
Research Article
The miR-582/CD1B Axis Is Involved in Regulation of
Dendritic Cells and Is Associated with Clinical Outcomes in
Advanced Lung Adenocarcinoma

Jun Guo,1 Hui Jin,2 Yanfeng Xi,3 Jian Guo,4 Yi Jin,1 and Da Jiang 2

1Department of Medical Oncology, Xingtai People’s Hospital, Xingtai, China
2Department of Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
3Department of Pathology, Shanxi Provincial Cancer Hospital, Taiyuan, China
4Division of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, China

Correspondence should be addressed to Da Jiang; jiangda139@163.com

Received 11 August 2019; Revised 19 January 2020; Accepted 19 February 2020; Published 17 March 2020

Academic Editor: Brad Upham

Copyright © 2020 Jun Guo et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The involvement of immune dysfunction in the pathogenesis of lung cancer has been extensively studied. However, the potential
molecular mechanisms through which the tumor immune response affects drug resistance are still unclear. Accordingly, in this
study, we evaluated deviations in the immune cell landscape among patients with different stages of lung adenocarcinoma to
identify key microRNAs and their targets associated with patient outcomes. CIBERSORT was used for estimating the
proportions of immune cells in various lung tissues. Significantly different adaptive and innate immune cell types, including
memory B cells, CD8+ T cells, resting dendritic cells, and resting mast cells, were selected. Comparative studies and survival
analyses were carried out. We found that potential genes and microRNAs involved in immune responses were associated with
patient outcomes. Specifically, miR-582/CD1B, which are involved in resting and activated dendritic cells, may be potential novel
biomarkers for immunotherapy. An independent dataset of miRNA microarray profiles was used to validate the expression of
mature miR-582-5p in patients with advanced lung adenocarcinoma. Alternative treatments, including immunotherapies and
chemotherapy, are urgently needed to improve outcomes in patients with lung cancer. Thus, our findings could provide insights
into the selection of novel microRNAs targeting immune genes and could improve the efficacy of immunotherapy by disrupting
tumor function and promoting immune infiltration in patients with advanced lung adenocarcinoma.

1. Introduction

Lung adenocarcinoma (LADC) is a major cause of cancer-
related death worldwide, accounting for approximately 40%
of non-small-cell lung cancers (NSCLCs) [1, 2]. In early
stages, patients with nonmetastatic lung cancer typically
undergo surgical resection. However, patients with metasta-
tic or advanced stage disease are treated with chemotherapy
alone or in combination with radiation [3]. Although many
innovative therapies, including immunotherapies and molec-
ular targeted therapies, have been developed, the survival rate
of patients with LADC is still low because of histological sub-

type tumor heterogeneity, poor understanding of disease
pathogenesis, and drug resistance. Therefore, additional
molecular characterization of the LADC landscape could
help researchers and clinicians to identify novel biomarkers
or molecular targets, design novel therapeutic strategies,
and improve patient outcomes [4].

In the past decade, the import roles of the tumor micro-
environment (TME) in the initiation and progression of pri-
mary and secondary lung carcinoma have been uncovered,
and the TME has been recognized as a target-rich environ-
ment for novel anticancer agents [5–7]. Several approved
drugs targeting different biomarkers in the TME have been
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used in the clinical setting; these include immune checkpoint
inhibitors and vascular endothelial growth factor inhibitors
[8]. Newman et al. developed the in silico tool CIBERSORT,
which can be used to quantify 22 immune cell types using
547 gene expression profiles from various tissues [9]. This
approach is easier and more convenient than traditional
approaches for identification of immune cell-based prognos-
tic and therapeutic markers after stratification into molecular
subtypes. Previous studies have also evaluated the roles of
innate and adaptive immune dysfunction in the lung TME,
which could promote or suppress tumor activities and affect
clinical outcomes [10–12].

During the adaptive immune response, various subtypes
of T cells, particularly CD4+ and CD8+ T cells, infiltrate
tumors and mediate responses to immune checkpoint inhibi-
tion. Markowitz et al. reported that the depletion of CD4+
and/or CD8+ T cells combined with an anti-programmed
cell death 1 (PD1) antibody reduces the therapeutic efficacy
of the PD1 blockade in a KRAS-driven mouse model of
NSCLC [13]. Tumor infiltration of B cells also plays key roles
in the TME. Germain et al. showed that B cells and CD4+ T
cells reside in tertiary lymphoid structures and are associated
with an improved prognosis in patients with NSCLC [14].

During the innate immune response, dysfunction of den-
dritic cells (DCs), neutrophils, and natural killer (NK) cells
has also been reported in studies of lung cancer. DCs fail to
stimulate T cells because of upregulation of the coinhibitory
molecule CD276 in patients with lung cancer [15]. Moreover,
transforming growth factor-β (TGFβ), which induces the
differentiation of CD4+ T cells to suppress T cell prolifera-
tion, can be produced by DCs [16]. The function of neutro-
phils is also complex; these cells can not only promote
carcinogenesis through angiogenesis and metastasis but also
limit the growth of tumors through production of antitumor
and cytotoxic mediators [17, 18]. In the lung TME, TGFβ
regulates NK cell responses by mediating the polarization
of NK cells towards a proangiogenic phenotype [19]. Taken
together, these studies suggest that detecting dysfunction of
innate and adaptive immunity in the occurrence and devel-
opment of lung cancer is necessary for fully elucidating the
potential molecular mechanisms.

MicroRNAs (miRNAs) are small noncoding RNAs of
approximately 20–24 nucleotides. These molecules have
recently been shown to modulate gene expression via post-
transcriptional regulation of mRNA and are important bio-
markers of tumor suppressors, oncogenes, diagnosis, and
prognosis. miRNAs affect immune escape, leading to the
generation of a TME favoring tumor growth and progression
[20]. Furthermore, miRNAs have also been shown to affect
the regulation of immune checkpoints, including PD1 and
PD1 ligand [21–23]. However, the mechanisms through
which miRNAs regulate immune responses are still unclear.

Accordingly, in this study, we used CIBERSORT to esti-
mate the proportions of different immune cells in LADC
samples with different TNM stages and then examined the
roles of miRNAs and their targets in determining survival
and patient outcomes in patients with LADC. Our findings
provided insights into the applications of immunotherapies
in patients with LADC.

2. Materials and Methods

2.1. Datasets and Preprocessing. First, gene expression pro-
files and miRNA expression profiles from 495 LADC samples
were downloaded from the UCSC Xena platform [24]. The
proportions of different immune cells among all samples
were estimated based on LM22 signature files using CIBER-
SORT [9], an analytical tool that can accurately quantify
the relative levels of distinct immune cell types within a com-
plex gene expression mixture. To characterize and quantify
each immune cell subtype, CIBERSORT used gene expres-
sion signatures consisting of 547 genes (LM22 files). From
the results of CIBERSORT, 318 samples that met the require-
ments of CIBERSORT p value less than 0.05 were selected.
Among these samples, 315 samples (177, 77, 48, and 13 sam-
ples with TNM stages 1–4, respectively) were selected for fur-
ther analysis of clinical outcomes (i.e., overall survival (OS))
and had paired miRNA/RNA sequencing data. All samples
were divided into two groups according to TNM stage, i.e.,
early stage (TNM stages 1 and 2) and advanced stage
(TNM stages 3 and 4). An independent miRNA profile
microarray (GSE48414) of LADC with different stages and
an independent gene profile microarray (GSE31210) of
LADC with OS were used for validation [25, 26].

2.2. Analysis of Differentially Expressed Genes (DEGs) and
miRNAs. DEGs and differentially expressed miRNAs were
identified between different lung tissues with the threshold
of absolute fold change greater than 1.5 and adjusted p value
less than 0.05 using R package “limma.”.

2.3. Identification of miRNA/Target Gene Pairs. Candidate
pairs of miRNA/target gene were predicted using the pre-
diction algorithm MirTarget [27]. MirTarget predicted tar-
gets with scores between 50 and 100; higher scores
indicated higher confidence of prediction. A predicted tar-
get with a prediction score of greater than 80 was consid-
ered most likely to be real; accordingly, we set this as our
cutoff for selection. Stem-loop miRNAs were identified in
The Cancer Genome Atlas (TCGA), and mature miRNAs
were identified in MirTarget; the miRNA identification
information was downloaded from miRBase (V22.1), and
stem-loop miRNAs were mapped into mature miRNAs
[28]. The regulation of miRNAs and target genes was visu-
alized by Cytoscape (Version 3.7.1) [29]. The regulation of
miR-582 and CD1B was predicted by TargetScanHuman
(Release 7.2) [30].

2.4. Survival Analysis. COX Hazards (COXPH) regression
was carried out to assess whether proportions of immune
cells from CIBERSORT and related gene expression levels
were associated with patient outcomes. Proportions of
immune cells from CIBERSORT and expression values of
genes consistently identified were grouped into high and
low categories based on median values. Kaplan-Meier sur-
vival analysis and log-rank tests were used. All statistics were
calculated using R language (Version 3.5.2).
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3. Results

3.1. Data Processing. Gene expression profiles from 495
LADC samples were downloaded from the UCSC Xena plat-
form [24]. The proportions of different immune cells for all
samples were then estimated based on LM22 signature files
using CIBERSORT [9]. From the results of CIBERSORT,
318 samples were selected, among which 315 were used for
further analysis of clinical outcomes (OS) and had paired
microRNA/RNA sequencing data (details are given in Sup-
plementary Materials 1). All samples were then divided into
early and advanced stage LADC. The workflow is shown in
Figure 1.

3.2. Immunity Cell Comparison. CIBERSORT was used to
estimate the fractions of different immune cells during data
preprocessing (Supplementary Materials 2). As shown in
Figure 2(a), M2 macrophages, M0 macrophages, CD4+ rest-
ing memory T cells, T follicular helper cells, and M1 macro-
phages were the five most common immune cell fractions in
LADC, and the sum of their mean proportions was 67.16%
for all clinical subgroups. The mean and standard deviation
values of cell fractions in all 22 cell types are described in
Table 1. Comparative studies were carried out to reveal dif-
ferences between different stages. Four immune cell types,
including memory B cells (p = 7:09E − 4), CD8+ T cells
(p = 2:15E − 2), resting DCs (p = 3:15E − 2), and resting mast
cells (p = 4:51E − 2), were altered significantly between
patients with early stage and advanced stage LADC
(Figures 2(b)–2(e)). Interestingly, the fractions of all four of
these cell types were lower in patients with advanced stage
disease than in patients with early stage disease. Differences
in cell fractions between the four stages are shown in Supple-
mentary Figure S1. These results provided evidence of the
dysfunctional immune response in advanced LADC.

3.3. miRNA/Target Gene Pairs Involved in the Immune
Response. In order to determine the molecular mechanisms
of different fractions of immune cells and identify candidate
genes, miRNA/target gene pairs were predicted. First, stem-
loop miRNAs expressed (RSEM > 0) in at least half of LADC
samples were selected. Second, the selected miRNAs were
transformed into mature miRNAs by miRBase [28]. Finally,
the regulation of 547 immune genes contained in CIBER-
SORT by mature miRNAs was predicted by MirTarget [27].
In total, 3935 pairs of miRNAs/target genes, including 554
stem-loop miRNAs (802 mature miRNAs) and 413 genes,
were selected.

DEGs and differentially expressed miRNAs were then
identified. Among 547 immune genes, 40 genes were
downregulated, and three genes were upregulated. Most
of the DEGs were involved in memory B cells and CD8+ T
cells, and these results were consistent with differences in cell
fractions estimated by CIBERSORT. Moreover, six miRNAs
(miR-582, miR-372, miR-196b, miR-9-1, miR-9-2, and miR-
9-3) were upregulated, and no miRNAs were downregulated.
The String database was used to find interactions between
DEGs (combined score > 0:7), and an miRNA/gene interac-
tion network was then constructed (Figure 3 and Supplemen-
tary Materials 3).

3.4. Influence of mRNA and miRNA Expressions on OS. As
previously described, we observed significant differences in
immune cell compositions between early and advanced stage
LADC. Immune cell migration and/or retention in tumors
can affect OS and/or recurrence-free survival [13]. Therefore,
we hypothesized that genes and miRNAs involved in these
immune cells could be significantly associated with OS.
COXPH analysis identified 35 DEGs and 1 differentially
expressed miRNA significantly associated with OS
(Table 2). The upregulated miRNAmiR-582was significantly
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Figure 1: Workflow of integrative analysis of the regulation of miRNA-target in LADC.
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associated with OS (p = 1:34E − 4, hazard ratio (HR), 95%
confidence interval (CI): 1.5 (1.22–1.85)) in advanced stage
disease. Kaplan-Meier analyses and log-rank tests suggested

that miR-582 was significantly negatively associated with
OS (Figure 4(a)). Moreover, miR-582 regulated the DEG
CD1B, which was identified as a biomarker of resting and
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Figure 2: Fractions of immune cells in various LADC samples. Fractions of 22 immune cells in all LADC samples calculated by CIBERSORT
are shown in (a). CIBERSORT immune cell fractions were determined for each sample; each dot represents one sample. Mean values and
standard deviations for each cell subset, including B memory cells (b), resting dendritic cells (c), resting mast cells (d), and CD8+ T cells
(e), were calculated for each sample group and compared using Kruskal-Wallis tests.
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Table 1: The cell fractions in different lung cancer samples calculated by CIBERSORT.

Cell type Wilcoxon p value Mean (early) Mean (advanced) Std (early) Std (advanced)

B cells naive 1:10E − 01 2.66 3.16 2.78 2.87

B cells memory 7:09E − 04 3.52 1.17 5.51 2.30

Plasma cells 9:32E − 01 0.51 0.24 1.91 0.68

T cells CD8 2:15E − 02 6.43 5.33 5.82 6.80

T cells CD4 memory resting 2:01E − 01 13.71 12.64 5.89 6.14

T cells CD4 memory activated 5:80E − 01 0.70 0.90 1.37 1.65

T cells follicular helper 9:49E − 01 7.33 7.46 3.83 4.33

T cells regulatory (Tregs) 4:18E − 01 3.58 3.34 2.52 2.56

NK cells resting 3:55E − 01 2.83 3.16 2.40 2.49

NK cells activated 5:88E − 01 1.06 0.87 1.78 1.40

Monocytes 3:51E − 01 1.88 1.54 3.24 2.45

Macrophages M0 1:03E − 01 16.04 18.73 12.28 12.79

Macrophages M1 7:35E − 01 6.58 6.75 4.36 5.30

Macrophages M2 2:13E − 01 22.81 24.47 8.59 10.25

Dendritic cells resting 3:14E − 02 2.00 1.47 4.11 4.04

Dendritic cells activated 5:28E − 02 2.50 3.66 3.89 4.51

Mast cells resting 4:51E − 02 5.11 4.18 3.72 3.44

Mast cells activated 7:23E − 01 0.18 0.18 1.00 0.86

Neutrophils 3:63E − 01 0.50 0.66 0.93 1.01
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5BioMed Research International



activated DCs. CD1B has been shown to be related to the
major histocompatibility complex proteins and mediates
the presentation of primarily lipid and glycolipid antigens
of self or microbial origin to T cells. COXPH analysis showed
that CD1B was significantly associated with OS in early stage
disease (p = 2:39E − 2, HR (95% CI): 0.868 (0.767–0.982)),
advanced stage disease (p = 4:25E − 2, HR (95% CI): 0.828
(0.69–0.995)), and all samples (p = 3:22E − 4, HR (95% CI):

0.831 (0.751–0.92)). Significant CD1B results of Kaplan-
Meier analyses and log-rank test are shown in Figure 4(b).
The expression levels of miR-582 and CD1B are shown in
Figures 4(c) and 4(e). CD1B was downregulated, whereas
miR-582 was upregulated in LADC samples from patients
with advanced stage disease.

Furthermore, other miRNA/target predication methods
and independent miRNA/gene expression profiles were used
to validate our results. First, the regulation of miR-582 and
CD1B was also validated (Figure 5(e)) using TargetScanHu-
man [30]. Second, to investigate the expression levels of
mature miR-582-5p produced by stem-loop miR-582, an
independent miRNA profile microarray (GSE48414) was
used (Figure 4(d)). The results showed that miR-582-5p was
upregulated (fold change = 2:06) in advanced LADC. More-
over, an independent gene profile microarray (GSE31210)
of LADC showed that CD1B was significantly associated with
OS (p = 0:048; Figure 5(c)). Taken together, these results sug-
gested thatmiR-582/CD1Bmay play key roles in the dysfunc-
tion of DCs and could be associated with clinical outcomes in
advanced LADC.

4. Discussion

The efficacy of treatments for lung cancer is limited by a lack
of early detection methods and the acquisition of drug resis-
tance. Tumor cells can distort host immune checkpoints in
various ways to escape immune responses and promote the
development and progression of lung cancer [31]. Currently,
researchers are focusing on checkpoints for limiting the
activity of T cells by cytotoxic T lymphocyte antigen-
(CTLA-) 4 in early stage disease and PD1 (and/or PD-L1)
in advanced stage disease [32]. The use of monoclonal anti-
bodies and other blockers to block these immune check-
points has been reported to exert beneficial effects in
patients with NSCLC in clinical trials [33]. Thus, the identi-
fication of novel and effective immunotherapeutic targets is
urgently required.

miRNAs play key roles as potential biomarkers for resis-
tance or sensitivity to chemotherapeutic drugs in lung cancer.
For example, miR-200 has been found to be associated with
high PD-L1 expression, which is involved in intratumoral
immunosuppression by targeting ZEB [22]. Additionally,
Boldrini et al. reported that miR-33a-5p is highly expressed
in LADC; negatively related to PD1, PD-L1, and CTLA-4
expression; and positively associated with an improved prog-
nosis [23]. Furthermore, the miR-197/CDC28 protein kinase
regulatory subunit 1B/signal transducer and activator of
transcription 3 regulatory network mediates PD-L1 expres-
sion and is associated with outcomes in patients with NSCLC
[21]. Thus, the discovery of novel miRNAs and their targeted
immune genes (or immune checkpoints) may facilitate the
development of novel beneficial therapeutic modalities for
patients with lung cancer, particularly for those with drug-
resistant phenotypes.

In this study, CIBERSORT was applied to assess differen-
tial immune cell fractions between early and advanced stage
LADC. Notably, memory B cells, CD8+ T cells, resting
DCs, and resting mast cells were significantly reduced in

Table 2: Differentially expressed genes and miRNA associated with
OS.

Symbol FC HR (95% CI) COX_P

ACHE -0.69 0.866 (0.779-0.963) 7:79E − 03
AMPD1 -0.64 0.888 (0.799-0.987) 2:77E − 02
BARX2 0.65 1.12 (1.02-1.24) 2:21E − 02
BLK -0.8 0.874 (0.794-0.963) 6:38E − 03
CCL17 -0.67 0.893 (0.816-0.978) 1:40E − 02
CD19 -0.85 0.879 (0.802-0.962) 5:17E − 03
CD1B -0.74 0.831 (0.751-0.92) 3:22E − 04
CD1E -0.68 0.85 (0.775-0.933) 5:30E − 04
CD22 -0.7 0.843 (0.746-0.952) 5:89E − 03
CD40LG -0.63 0.795 (0.691-0.914) 1:26E − 03
CD79A -0.73 0.872 (0.781-0.974) 1:48E − 02
CD79B -0.6 0.814 (0.709-0.934) 3:38E − 03
CEACAM8 -0.9 0.803 (0.695-0.927) 2:35E − 03
CPA3 -0.62 0.879 (0.797-0.968) 8:81E − 03
CR2 -0.99 0.889 (0.825-0.958) 1:94E − 03
CTSG -0.87 0.86 (0.782-0.946) 1:90E − 03
CXCR5 -0.69 0.863 (0.765-0.974) 1:68E − 02
FCER2 -0.79 0.878 (0.797-0.967) 8:44E − 03
FCRL2 -0.74 0.86 (0.771-0.959) 6:65E − 03
GRAP2 -0.59 0.798 (0.679-0.937) 5:85E − 03
HDC -0.63 0.863 (0.767-0.971) 1:39E − 02
HLA-DOB -0.64 0.774 (0.664-0.902) 1:04E − 03
HPGDS -0.68 0.823 (0.74-0.915) 3:22E − 04
IL5RA -0.62 0.878 (0.788-0.979) 1:88E − 02
LY9 -0.61 0.767 (0.656-0.897) 8:93E − 04
MS4A1 -0.99 0.879 (0.811-0.953) 1:76E − 03
MS4A2 -0.65 0.851 (0.763-0.949) 3:52E − 03
NCR3 -0.66 0.819 (0.713-0.94) 4:60E − 03
SKA1 0.59 1.27 (1.1-1.47) 1:53E − 03
SPIB -0.84 0.858 (0.768-0.958) 6:52E − 03
STAP1 -0.84 0.762 (0.67-0.866) 2:99E − 05
TNFRSF13B -0.87 0.861 (0.775-0.957) 5:52E − 03
TRAT1 -0.62 0.875 (0.767-0.999) 4:87E − 02
VPREB3 -0.67 0.861 (0.769-0.963) 8:70E − 03
ZAP70 -0.62 0.86 (0.753-0.982) 2:59E − 02
hsa-mir-582 0.62 1.22 (1.05-1.4) 8:09E − 03
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patients with advanced stage cancer. There were 43 DEGs
and six miRNAs that were identified. Most of the DEGs were
downregulated and were involved in memory B cells and
CD8+ T cells, and all of the miRNAs were upregulated.
COXPH analysis suggested that the fraction of resting DCs
was significantly related with OS. Furthermore, miR-582
was significantly associated with OS by targeting CD1B.
Recently, a phase I trial of patients with advanced NSCLC
suggested that intratumoral vaccination with autologous
DCs could increase infiltration of CD8+ T cells into tumors
and increase the expression levels of PD-L1 [34].

In our study, we stratified patients according to miR-582
and CD1B expression and showed that patients with higher
CD1B expression showed significantly increased fractions of
resting mast cells, monocytes, memory B cells, and activated
and resting DCs but significantly decreased fractions of fol-
licular helper T cells, resting NK cells, M0 macrophages,

and naïve B cells (Figures 5(a) and 5(b)). These results sug-
gested that CD1Bmay be involved in the biological processes
of the immune system. Additionally, we identified several
checkpoint-related molecules, including PDCD1, CTLA4,
LAG3, and HAVCR2, and showed that CD1B was signifi-
cantly positively correlated with HAVCR2 and CTLA4
(Figure 5(d)).

The use of miRNAs as therapeutic agents is still being
investigated. The expression levels of oncogenic (or tumor-
suppressive) miRNAs can be changed using small interfering
RNA, miRNAmimics, and small molecule inhibitors of miR-
NAs. A recent phase I clinical trial showed that miR-34a-
loaded liposomes (MRX34) significantly decreases the
expression of PD-L1 [35]. In addition, a combination of
MRX34 and radiotherapy can enhance the CD8+ cell count
and reduce tumor infiltration by macrophages and regulatory
T cells [35]. Thus, the use of miRNAs as therapeutic agents
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Figure 4: Association ofmiR-582/CD1Bwith OS. Patients were stratified into high and low categories based on the median expression level of
miR-582 (or CD1B) for Kaplan-Meier survival analysis by OS, and the results are shown (a, b). The different expression levels ofmiR-582 and
CD1B are shown (c, e). The expression levels of mature miR-582-5p in LADC samples from various stages were determined using the
independent miRNA profile microarray GSE48414 (d).

7BioMed Research International



ns

ns

ns

⁎⁎⁎

ns

ns

ns

ns

⁎

ns

ns

ns

⁎

ns

ns

ns

ns

ns

ns

B cells memory

B cells naive

Dendritic cells activated

Dendritic cells resting

Macrophages M0

Macrophages M1

Macrophages M2

Mast cells activated

Mast cells resting

Monocytes

Neutrophils

NK cells activated

NK cells resting

Plasma cells

T cells CD4 memory activated

T cells CD4 memory resting

T cells CD8

T cells follicular helper

T cells regulatory (Tregs)

0.0 0.2 0.4 0.6
Fraction

High

Low

(a)

ns

ns

ns

ns

⁎⁎⁎⁎

⁎⁎⁎⁎

⁎⁎⁎⁎

⁎⁎⁎⁎

⁎⁎⁎⁎

⁎⁎⁎⁎

⁎⁎⁎⁎

⁎⁎⁎

⁎⁎

⁎

ns

ns

ns

⁎⁎

ns

B cells memory

B cells naive

Dendritic cells activated

Dendritic cells resting

Macrophages M0

Macrophages M1

Macrophages M2

Mast cells activated

Mast cells resting

Monocytes

Neutrophils

NK cells activated

NK cells resting

Plasma cells

T cells CD4 memory activated

T cells CD4 memory resting

T cells CD8

T cells follicular helper

T cells regulatory (Tregs)

0.0 0.2 0.4 0.6
Fraction

High

Low

(b)

Figure 5: Continued.

8 BioMed Research International



p = 0.048

0.00

0.25

0.50

0.75

1.00

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (days)

O
S

83 83 83 79 76 69 61 55 44 27 0

82 82 78 76 67 63 51 42 29 22 1

Time (days)

High
Low

(c)

1.00

0.34

0.27

0.05

−0.11

0.34

1.00

0.43

0.35

0.22

0.27

0.43

1.00

0.70

0.59

0.05

0.35

0.70

1.00

0.73

−0.11

0.22

0.59

0.73

1.00

CD1B HAVCR2 CTLA4 PDCD1 LAG3

CD1B

HAVCR2

CTLA4

PDCD1

LAG3

Type

Type

Type

Checkpoint
Signature

0

0.2

0.4

0.6

0.8

1

(d)

Site
type

Context++
score

Context++ score
percentile

Weighted context++
score

Conserved branch
length 

PCT

Position 170-177 of CD1B 3’UTR
8mer –0.54 99 -0.54 0.543 N/A

hsa-miR-582-5p

Predicted consequential pairing of traget region (top) and 
miRNA (bottom)

(e)

Figure 5: Relationships between miR-582 and CD1B expression and immune cell types. Patients were stratified according to miR-582 and
CD1B expression. The different fractions of immune cell subtypes were then compared using Kruskal-Wallis tests (a, b). Patients were
stratified into high and low categories based on the median expression level of CD1B for Kaplan-Meier survival analysis by OS, and the
results were determined based on the independent gene profile microarray GSE31210 (c). Pearson correlation coefficients between CD1B
and various checkpoint molecules (PDCD1, CTLA4, LAG3, and HAVCR2) were calculated (d). The regulation of miR-583 and CD1B was
predicted by TargetScanHuman (e).
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may become realistic in the future. Importantly, in this study,
we identified six upregulated miRNAs (miR-582, miR-372,
miR-196b, miR-9-1, miR-9-2, and miR-9-3) in the compari-
son of early and advanced stage LADC. Among these miR-
NAs, miR-582 has been reported to promote tumorigenesis
by targeting phosphatase and tensin homolog in colorectal
cancer [36]. Moreover, miR-196b promotes cell migration
and invasion by targeting FOXP2 in hepatocellular carci-
noma and regulates self-renewal, differentiation, and
transformation by targeting HOXC8 in breast cancer stem
cells [37, 38]. miR-9 has an inhibitory role in papillary
thyroid cancer by targeting BRAF and reduces metastatic
behavior in triple-negative breast cancer by targeting
NOTCH1 [39, 40]. However, the roles of these miRNAs
in lung cancer and their potential therapeutic applications
have not been evaluated.

The goal of this study was to identify variant immune cell
fractions in different stages of LADC and elucidate key miR-
NAs and their targeting immune genes. However, there were
some limitations to this study. First, the patient sample size,
particularly for the group of advanced LADC samples, was
not large. Second, TCGA datasets only contained tumor sam-
ples. Thus, analysis of paired adjacent tissues is required in
order to fully understand changes in the expression levels
of miRNAs and immune genes occurring in healthy tissues
versus advanced LADC. Third, additional approaches and
immune-related genes could be used for estimating the frac-
tions and activation of various immune cells. Further studies
should also evaluate whether the cutoff values set in this
study could have an effect on prediction of the regulation of
miRNAs and targets. What is more, laboratory studies
should be performed to confirm these results. Despite these
limitations, our findings provided important insights into
the roles of miRNAs in the development, progression, and
treatment of LADC.

Data Availability

The gene expression profiles, miRNA expression profiles,
phenotypes and survival data of the 495 TCGA LADC sam-
ples used to support the findings of this study have been
deposited in the UCSC Xena platform (https://xenabrowser
.net/datapages/) and named “GDC TCGA Lung Adenocarci-
noma (LUAD)”. The independent miRNA profile GSE48414
and the independent gene profile GSE31210 were obtained
from the gene expression omnibus (https://www.ncbi.nlm
.nih.gov/geo/).
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