrija D., Ezhilarasi P.N., Indrani D., Anandharamakrishnan C. Microencapsulation of green tea polyphenols and its effect on incorporated bread quality. LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) 2015;64(1):289–296. [Google Scholar]
  83. Park W., Amin A.R., Chen Z.G., Shin D.M. New perspectives of curcumin in cancer prevention. Cancer Prev. Res. 2013;6(5):387–400. doi: 10.1158/1940-6207.CAPR-12-0410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Park J.Y., Jeong H.J., Kim J.H., Kim Y.M., Park S.J., Kim D., Park K.H., Lee W.S., Ryu Y.B. Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biol. Pharm. Bull. 2012;35(11):2036–2042. doi: 10.1248/bpb.b12-00623. [DOI] [PubMed] [Google Scholar]
  85. Park D., Kim H.J., Jung S.Y., Yook C.S., Jin C., Lee Y.S. A new diarylheptanoid glycoside from the stem bark of Alnus hirsuta and protective effects of diarylheptanoid derivatives in human HepG2 cells. Chem. Pharm. Bull. 2010;58(2):238–241. doi: 10.1248/cpb.58.238. [DOI] [PubMed] [Google Scholar]
  86. Patel K.G., Rao N.J., Gajera V.G., Bhatt P.A., Patel K.V., Gandhi T.R. Anti-allergic activity of stem bark of Myrica esculenta Buch.-Ham. (Myricaceae) J. Young Pharm. 2010;2(1):74–78. doi: 10.4103/0975-1483.62219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Paul A., Das S., Das J., Samadder A., Bishayee K., Sadhukhan R., Khuda-Bukhsh A.R. Diarylheptanoid–myricanone isolated from ethanolic extract of Myrica cerifera shows anticancer effects on HeLa and PC3 cell lines: signalling pathway and drug-DNA interaction. J. Integr. Med. 2013;11(6):405–415. doi: 10.3736/jintegrmed2013057. [DOI] [PubMed] [Google Scholar]
  88. Per C., Claeson U.P., Tuchinda P., Reutrakul V. Occurrence, structure and bioactivity of 1, 7-diarylheptanoids. Nat. Prod. Chem. 2002;26:881–908. [Google Scholar]
  89. Punithavathi D., Venkatesan N., Babu M. Curcumin inhibition of bleomycin‐induced pulmonary fibrosis in rats. Br. J. Pharmacol. 2000;131(2):169–172. doi: 10.1038/sj.bjp.0703578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Prasad S., Aggarwal B.B. second ed. 2011. Chapter 13, Turmeric, the Golden Spice: From Traditional Medicine to Modern Medicine. Herbal Medicine: Biomolecular and Clinical Aspects. [Google Scholar]
  91. Rasmussen H.B., Christensen S.B., Kuist L.P., Karazmi A simple and effective separation of the curcumins, the antiprotozoal constituents of Curcuma longa. Planta Med. 2000;66:396–398. doi: 10.1055/s-2000-8533. [DOI] [PubMed] [Google Scholar]
  92. Romano M., Vitaglione P., Sellitto S., D'Argenio G. Nutraceuticals for protection and healing of gastrointestinal mucosa. Curr. Med. Chem. 2012;19(1):109–117. doi: 10.2174/092986712803414042. [DOI] [PubMed] [Google Scholar]
  93. Ruchi S. Role of nutraceuticals in health care: a review. Int. J. Green Pharm. 2017;11(03) doi: 10.22377/ijgp.v11i03.1146. [DOI] [Google Scholar]
  94. Sajithlal G.B., Chittra P., Chandrakasan G. Effect of curcumin on the advanced glycation and cross-linking of collagen in diabetic rats. Biochem. Pharmacol. 1998;56:1607–1614. doi: 10.1016/s0006-2952(98)00237-8. [DOI] [PubMed] [Google Scholar]
  95. Salami A., Seydi E., Pourahmad J. Use of nutraceuticals for prevention and treatment of cancer. Iran. J. Pharm. Res. (IJPR) 2013;12(3):219–220. [PMC free article] [PubMed] [Google Scholar]
  96. Sati S.C., Sati N., Sati O.P. Bioactive constituents and medicinal importance of genus Alnus. Pharm. Rev. 2011;5(10):174–183. doi: 10.4103/0973-7847.91115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Sung S.H., Lee M. Anti-adipogenic activity of a new cyclic diarylheptanoid isolated from Alnus japonica on 3T3-L1 cells via modulation of PPARγ, C/EBPα and SREBP1c signaling. Bioorg. Med. Chem. Lett. 2015;25(20):4648–4651. doi: 10.1016/j.bmcl.2015.08.032. [DOI] [PubMed] [Google Scholar]
  98. Shao Z.M., Shen Z.Z., Liu C.H., Sartippour M.R., Go V.L., Heber D., Nguyen M. Curcumin exerts multiple suppressive effects on human breast carcinoma cells. Int. J. Cancer. 2002;98:234–240. doi: 10.1002/ijc.10183. [DOI] [PubMed] [Google Scholar]
  99. Shirwaikar A., Rajendran K., Barik R. Effect of aqueous bark extract of Garuga pinnata Roxb. in streptozotocin-nicotinamide induced type-II diabetes mellitus. J. Ethnopharmacol. 2006;107(2):285–290. doi: 10.1016/j.jep.2006.03.012. [DOI] [PubMed] [Google Scholar]
  100. Shivalingu B.R., Vivek H.K., Nafeesa Z., Priya B.S., Nanjunda Swamy S. Comparative analysis of procoagulant and fibrinogenolytic activity of crude protease fractions of turmeric species. J. Ethnopharmacol. 2015;172:261–264. doi: 10.1016/j.jep.2015.06.018. [DOI] [PubMed] [Google Scholar]
  101. Singldinger B., Dunkel A., Hofmann T. The cyclic diarylheptanoid asadanin as the main contributor to the bitter off-taste in hazelnuts (Corylus avellana L.) J. Agric. Food Chem. 2017;65(8):1677–1683. doi: 10.1021/acs.jafc.7b00026. [DOI] [PubMed] [Google Scholar]
  102. Song E.K., Cho H., Kim J.S., Kim N.Y., An N.H., Kim J.A., Lee S.H., Kim Y.C. Diarylheptanoids with free radical scavenging and hepatoprotective activity in vitro from Curcuma longa. Planta Med. 2001;67(09):876–877. doi: 10.1055/s-2001-18860. [DOI] [PubMed] [Google Scholar]
  103. Sosnowska B., Penson P., Banach M. The role of nutraceuticals in the prevention of cardiovascular disease. Cardiovasc. Diagn. Ther. 2017;7:21–33. doi: 10.21037/cdt.2017.03.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Srivastava R., Dikshit M., Srimal R.C., Dhawan B.N. Anti-thrombotic effect of curcumin. Thromb. Res. 1985;40(3):413–417. doi: 10.1016/0049-3848(85)90276-2. [DOI] [PubMed] [Google Scholar]
  105. Srivastava R., Puri V., Srimal R.C., Dhawan B.N. Effect of curcumin on platelet aggregation and vascular prostacyclin synthesis. Arzneim. Forsch. 1986;36:715–717. [PubMed] [Google Scholar]
  106. Suk S., Kwon G.T., Lee E., Jang W.J., Yang H., Kim J.H., Thimmegowda N.R., Chung M.Y., Kwon J.Y., Yang S., Kim J.K. Gingerenone A, a polyphenol present in ginger, suppresses obesity and adipose tissue inflammation in high‐fat diet‐fed mice. Mol. Nutr. Food Res. 2017;61(10):1700139. doi: 10.1002/mnfr.201700139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Surh Y.J., Chun K.S., Cha H.H., Han S.S., Keum Y.S., Park K.K., Lee S.S. Molecular mechanism underlying chemopreventive activities of anti-inflammatory phytochemicals: down regulation of COX-2 and iNOS through suppression of NF-kB activation. Mutat. Res. 2001;480:243–268. doi: 10.1016/s0027-5107(01)00183-x. [DOI] [PubMed] [Google Scholar]
  108. Suryanarayana P., Krishnaswamy K., Reddy G.B. Effect of curcumin on galactose-induced cataractogenesis in rats. Mol. Vis. 2003;9:223–230. [PubMed] [Google Scholar]
  109. Tabata K., Yamazaki Y., Okada M., Fukumura K., Shimada A., Sun Y., Yasukawa K., Suzuki T. Diarylheptanoids derived from Alpinia officinarum induce apoptosis, S-phase arrest and differentiation in human neuroblastoma cells. Anticancer Res. 2009;29(12):4981–4988. [PubMed] [Google Scholar]
  110. Tamler R., Mechanick J.I. Dietary supplements and nutraceuticals in the management of andrologic disorders. Endocrinol Metab. Clin. N. Am. 2007;36(2):533–552. doi: 10.1016/j.ecl.2007.03.005. [DOI] [PubMed] [Google Scholar]
  111. Tao Q.F., Xu Y., Lam R.Y., Schneider B., Dou H., Leung P.S., Shi S.Y., Zhou C.X., Yang L.X., Zhang R.P., Xiao Y.C. Diarylheptanoids and a monoterpenoid from the rhizomes of Zingiber officinale: antioxidant and cytoprotective properties. J. Nat. Prod. 2008;71(1):12–17. doi: 10.1021/np070114p. [DOI] [PubMed] [Google Scholar]
  112. Tezuka Y., Ali M.S., Banskota A.H., Kadota S. Blepharocalyxins C–E: three novel antiproliferative diarylheptanoids from the seeds of Alpinia blepharocalyx. Tetrahedron Lett. 2000;41(31):5903–5907. [Google Scholar]
  113. Tian Z., An N., Zhou B., Xiao P., Kohane I.S., Wu E. Cytotoxic diarylheptanoid induces cell cycle arrest and apoptosis via increasing ATF3 and stabilizing p53 in SH-SY5Y cells. Cancer Chemoth. Pharmacol. 2009;63(6):1131–1139. doi: 10.1007/s00280-008-0832-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Tung N.H., Kim S.K., Ra J.C., Zhao Y.Z., Sohn D.H., Kim Y.H. Antioxidative and hepatoprotective diarylheptanoids from the bark of Alnus japonica. Planta Med. 2010;76(06):626–629. doi: 10.1055/s-0029-1240595. [DOI] [PubMed] [Google Scholar]
  115. Tungmunnithum D., Thongboonyou A., Pholboon A., Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines. 2018;5(3):93. doi: 10.3390/medicines5030093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Tuorkey M., Karolin K. Anti-ulcer activity of curcumin on experimental gastric ulcer in rats and its effect on oxidative stress/antioxidant, IL-6 and enzyme activities. Biomed. Environ. Sci. 2009;22(6):488–495. doi: 10.1016/S0895-3988(10)60006-2. [DOI] [PubMed] [Google Scholar]
  117. Unnikrishnan M.K., Rao M.N. Inhibition of nitric-induced oxidation of hemoglobin by curcuminoids. Pharmazie. 1995;50:490–492. [PubMed] [Google Scholar]
  118. Vallianou N.G., Evangelopoulos A., Schizas N., Kazazis C. Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res. 2015;35(2):645–651. [PubMed] [Google Scholar]
  119. Vauzour D., Rodriguez-Mateos A., Corona G., Oruna-Concha M.J., Spencer J.P. Polyphenols and human health: prevention of disease and mechanisms of action. Nutrients. 2010;2(11):1106–1131. doi: 10.3390/nu2111106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Vidaković V., Novaković M., Popović Z., Janković M., Matić R., Tešević V., Bojović S. Significance of diarylheptanoids for chemotaxonomical distinguishing between Alnus glutinosa and Alnus incana. Holzforschung. 2017;72(1):9–16. [Google Scholar]
  121. Wang D.Y., Liu E.G. A new diarylheptanoid from the bark of Myrica rubra. Nat. Prod. Res. 2008;22(4):292–295. doi: 10.1080/14786410701766232. [DOI] [PubMed] [Google Scholar]
  122. Winuthayanon W., Piyachaturawat P., Suksamrarn A., Ponglikitmongkol M., Arao Y., Hewitt S.C., Korach K.S. Diarylheptanoid phytoestrogens isolated from the medicinal plant Curcuma comosa: biologic actions in vitro and in vivo indicate estrogen receptor–dependent mechanisms. Environ. Health Perspect. 2009;117(7):1155–1161. doi: 10.1289/ehp.0900613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Wuthi-Udomler M., Grisanapan W., Luanratana O., Caichompoo W. Antifungal activity of Curcuma longa grown in Thailand. Southeast Asian J. Trop. Med. Publ. Health. 2000;31:178–182. [PubMed] [Google Scholar]
  124. Yadav P.N., Liu Z., Rafi M.M. A diarylheptanoid from lesser galangal (Alpinia officinarum) inhibits proinflammatory mediators via inhibition of mitogen-activated protein kinase, p44/42, and transcription factor nuclear factor-κB. J. Pharmacol. Exp. Ther. 2003;305(3):925–931. doi: 10.1124/jpet.103.049171. [DOI] [PubMed] [Google Scholar]
  125. Yao H., Zhou G.X., Wu Q., Lei G.Q., Chen D.F., Chen J.K., Zhou T.S. Mistletonone, a novel antioxidative diarylheptanoid from the branches and leaves of Viscum coloratum. Molecules. 2007;12(3):312–317. doi: 10.3390/12030312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Yin J., Kouda K., Tezuka Y., Le Tran Q., Miyahara T., Chen Y., Kadota S. New diarylheptanoids from the rhizomes of Dioscorea spongiosa and their antiosteoporotic activity. Planta Med. 2004;70(1):54–58. doi: 10.1055/s-2004-815456. [DOI] [PubMed] [Google Scholar]
  127. Yin J., Tezuka Y., Kouda K., Le Tran Q., Miyahara T., Chen Y., Kadota S. Antiosteoporotic activity of the water extract of Dioscorea spongiosa. Biol. Pharm. Bull. 2004;27(4):583–586. doi: 10.1248/bpb.27.583. [DOI] [PubMed] [Google Scholar]
  128. Yokosuka A., Mimaki Y., Sakagami H., Sashida Y. New diarylheptanoids and diarylheptanoid glucosides from the rhizomes of Tacca chantrieri and their cytotoxic activity. J. Nat. Prod. 2002;65(3):283–289. doi: 10.1021/np010470m. [DOI] [PubMed] [Google Scholar]
  129. Zhang L., Diao R.Y., Duan Y.G., Yi T.H., Cai Z.M. In vitro antioxidant effect of curcumin on human sperm quality in leucocytospermia. Andrologia. 2017;49(10) doi: 10.1111/and.12760. [DOI] [PubMed] [Google Scholar]
  130. Zhang X., Zhang X., Wang Y., Chen F., Li Y., Li Y., Tan Y., Gong J., Zhong X., Li H., Zhang J. A new diarylheptanoid from Alpinia officinarum promotes the differentiation of 3T3-L1 preadipocytes. Nat. Prod. Res. 2018;32(5):529–535. doi: 10.1080/14786419.2017.1327858. [DOI] [PubMed] [Google Scholar]

Articles from Biocatalysis and Agricultural Biotechnology are provided here courtesy of Elsevier

RESOURCES