Skip to main content
. Author manuscript; available in PMC: 2020 Mar 29.
Published in final edited form as: Conf Proc IEEE Eng Med Biol Soc. 2018 Jul;2018:1–4. doi: 10.1109/EMBC.2018.8513070

Table 1:

3D-CNN architecture.

Layer Kernel Size Stride Output Size Feature Volumes
Input - 48×48×32 1(or 2)
C1 5×5×5 [1 1 1] 44×44×28 32 (or 64)
C2 3×3×3 [1 1 1] 42×42×26 64
C3 3×3×3 [1 1 1] 40×40×24 64
C4 3×3×3 [1 1 1] 38×38×22 64
C5 3×3×3 [1 1 1] 36×36×20 64
MP1 2×2×2 [2 2 2] 18×18×10 64
C6 3×3×3 [1 1 1] 16×16×8 64
C7 2×2×2 [1 1 1] 15×15×5 64
C8 3×3×3 [1 1 1] 13×13×4 64
MP2 3×3×3 [2 2 2] 6×6×2 64
C9 3×3×3 [1 1 1] 6×6×2 64
C10 3×3×1 [1 1 1] 6×6×2 64
C11 3×3×1 [1 1 1] 6×6×2 64
C12 3×3×1 [1 1 1] 6×6×2 32
FC1 1×1×1 512
FC2 1×1×1 256
FC3 1×1×1 3
*

C indicates Convolution layer + ReLU layer +Batch Normalization layer; MP indicates Max-pooling layer; and FC indicates Fully connected layer.