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Abstract

Autism spectrum disorder (ASD) involves substantial genetic contributions. These contributions 

are profoundly heterogeneous but may converge on common pathways that are not yet well 
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understood1–3. Here, through post-mortem genome-wide transcriptome analysis of the largest 

cohort of samples analysed so far, to our knowledge4–7, we interrogate the noncoding 

transcriptome, alternative splicing, and upstream molecular regulators to broaden our 

understanding of molecular convergence in ASD. Our analysis reveals ASD-associated 

dysregulation of primate-specific long noncoding RNAs (lncRNAs), downregulation of the 

alternative splicing of activity-dependent neuron-specific exons, and attenuation of normal 

differences in gene expression between the frontal and temporal lobes. Our data suggest that 

SOX5, a transcription factor involved in neuron fate specification, contributes to this reduction in 

regional differences. We further demonstrate that a genetically defined subtype of ASD, 

chromosome 15q11.2–13.1 duplication syndrome (dup15q), shares the core transcriptomic 

signature observed in idiopathic ASD. Co-expression network analysis reveals that individuals 

with ASD show age-related changes in the trajectory of microglial and synaptic function over the 

first two decades, and suggests that genetic risk for ASD may influence changes in regional 

cortical gene expression. Our findings illustrate how diverse genetic perturbations can lead to 

phenotypic convergence at multiple biological levels in a complex neuropsychiatric disorder.

We performed rRNA-depleted RNA sequencing (RNA-seq) of 251 post-mortem samples of 

frontal and temporal cortex and cerebellum from 48 individuals with ASD and 49 control 

subjects (Methods and Extended Data Fig. 1a–h). We first validated differential gene 

expression (DGE) between samples of cortex from control individuals and those with ASD 

(ASD cortex) by comparing gene expression with that of different individuals from those 

previously profiled by microarray8, and found strong concordance (R2 = 0.60; Fig. 1a, 

Extended Data Fig. 1i). This constitutes an independent technical and biological replication 

of shared molecular alterations in ASD cortex.

We next combined covariate-matched samples from individuals with idiopathic ASD to 

evaluate changes across the entire transcriptome. Compared to control cortex, 584 genes 

showed increased expression and 558 showed decreased expression in ASD cortex (Fig. 1b; 

Benjamini–Hochberg FDR < 0.05, linear mixed effects model; see Methods). This DGE 

signal was consistent across methods, unrelated to major confounders, and found in more 

than two-thirds of ASD samples (Extended Data Fig. 1j–m). We performed a classification 

analysis to confirm that gene expression in ASD could separate samples by disease status 

(Extended Data Fig. 2a) and confirmed the technical quality of our data with qRT–PCR 

(Extended Data Fig. 2b, c). We next evaluated enrichment of the gene sets for pathways and 

cell types (Extended Data Fig. 2d, e), and found that the downregulated set was enriched in 

genes expressed in neurons and involved in neuronal pathways, including PVALB and 

SYT2, which are highly expressed in interneurons; by contrast, the upregulated gene set was 

enriched in genes expressed in microglia and astrocytes8.

Although there was no significant DGE in the cerebellum (FDR < 0.05, P distributions in 

Fig. 1b), similar to observations in a smaller cohort8, there was a replication signal in the 

cerebellum and overall concordance between ASD-related fold changes in the cortex and 

cerebellum (Extended Data Fig. 2f–h). The lack of significant DGE in the cerebellum is 

explained by the fact that changes in expression were consistently stronger in the cortex than 

in the cerebellum (Extended Data Fig. 2h), which suggests that the cortex is more selectively 
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vulnerable to these transcriptomic alterations. We also compared our results to an RNA-seq 

study of protein coding genes in the occipital cortex of individuals with ASD and control 

subjects4. Despite significant technical differences that reduce power to detect DGE, and 

profiling of different brain regions in that study, there was a weak but significant correlation 

in fold changes, which was due mostly to upregulated genes in both studies (P = 0.038, 

Extended Data Fig. 2i, j).

We next explored lncRNAs, most of which have little functional annotation, and identified 

60 lncRNAs in the DGE set (FDR < 0.05, Extended Data Fig. 2k). Multiple lines of 

evidence, including developmental regulation in RNA-seq datasets and epigenetic 

annotations, support the functionality of most of these lncRNAs (Supplementary Table 2). 

Moreover, 20 of these lncRNAs have been shown to interact with microRNA (miRNA)–

protein complexes, and 9 with the fragile X mental retardation protein (FMRP), whose 

mRNA targets are enriched in ASD risk genes9,10. As a group, these lncRNAs are enriched 

in the brain relative to other tissues (Extended Data Fig. 2l, m) and most that have been 

evaluated across species exhibit primate-specific expression patterns in the brain11, which 

we confirm for several transcripts (Supplementary Information, Extended Data Fig. 3a–h). 

We highlight two primate-specific lncRNAs, LINC00693 and LINC00689. Both interact 

with miRNA processing complexes and are typically downregulated during development12, 

but are upregulated in ASD cortex (Fig. 1c, d, Extended Data Fig. 2n). These data show that 

dysregulation of lncRNAs, many of which are brain-enriched, primate-specific, and 

predicted to affect protein expression through miRNA or FMRP interactions, is an integral 

component of the transcriptomic signature of ASD.

Previous studies have evaluated alternative splicing in ASD and its relation to specific 

splicing regulators in small sets of selected samples across individuals8,13,14. Given the 

increased sequencing depth, reduced 5′–3′ sequencing bias, and larger cohort represented 

here, we were able to perform a comprehensive analysis of differential alternative splicing 

(Extended Data Fig. 4a). We found a significant differential splicing signal over background 

in the cortex (1,127 differential splicing events in 833 genes; Methods), but not in the 

cerebellum (P distributions in Extended Data Fig. 4b, c). We confirmed that confounders do 

not account for the differential splicing signal, reproduced the global differential splicing 

signal with an alternative pipeline15, and performed technical validation with RT–PCR 

(Extended Data Figs 4d–g, 5a), confirming the differential splicing analysis. Notably, the 

differential splicing molecular signature is not driven by DGE (Extended Data Fig. 4h), 

consistent with the observation that splicing alterations are related to common disease risk 

independently of gene expression changes16.

Cell-type specific enrichment and pathway analysis of alternative splicing demonstrated that 

most differential splicing events involve exclusion of neuron-specific exons17 (Fig. 1e, 

Extended Data Fig. 4i). Therefore, we next investigated whether the shared splicing 

signature in ASD could be explained by perturbations in splicing factors known to be 

important in nervous system function8,14 (Extended Data Fig. 4j), and found high 

correlations between splicing factor expression and differential splicing in the cortex (Fig. 

1f) but not the cerebellum (Fig. 1g). The absence of neuronal splicing factor DGE or 

correlation with splicing changes in the cerebellum is consistent with the absence of a 
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differential splicing signal in the cerebellum and suggests that these splicing factors 

contribute to cortex-biased differential splicing. Previous experimental perturbation of three 

splicing factors, Rbfox1 (ref. 18), SRRM4 (ref. 19), and PTBP1 (ref. 20), shows strong 

overlap with the differential splicing changes found in ASD cortex, further supporting these 

predicted relationships (Fig. 1h, Extended Data Fig. 5b). Given that differential splicing 

events in ASD cortex overlap significantly with those that are targets of neuronal splicing 

factors, we hypothesized that some of these events may be involved in activity-dependent 

gene regulation. Indeed, differential splicing events were significantly enriched in those 

previously shown to be regulated by neuronal activity21 (Fig. 1h). This overlap supports a 

model of ASD pathophysiology based on changes in the balance of excitation and inhibition 

and in neuronal activity22 and suggests that alterations in transcript structure are likely to be 

an important component.

When we compared the first principal component across samples for protein coding DGE, 

lncRNA DGE and differential splicing, we found remarkably high correlations (R2 > 0.8), 

indicating that molecular convergence is likely to be a unitary phenomenon across multiple 

levels of transcriptome regulation in ASD (Fig. 1i).

Previous analysis suggested that the typical pattern of transcriptional differences between the 

frontal and temporal cortices may be attenuated in ASD8. We confirmed this in our larger 

cohort and identified 523 genes that differed significantly in expression between the frontal 

cortex and the temporal cortex in control subjects, but not those with ASD (Fig. 2a); we 

refer to these genes as the ‘attenuated cortical patterning’ (ACP) set (Extended Data Fig. 6a). 

We demonstrated the robustness of attenuation in cortical patterning in ASD by confirming 

that the ACP set was not more variable than other genes, that attenuation of cortical 

patterning was robust to removal of previously analysed samples8, and that the effect could 

also be observed using a different classification approach (Extended Data Fig. 6b–h).

Pathway and cell-type analysis showed that the ACP set is enriched in Wnt signalling, 

calcium binding, and neuronal genes (Extended Data Fig. 6i, j, Supplementary Information). 

We next explored potential regulators of cortical patterning by transcription factor binding 

site enrichment (Extended Data Fig. 6k). Among the transcription factors identified, SOX5 

was of particular interest because of its known role in mammalian corticogenesis23,24, its 

sole membership in the ACP set, and its correlation with predicted targets in the brains of 

control subjects, which is lost in ASD (Fig. 2b–d). We confirmed that a significant 

proportion of ACP genes are regulated by SOX5 by overexpressing it in human neural 

progenitors. SOX5 induced synaptic genes and repressed cell proliferation (Fig. 2e), and 

predicted SOX5 targets exhibited net down-regulation, consistent with the repressive 

function of SOX5 (Fig. 2f, Extended Data Fig. 6l, m). These findings support the prediction 

that attenuated patterning of the transcription factor SOX5 between cortical regions 

contributes to direct alterations in patterning of SOX5 targets.

We also evaluated DGE and differential splicing in nine individuals with dup15q (which is 

among the most common and penetrant forms of ASD) and independent controls (Extended 

Data Fig. 7a, b). Significant upregulation in the 15q11.1–13.2 region (cis) was evident in 

duplication carriers, but not in idiopathic ASD (Fig. 3a). Remarkably, genome-wide (trans) 
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DGE and differential splicing patterns were highly concordant between dup15q and ASD 

(Fig. 3b, c, Extended Data Fig. 7c–e). Moreover, alterations in dup15q cortex were of greater 

magnitude and more homogeneous than those observed in idiopathic ASD cortex (Fig. 3d, 

Extended Data Fig. 7f, g). Analysis of DGE in the cerebellum confirmed a weaker signal 

than in the cortex and demonstrated that cis changes in dup15q cerebellum (Extended Data 

Fig. 7h–j) were more concordant with the cortex than trans changes (Extended Data Fig. 7k, 

l), further supporting the observation that the cortex is selectively vulnerable to 

transcriptomic alteration in ASD. Together, the DGE and differential splicing analyses in 

dup15q provide further biological validation of the ASD transcriptomic signature and 

demonstrate that a genetically defined form of ASD exhibits similar changes to idiopathic 

ASD.

We next applied weighted gene co-expression network analysis (WGCNA; Methods) and 

evaluated the biological functions and ASD association of the 24 co-expression modules 

identified (Extended Data Fig. 8a–d). Of the six modules associated with ASD, three were 

upregulated and three were downregulated, and each showed significant cell-type 

enrichment (Fig. 4a, b). This analysis corroborates and extends previous work by identifying 

sub-modules of those previously identified, thus demonstrating greater biological specificity 

(Extended Data Figs 8e, 9a). It also confirms that downregulated modules are enriched in 

synaptic function and neuronal genes, that upregulated modules are enriched in genes 

associated with inflammatory pathways and glial function4,8, and that microglial and 

synaptic modules exhibit significant anticorrelation (Fig. 4c). Furthermore, the 

downregulated modules CTX.M10 and CTX.M16 are enriched in genes previously related to 

neuronal firing rate, consistent with the overlap of dysregulated splicing with events 

regulated by neuronal activity (Extended Data Fig. 9b and Fig. 1h). One glial and one 

neuronal module are highlighted in Fig. 4d, e (the remainder in Extended Data Fig. 9c–e). 

Remarkably, the upregulated module CTX.M20 was not found in previous analyses, 

overlaps significantly with the ACP set (FDR < 0.05, Extended Data Fig. 9a), and contains 

genes implicated in development and regulation of cell differentiation (Fig. 4f).

We also leveraged our large sample and younger age-matched ASD and control samples to 

detect differences in developmental trajectories in ASD compared to control subjects. We 

identified a remarkable difference in CTX.M19 and CTX.M20 during the first two decades 

of life (Fig. 4g, additional age trajectories in Extended Data Fig. 9f) that is most consistent 

with an evolving process during early brain development that stabilizes starting in late 

childhood and early adolescence. We also found preservation of most cortex modules in the 

cerebellum, but with weaker associations to ASD (Extended Data Fig. 10a–h, 

Supplementary Table 4), consistent with the DGE analysis showing that ASD-related 

changes are substantially smaller in the cerebellum.

To determine the role of genetic factors in transcriptomic dysregulation, we evaluated 

enrichment in genes affected by ASD-associated rare mutations and common variants 

(Extended Data Fig. 9a). One module, CTX.M24, exhibited significant enrichment for rare 

mutations found in ASD, while rare de novo mutations associated with intellectual disability 

were most strongly enriched in CTX.M22 (FDR < 0.05, Extended Data Fig. 9a). 

Remarkably, CTX.M24 was significantly enriched for lncRNAs, genes expressed highly 
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during fetal cortical development, and genes harbouring protein-disrupting mutations found 

in ASD, suggesting that lncRNAs will be important targets for investigation in ASD10,25 

(FDR < 0.05, Extended Data Fig. 9a, g). By contrast, enrichment for ASD-associated 

common variation was observed in CTX. M20 (FDR < 0.1, Extended Data Fig. 9h–1, 

Methods). As CTX.M20 is enriched for the ACP gene set, this suggests a potential link 

between polygenic risk and regional attenuation of gene expression in ASD. Several other 

ASD-associated modules showed a weaker common variant signal for ASD, including 

CTX.M16, which also shows a signal for schizophrenia polygenic risk. However, other 

phenotypes with larger, better-powered genome-wide association studies (GWAS) also 

demonstrate enrichment (Extended Data Fig. 9h–i). It will be necessary to perform this 

analysis with larger ASD GWAS in the future to fully understand the extent and specificity 

of the contribution of common variation to the transcriptome alterations in ASD.

These data contribute to a consistent emerging picture of the molecular pathology of 

ASD4,7,8,10,25–27. Parsimony suggests that the highly overlapping expression pattern shared 

by individuals with dup15q and the majority of those with idiopathic ASD represents an 

evolving adaptive or maladaptive response to a primary insult rather than a secondary 

environmental hit. Although we observe no significant association of the ASD-associated 

transcriptome signature with either clinical or technical confounders, some of the changes 

are likely to represent consequences or compensatory responses, rather than causal factors. 

In this regard, it is notable that the observed transcriptome changes are consistent with an 

ongoing process that is triggered largely by genetic and prenatal factors3,9,10,23, but that 

evolves during the first decade of brain development.

We interpret these data to suggest that aberrant microglia–neuron interactions reflect an 

early alteration in developmental trajectory that becomes more evident in late childhood. 

This corresponds to the period of synapse elimination and stabilization after birth in 

humans28,29, which may have significant implications for intervention. Our analyses also 

reveal primate-specific lncRNAs that are probably relevant to understanding human higher 

cognition11,30. Co-expression of lncRNAs with genes harbouring ASD-associated protein 

coding mutations suggests that these noncoding RNAs are involved in similar biological 

functions and are potential candidate ASD risk loci. As future investigations pursue the full 

range of causal genetic variation that contributes to ASD risk, these data will be valuable for 

interpreting genetic and epigenetic studies of ASD and the relationship between ASD and 

other neuropsychiatric disorders.

METHODS

Brain tissue.

Human brain tissue for ASD and control individuals was acquired from the Autism Tissue 

Program (ATP) brain bank at the Harvard Brain and Tissue Bank (which has since been 

incorporated into the Autism BrainNet) and the University of Maryland Brain and Tissue 

Bank, a Brain and Tissue Repository of the NIH NeuroBioBank. Sample acquisition 

protocols were followed for each brain bank, and samples were de-identified before 

acquisition. Brain sample and donor metadata are available in Supplementary Table 1 and 

further information about samples can be found in the Supplementary Information. No 
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statistical methods were used to predetermine sample size. The sample dissections, RNA 

extractions, and RNA sequencing experiments were randomized (Supplementary 

Information). The investigators were blinded to diagnosis until the analysis but unblinded 

during the analysis.

RNA library preparation, sequencing, mapping and quantification.

A detailed protocol, including parameters given to programs for each step, is provided in the 

Supplementary Information. Briefly, starting with total RNA, rRNA was depleted (RiboZero 

Gold, Illumina) and libraries were prepared using the TruSeq v2 kit (Illumina) to construct 

unstranded libraries with a mean fragment size of 150 bp. Libraries underwent 50-bp paired 

end sequencing on an Illumina HiSeq 2000 or 2500 machine. Paired end reads were mapped 

to hg19 using Gencode v18 annotations31 via Tophat2 (ref. 32). Gene expression levels were 

quantified using union exon models with HTSeq33. This approach counts only reads on 

exons or reads spanning exon–exon junctions, and is globally similar to including reads on 

the introns (whole gene model) or computing probabilistic estimates of expression levels 

(Extended Data Fig. 1e–g).

Differential gene expression.

DGE analysis was performed with expression levels normalized for gene length, library size, 

and G+C content (referred to as ‘normalized FPKM’). Cortex samples (frontal and temporal) 

were analysed separately from cerebellum samples. An LME model framework was used to 

assess differential expression in log2[normalized FPKM] values for each gene for cortical 

regions because multiple brain regions were available from the same individuals. The 

individual donor identifier was treated as a random effect, and age, sex, brain region and 

diagnoses were treated as fixed effects. In the cerebellum DGE analysis, a linear model was 

used and brain region was not included as a covariate, because only one brain region was 

available in each individual and a handful of technical replicates could be removed for DGE 

analysis. We also used technical covariates accounting for RNA quality and batch effects as 

fixed effects in this model (Supplementary Information). Significant results are reported at 

Benjamini–Hochberg FDR < 0.05 (ref. 34), and full results are available in Supplementary 

Table 2.

Throughout the study, we assessed replication between datasets by evaluating the 

concordance between independent sample sets by comparing the squared correlation (R2) of 

fold changes of genes in each sample set at a defined statistical cut-off. We set the statistical 

cut-off in one sample set (the y axis in the scatterplots) and computed the R2 with fold 

changes in these genes in the comparator sample set (the x axis in the scatterplots). For 

details of the regularized regression analyses and cortical patterning analyses, see 

Supplementary Information.

Differential alternative splicing.

Alternative splicing was quantified using the per cent spliced in (PSI) metric using 

Multivariate Analysis of Transcript Splicing (MATS, v3.08)35. For each event, MATS 

reports counts supporting the inclusion (I) or splicing (S) of an event. To reduce spurious 

events due to low counts, we required at least 80% of samples to have I + S ≥ 10. For these 
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events, the PSI is calculated as PSI = I/(I + S) (Extended Data Fig. 4a). Statistical analysis 

for differential alternative splicing was performed using the linear mixed effects model as 

described above for DGE; significant results are reported at Benjamini–Hochberg FDR < 0.5 

(ref. 34). Full differential alternative splicing results are available in Supplementary Table 3.

Quantitative real-time PCR validation.

In order to ensure that our RNA-seq data were high quality and our DGE models were 

accurate, we evaluated gene expression changes in a representative subset of four ASD and 

four control samples (Extended Data Fig. 2b). One microgram of total RNA was reverse-

transcribed using Invitrogen Superscript IV reverse-transcriptase and oligo-dT primers 

(Invitrogen). Real-time PCR was performed on a Lightcycler 480 thermocycler in 10 μl 

volume containing SYBR Green Master Mix (Roche) and gene-specific primers at a 

concentration of 0.5 mM each. The results shown in Extended Data Fig. 2c represent at least 

two independent cDNA synthesis experiments for each gene. GAPDH levels were used as an 

internal control.

For differential alternative splicing analysis, we validated selected events with 

semiquantitative RT–PCR using the same samples used for DGE validation. Total RNA (600 

ng) was reverse-transcribed using Invitrogen Superscript IV reverse transcriptase and gene/

exon-specific primers. cDNA (50 ng) was amplified by 25 cycles using PCR. PCR products 

were resolved on 3% high-resolution Metaphor agarose gels (Lonza) and counterstained 

with SYBR Gold for visualization (Extended Data Fig. 5a, Supplementary Fig. 1). Gels were 

quantified using ImageJ (NIH).

Notably, this sample size is underpowered to evaluate significant changes in many genes or 

splicing events; however, the goal was to validate the accuracy of our data and analyses 

across genes, so we show the correlation of fold changes between ASD and control across 

genes or events. Genes and events were selected on the basis of being top hits or of 

particular biological interest. Sample details and primers are reported in Supplementary 

Tables 2 and 3.

Duplication 15q syndrome samples and analyses.

For dup15q samples, the type of duplication and copy number in the breakpoint 2–3 region 

were available from previous work36. To expand this to the regions between each of the 

recurrent breakpoint in these samples, eight out of nine dup15q brains were genotyped (one 

was not genotyped owing to limited tissue availability). The number of copies between each 

of the breakpoints is reported in Extended Data Fig. 7a. DGE and differential alternative 

splicing analysis for this set was performed with independent control samples from the main 

analysis, though the results were similar to those obtained using the larger set of controls 

used in the main analysis (Extended Data Fig. 7d, e).

Co-expression network analysis.

The R package weighted gene co-expression network analysis (WGCNA) was used to 

construct co-expression networks using normalized data after adjustment to remove 

variability from technical covariates37,38 (Supplementary Information). We used the 
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biweight midcorrelation to assess correlations between log2[adjusted FPKM] and parameters 

for network analysis are described in Supplementary Information. Notably, we used a 

modified version of WGCNA that involves bootstrapping the underlying dataset 100 times 

and constructing 100 networks. The consensus of these networks (median edge strength 

across all bootstrapped networks) was then used as the final network39, ensuring that a 

subset of samples does not drive the network structure.

For module-trait analyses, the first principal component of each module (the module 

eigengene37) was related to ASD diagnosis, age, sex, and brain region with an LME model 

as above. These associations were also supported by enrichment analyses with ASD DGE 

genes in Extended Data Fig. 9a. Given that modules are relatively uncorrelated to each other, 

significant eigengene-trait results are reported at Bonferroni-corrected P < 0.05.

Module temporal trajectories were computed with the LOESS function in R. For both ASD 

and control samples, the function was used to create quartic splines on module eigengenes 

(degree = 2, span = 2/3). The trend difference statistic was taken as the largest difference 

between these fitted curves between the ages of 5 and 25 years. P values were computed 

using 5,000 permutations. Specifically, ASD and control labels were randomly permuted 

5,000 times and splines were fit to the permuted groups; therefore, significant P values reject 

the null hypothesis of no relationship between age trends and disease status. Detailed 

statistics for module membership are available in Supplementary Table 2 and additional 

characterization of modules is available in Supplementary Table 4.

Enrichment analysis of gene sets and common variation.

Gene set enrichment analyses were performed with a two-sided Fisher’s exact test (cell type 

and splicing factor enrichments) or with logistic regression (Extended Data Fig. 9a, 

Supplementary Information). Results were corrected for multiple comparisons by the 

Benjamini–Hochberg method34 when a large number of comparisons were performed.

GO term enrichment analysis was performed using GO Elite40 with 10,000 permutations, 

and results are presented as enrichment Z scores. We present only the top molecular function 

and biological process terms for display purposes. Notably, for splicing analysis, we 

evaluated GO term enrichment by using the genes containing differential splicing alterations 

to identify functional enrichment. It is possible that longer genes, which contain more exons, 

also contain more detected splicing events. This could bias pathway and cell type 

enrichment to more neuronal and synaptic genes, which are, on average, longer than other 

genes in the genome. However, the correlation between the number of detected events in 

genes and gene length is minimal (R2 = 0.004), and the correlation is even smaller for events 

at P < 0.01 (R2 = 0.00012) demonstrating that longer genes are not more likely to contain 

differential splicing events.

Common variant enrichment was evaluated by analysis of genome-wide association study 

(GWAS) signal with stratified linkage disequilibrium (LD) score regression to partition 

disease heritability within functional categories represented by gene co-expression 

modules41. This method uses GWAS summary statistics and LD explicitly modelled from an 

ancestry-matched 1,000 genomes reference panel to calculate the proportion of genome-
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wide single nucleotide polymorphism (SNP)-based heritability that can be attributed to 

SNPs within explicitly defined functional categories. To improve accuracy, these categories 

were added to a ‘full baseline model’ that includes 53 functional categories capturing a 

broad set of genomic annotations, as previously described42. Enrichment is calculated as the 

proportion of SNP heritability accounted for by each module divided by the proportion of 

total SNPs within the module. Significance is assessed using a block jack-knife procedure42, 

which accounts for module size and gene length, followed by FDR correction of P values.

Data availability statement.

Human brain RNA-seq data have been deposited in Synapse (https://www.synapse.org/#!

Synapse:syn4587609) under accession number syn4587609. Data for the SOX5 
overexpression are available from the Gene Expression Omnibus (accession number 

GSE89057). All other data are available from the corresponding author upon reasonable 

request.

Code availability.

Code underlying the DGE, differential alternative splicing, cortical patterning, and co-

expression network analyses is available at https://github.com/dhglab/Genome-wide-

changes-in-lncRNA-alternative-splicing-and-cortical-patterning-in-autism.

Extended Data
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Extended Data Figure 1 |. Methodology, quality control, and differential expression replication 
analysis.
a, RNA-seq workflow (see Supplementary Information for details). b, RNA-seq quality and 

alignment statistics from this study, including RNA integrity number (RIN), sequencing 

depth (aligned reads), proportion of reads mapping to different genomic regions, and bias in 

coverage from the 5′ to the 3′ ends of transcripts.c, RNA-seq read coverage relative to 

normalized gene length across transcript length across samples. d, Dependence between 

coverage and RIN across gene body. e–g, Correlation of transcript model quantifications 

comparing the union exon model (used throughout this study), the whole gene model (which 

includes introns), and the Cufflinks approach43 to estimating FPKM. h, Summary table 

describing the characteristics of the matched covariate data used in the DGE and differential 

alternative splicing (DS) analysis of ASD in cortex and cerebellum. This includes the 

number of samples overlapping with our previous work8, the age and RIN distributions, and 

the dependence between diagnosis and age and RIN (summarized from Supplementary 
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Table 1). i, Independent replication of ASD versus control DGE fold changes between 

previously evaluated and new ASD samples in cortex by RNA-seq using samples from ref. 8 

(similar to Fig. 1a, but with RNA-seq in all samples). j, Correlation of P value rankings with 

Spearman’s correlation across different DGE methods for DGE analysis in cortex, 

comparing the ‘full model’ (LME P value) described in the Supplementary Information with 

other methods. Methods include removal of three additional principal components of 

sequencing surrogate variables(SVs) (LME with 5 SVs, top left), application of a 

permutation analysis for DGE P value computation (LME P, permuted, top right), 

application of variance-weighted linear regression for DGE44 (limma voom, middle left), 

application of surrogate variable analysis for DGE45 (full model + 17 SVs, middle right), 

and application of DESeq2 with the full model46, which uses a negative binomial 

distribution (bottom left). k. Comparison of fold changes between frontal cortex (FC) and 

temporal cortex (TC) for all samples, demonstrating similar changes in both regions. l, 
Average linkage hierarchical clustering of samples in ASD cortex using the top 100 

upregulated and top 100 downregulated protein coding genes, demonstrating that 

confounders do not drive clustering of about two-thirds of samples. m, The first principal 

component of the cortex DGE set is primarily associated with diagnosis, and not with other 

factors. The red line marks a Bonferroni-corrected P = 0.05.

Parikshak et al. Page 12

Nature. Author manuscript; available in PMC 2020 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 2 |. Transcriptome-wide DGE analysis.
a, We applied a classification method robust to overfitting (elastic net model47) by training 

on the RNA-seq data from samples previously analysed in ref. 8 (Extended Data Fig. 1h, 

similar to the comparison in Extended Data Fig. 1i) and classifying ASD versus control 

status in independent samples. Results are shown as a comparison of classification scores 

(left) and area under the receiver operator characteristic curve (AUROC, right). 

Approximately 85% of ASD samples are classified successfully around a false positive rate 

of 20%. b, Summary table describing the subset of representative, covariate matched 

samples used for qRT–PCR validations. Supplementary Table 2 contains the underlying 

values. c, Fold changes from RNA-seq compared against fold changes from qRT–PCR (see 

Supplementary Table 2 for data). d, GO term enrichment analysis of genes that are 

upregulated or downregulated in individuals with ASD. e, Enrichment analysis of cell-type 

specific gene sets (defined as genes with fivefold higher expression in the cell type than in 
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other cell types) with genes that are decreased or increased in ASD. f, g, Independent 

replication analysis of ASD versus control DGE fold changes between previously evaluated 

and new ASD samples from cerebellum by microarray and RNA-seq using samples from 

ref. 8 (similar to Fig. 1a and Extended Data Fig. 1i). The RNA-seq data show a replication 

signal between previously evaluated and new samples from this study. h, Comparison of fold 

changes that were significant at FDR < 0.05 in the ASD versus control DGE analysis from 

cortex compared with fold changes observed in cerebellum, revealing strong concordance 

but a lower average fold change in the cerebellum. i, Sample summary and quality control 

(QC) statistics for ref. 4. Compare to Extended Data Fig. 1b and see Supplementary 

Information for additional discussion. Compared to this study, samples from ref. 4 were 

prepared by poly(A) selection RNA-seq, exhibit lower RNA integrity number (RIN, median 

4.8 versus 7.3), have lower median sequencing depth (11 million versus 40 million), exhibit 

greater 5′−3′ bias, and have generally greater variability across all QC metrics. j, 
Comparison of fold-changes for the top significant genes from ref. 4 (P < 0.01 as provided in 

their Supplementary Information) with the fold changes for the same genes in this study. Co-

expression network analysis demonstrated that the moderate agreement is largely driven by 

concordance in upregulation of microglial genes in both studies (Extended Data Fig. 8e). k, 

Average linkage hierarchical clustering of lncRNAs in the DGE set. l, Boxplots of 

expression values of DGE lncRNAs across multiple tissue types from the Illumina Body 

Map (expression data from ref. 12). Lines above the plot indicate pairwise significance with 

a one-sided Wilcoxon rank-sum test between brain and the other tissues. m, Similar to l, 
except for embryonic stem cells and stem-cell-derived cell types. n, RT–PCR validation of 

the two lncRNAs shown in Fig. 1c, d; P values computed by two-sided Wilcoxon rank-sum 

test.
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Extended Data Figure 3 |. RNA-seq gene expression on genome browser tracks for selected 
primate-specific lncRNAs in human, macaque and mouse.
For each lncRNA, expression for representative samples for ASD versus control (top) in 

human, macaque (middle), and mouse (bottom) are shown. The genome location for 

macaque and mouse displayed is syntenic to the human region, with the expected location of 

the lncRNA highlighted. a–g, Examples of specific lncRNA transcripts that show primate-

specific (in human and macaque, or only in human, but not in mouse) expression. h, 

Example of a strongly conserved lncRNA, which shows robust expression in all three 

species.
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Extended Data Figure 4 |. Splicing analyses and validation in ASD.
a, Schematic of the PSI metric used for differential alternative splicing35. b, Distribution of 

LME model P values for changes in the PSI between ASD and control in cortex for all 

events and event subtypes. c, Distribution of LME model P values for changes in the PSI 

between ASD and control in cerebellum. d, Average linkage hierarchical clustering in ASD 

and control cortex samples using top 100 differentially included and top 100 differentially 

excluded exons from the differential splicing set. e, The first principal component of the 

cortex differential splicing set is strongly associated with diagnosis, but not other factors. 

Red line marks Bonferroni-corrected P = 0.05. f, Comparison of the cortex differential 

splicing with the pipeline used here (TopHat2 (ref. 43) followed by multivariate analysis of 

transcript splicing, MATS35) with PSI values obtained via another method (read alignment 

by OLego followed by PSI quantification with Quantas15). g, Comparison of ΔPSI values 

between RT–PCR and RNA-seq for nine splicing events (Supplementary Table 3). h, 
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Differential splicing analysis identifies events independent of DGE signal. Top,difference 

between ASD and control in the differential splicing set based on PC1 of the differential 

splicing set at the PSI level, and PC1 of the gene expression levels of genes in the 

differential splicing set. Bottom, same comparison after removing nominally differentially 

expressed genes (P < 0.05). P values computed by two-sided Wilcoxon rank-sum test. i, GO 

term enrichment analysis of genes with differential splicing events in ASD. j, Clustering 

dendrogram and heat map for neuronal splicing factor gene expression levels across samples 

demonstrating three major clusters and the known positive correlation between SRRM4 and 

RBFOX1 and anticorrelation between PTBP1 and SRRM4 (refs 14,19).
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Extended Data Figure 5 |. Additional splicing analyses in ASD.
a, PCR validation and sashimi plots for nine splicing events delineated in Extended Data 

Fig. 4d, from the indicated samples (see Extended Data Fig. 2b for details of these samples). 

Notably, these genes are not in the DGE set, but are detected in the differential alternative 

splicing set owing to altered transcript structure. b, Heat map as in Fig. 1h for the splicing 

regulator ESRP48. ESRP is not known to be involved in neuronal function, ESRP1 is not 

expressed in cortex, and ESRP2 is expressed but not significantly different between ASD 

and control cortex. Therefore, we show ESRP enrichment analysis in differential splicing 

events as a control for Fig. 1h. Enrichment P values are computed as described in Methods.
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Extended Data Figure 6 |. Attenuation of cortical patterning in ASD.
a, Histograms of P values from paired Wilcoxon rank-sum test differential gene expression 

between 16 frontal cortex (FC) and 16 temporal cortex (TC) samples from control and ASD 

individuals. b, Histogram of Bartlett’s test P values for differences in gene expression 

variance between ASD and control samples for all genes (white) and genes in the ACP set 

(red). The Kolmogorov–Smirnov (K–S) test P value for a difference between these two 

distributions is shown. c, Histograms of P values from unpaired Wilcoxon rank-sum test 

DGE between 21 frontal cortex and 22 temporal cortex samples after removing those used in 

ref. 8. d, Histogram of Bartlett’s test P values for differences in gene expression variance 

between ASD and control samples for all genes (white) and genes in the ACP set (red). The 

Kolmogorov–Smirnov test P value for a difference between these two distributions is 

reported. e, Approach to training the elastic net model on BrainSpan49,50 frontal cortex and 

temporal cortex samples and application of the model to 123 cortical samples in this study. 
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f–h, Results of learned cortical region classifications with different starting gene sets, with 

the BrainSpan training set (left), control samples (middle) and ASD samples (right) in each 

panel and the Wilcoxon rank-sum test P value of frontal versus temporal cortex difference 

for each comparison. A1C, primary auditory cortex; DFC, dorsolateral prefrontal cortex; 

MFC, medial prefrontal cortex; STC, superior temporal cortex. i, Cell-type enrichment 

analysis for genes in the ACP set. j, GO term enrichment analysis of the ACP set. 

Enrichment P values are computed as described in Methods. k, Enrichment statistics for 

transcription factor motifs found to be significantly enriched in the ACP set (see 

Supplementary Information for details of P value computation). l, Average linkage 

hierarchical clustering of the global gene expression profiles for samples with 

overexpression of SOX5 and green fluorescent protein (GFP) tag overexpression (controls). 

m, Density plots of fold changes for the subset of ACP genes that are predicted SOX5 

targets (top, green) and non-targets (bottom, green) against background (grey). The median 

log2[fold change] is marked (red line) and P values are from a one-sided Wilcoxon rank-sum 

test.
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Extended Data Figure 7 |. Duplication 15q syndrome analyses.
a, Copy number between breakpoints in the 15q region. Genome-wide copy number analysis 

allowed evaluation of copy number in additional regions from previous studies36. b, Sample 

characteristics for the dup15q analyses (additional details available in Supplementary Table 

1). c, Similar to Fig. 3b, but focusing on the lncRNAs found to be significantly differentially 

expressed in idiopathic ASD compared to control subjects. d, Comparison of DGE fold 

changes demonstrating that using different control samples (control samples used in the 

idiopathic analysis, column 2 of Extended Data Fig. 7b) for the dup15q cortex analysis 

yields similar findings. e, Similar to d except for the differential alternative splicing analysis. 

f, Comparison of heterogeneity in the DGE signal using the first principal component of the 

ASD cortex DGE set across all cortical samples used in DGE analyses. Samples from 

individuals with diagnoses confirmed by dup15q mutations, confirmed by Autism 

Diagnostic Interview-Revised (ADI-R), and supported by clinical records are all 
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significantly different from controls by two-sided pairwise Wilcoxon rank sum tests. g, 

Similar to Fig. 3d, but with the larger set of controls from the idiopathic ASD versus control 

analysis in Fig. 1. h, i, P value distributions for DGE changes outside the 15q region for 

cortex and cerebellum. j, Similar to Fig. 3a, but for the cerebellum analysis. k, Comparison 

of significant DGE changes in the duplicated region from cortex with changes in cerebellum. 

l, Comparison of significant DGE changes outside of the dup15q region in cortex with 

changes in cerebellum. Scatter plot P values correspond to the statistical significance of the 

Pearson correlation coefficient between fold changes (see Methods).

Parikshak et al. Page 22

Nature. Author manuscript; available in PMC 2020 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 8 |. Cortex co-expression network analyses.
a, Sample characteristics for the cortex network analyses; additional details available in 

Supplementary Table 1. b, Average linkage hierarchical clustering using the topological 

overlap metric for co-expression dissimilarity37. Modules are identified from this 

dendrogram, which was constructed from a consensus of 100 bootstrapped datasets51,52 (see 

Methods). Correlations for each gene to covariates are delineated below the dendrogram 

(blue, negative; red, positive). Modules are labelled with colours and numerical labels (see 

Supplementary Table 4 for additional details). CTX.M11 is a module of genes that are not 

co-expressed (grey module) and was not evaluated in further comparisons. c, Module-trait 

associations as computed by an LME model with all factors on the x axis used as covariates. 

Technical covariates were removed as part of adjusting the FPKM values. All P values are 

displayed where the association passed Bonferroni-corrected P < 0.05. d, Module 

enrichments for cell-type specific gene expression patterns. Asterisks indicate FDR < 0.05 

across all comparisons. e, Enrichment of ASD-associated modules with that from ref. 4. * 

FDR < 0.05 (see Supplementary Table 4 for details).

Parikshak et al. Page 23

Nature. Author manuscript; available in PMC 2020 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 9 |. Additional figures for cortex co-expression network analyses.
a, Gene set enrichment analyses comparing the 24 cortex co-expression modules with 

multiple gene sets from this RNA-seq study, post-mortem ASD cortex microarray8, human 

cortical development10, the set of all brain-expressed lncRNAs, genes enriched for ASD-

associated rare variants26, and genes with de novo variants associated with intellectual 

disability (ID)9. Boxes are filled if the odds ratio is greater than 0 and the enrichment P < 

0.05. * FDR < 0.05 across all comparisons, controlling for gene length and expression level 

with logistic regression (Supplementary Information). b, Overlap of gene sets between 

firing-rate and mitochondrial associated modules from ref. 53 with ASD-associated modules 

in cortex. c–e, Module plot of ASD-associated modules not shown in Fig. 4 (CTX.M4, 

CTX.M9, CTX.M10) displaying the top hub genes along with the module’s GO term 

enrichment. f, Temporal trajectories for four module eigengenes (CTX.M4, CTX.M9, 

CTX.M10, CTX.M16) associated with ASD, similar to Fig. 4g. ASD samples are 
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represented by red points and lines, control samples by black. g, Module plot and GO term 

enrichment for CTX.M24, which is enriched in ASD-associated rare variants and lncRNAs. 

h, Common variant enrichment across modules as calculated by GWAS enrichment with LD 

score regression41,42 (see Methods). Disease GWAS studies evaluated include ASD54, 

schizophrenia55, inflammatory bowel disease56, type 2 diabetes mellitus57 and serum lipid 

levels58. P values are FDR corrected across all GWAS studies and modules. i, Plot of the 

proportion of SNP heritability across diseases for ASD-associated modules. Error bars 

represent s.e.
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Extended Data Figure 10 |. Cerebellum co-expression network analyses.
a, Sample characteristics for the cerebellum network analyses; additional details available in 

Supplementary Table 1. b, Modules identified from a dendrogram constructed from a 

consensus of 100 bootstrapped networks (see Methods). Correlations for each gene to each 

measured factor are delineated below the dendrogram (blue, negative; red, positive). 

Modules are labelled alphabetically instead of numerically to distinguish them from the 

cortex modules. Additional information is available in Supplementary Table 4. c, Signed 

association of module eigengenes with diagnosis; positive values indicate modules with 

increased expression in ASD samples. Grey bars with labels signify three ASD-associated 

modules. d, Cell-type enrichments for the three ASD-associated modules. e, Gene set 

enrichment analyses comparing the three ASD-associated cerebellum modules with post-

mortem ASD cortex microarray, human brain development, six cortex ASD-associated 

modules from this RNA-seq study, and firing rate and mitochondrial associated modules 
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from ref. 53. Boxes are filled if the odds ratio is greater than 0 and the enrichment P < 0.05. 

* FDR < 0.05 across all comparisons. f–h, Module plots of CB.ML, CB.MP, and CB.MT 

displaying the top hub genes along with the GO term enrichment. Additional details, 

including module preservation statistics for cerebellum in cortex and vice versa, are 

available in Supplementary Table 4.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. Transcriptome-wide differential gene expression and alternative splicing in ASD.
a, Replication of DGE between ASD and control cortex from previously analysed samples 

(16 ASD and 16 control on microarray8) with new age- and sex-matched cortex samples (15 

ASD and 17 control). b, P value distribution of the linear mixed effect (LME) model DGE 

results for cortex and cerebellum. c, LINC00693 and LINC00689 are upregulated in ASD 

and downregulated during cortical development (developmental expression data from ref. 

12). Two-sided ASD–control P values are computed by the LME model, developmental P 
values are computed by analysis of variance (ANOVA). FPKM, fragments per kilobase 

million mapped reads. d, UCSC genome browser track displaying reads per million (RPM) 

in ASD and control samples along with sequence conservation for LINC00693 and 

LINC00689. e, Cell-type enrichment analysis of differential alternative splicing events from 

cortex using exons with ΔPSI (per cent spliced in) > 50% in each cell type compared to the 

others17. f, g, Correlation between the first principal component (PC1) of the cortex 

differential splicing (DS) set and gene expression of neuronal splicing factors in cortex (f) 
and cerebellum (g) (DGE P value in parentheses). h, Enrichment among ASD differential 

splicing events and events regulated by splicing factors and neuronal activity (see Methods). 
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i, Correlations between the PC1 across the ASD versus control analyses for different 

transcriptome subcategories. Bottom left: scatterplots of the principal components for ASD 

(red) and control (black) individuals. Top right: pairwise correlation values between 

principal components.
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Figure 2 |. Attenuation of cortical patterning in ASD.
a, Heat map of genes exhibiting DGE between frontal and temporal cortex at FDR < 0.05. In 

control cortex and ASD cortex, 551 genes and 51 genes, respectively, show DGE in in 

frontal versus temporal cortex. The ACP set is defined as the 523 genes that show DGE 

between regions in control but not ASD samples. RIN, RNA integrity number. b, Schematic 

of transcription factor motif enrichment upstream of genes in the ACP set. c, SOX5 exhibits 

attenuated cortical patterning in ASD (lines: frontal–temporal pairs from the same 

individual). d, Correlation between SOX5 expression and predicted targets in control and 

ASD samples for all ACP genes (top left), SOX5 targets from the ACP set (top right), SOX5 

non-targets from the ACP set (bottom left), and background (all other genes, bottom right). 

Plots show the distribution of Pearson correlation values between SOX5 and other genes in 

ASD and control samples. ΔR, change in median R value between distributions. e, Gene 

Ontology (GO) term enrichment for genes upregulated and downregulated after SOX5 
overexpression in neural progenitor cells. f, Enrichment analysis of the SOX5 differential 

gene expression (DGE) set in the ACP set and all other genes (background). P represents 

significance in enrichment over background by two-sided Fisher’s exact test.
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Figure 3 |. Duplication 15q syndrome recapitulates transcriptomic changes in idiopathic ASD.
a, DGE changes across the 15q11–13.2 region for ASD and dup15q compared to control. 

Error bars show 95% confidence intervals for the fold changes. * FDR < 0.05 across this 

region. BP, breakpoint. b, Comparison of DGE effect sizes in dup15q versus control and 

ASD versus control. c, Comparison of differential alternative splicing effect sizes in dup15q 

versus control and ASD versus control. d, Average linkage hierarchical clustering of dup15q 

samples and controls using the DGE and differential alternative splicing (DS) gene sets.
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Figure 4 |. Co-expression network analysis.
a, Signed association of module eigengenes with diagnosis (Bonferroni-corrected P value 

from an LME model, see Extended Data Fig. 8c and Methods). Positive values indicate 

modules with an increased expression in ASD samples. Grey bars with labels signify six 

ASD-associated modules. b, Cell-type enrichment for the ASD-associated modules. c, Heat 

map of correlations between ASD-associated module eigengenes sorted by average linkage 

hierarchical clustering. d–f, Module plots displaying the top 15 hub genes and top 50 

connections along with the GO term enrichment of each module. g, Plot of CTX.M20 and 

CTX.M19 module eigengenes across age. P values are for the difference between temporal 

trajectories for ASD and control by permutation test (see Methods).
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