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A B S T R A C T

During the last decade, the propagation of immunological knowledge describing the critical role of

dendritic cells (DC) in the induction of efficacious immune responses has promoted research and

development of vaccines systematically targeting DC. Based on the promise for the rational design of

vaccine platforms, the current review will provide an update on particle-based vaccines of both viral and

synthetic origin, giving examples of recombinant virus carriers such as adenoviruses and biodegradable

particulate carriers. The viral carriers carry pathogen-associated molecular patterns (PAMP), used by the

original virus for targeting DC, and are particularly efficient and versatile gene delivery vectors. Efforts in

the field of synthetic vaccine carriers are focussing on decorating the particle surface with ligands for DC

receptors such as heparan sulphate glycosaminoglycan structures, integrins, Siglecs, galectins, C-type

lectins and toll-like receptors. The emphasis of this review will be placed on targeting the porcine

immune system, but reference will be made to advances with murine and human vaccine delivery

systems where information on DC targeting is available.
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1. ‘‘Targeting’’ for efficient vaccination

The ideal scenario for efficacious vaccination requires initiation
of a potent immune response by a vaccine formulated to resemble
the situation of the natural infection [1,2]. In reality, vaccines are
manufactured to resemble as close as possible the pathogen in
question, but lacking a pathogenic nature; elaboration of this
approach has sought to dissect the vaccine into the most pertinent
immunogenic component(s) for promotion of protective immune
defences. With virus vaccines based on the whole virus,
approaches have included the application of attenuated variants
as well as inactivated antigen. Moreover, a study of the evolution in
vaccine design to combat viral infections shows how manipula-
tions of the vaccine composition have increased the success rate for
generating efficacious vaccines. An appreciation of these
approaches, and their evolution, shows three main elements
essential for successful vaccination. (i) The antigenic character-
istics of the vaccine itself. (ii) The mode of vaccine delivery; until
the last decade often ignored or relegated to the position of an
‘‘also-ran’’. This has a particular significance in that efficient
vaccine delivery relates directly to vaccine proficiency at targeting
the host immune system. (iii) Adjuvant application, a major tool
and often critically important component for an efficacious
vaccine. This is a major provider of the ‘‘danger’’ signals necessary
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for activating the innate responses essential for promoting
efficacious specific immune defences. Although viruses and
bacterial components can themselves provide danger signals,
these may require efficient replication of the pathogen, which is
not possible with inactivated or subunit vaccines. Alternatively,
only a week danger signal may be provided due to a low-level
interaction with the appropriate receptors, or the presence of
inhibitory signals.

Overall, the vaccine must be efficiently delivered to the
appropriate compartments of the immune system, leading to the
correct signalling of the immune system to process the vaccine,
and promotion of efficacious vaccination. Accordingly, an
important issue for vaccine design is consideration of the ligands
carried by a number of pathogens, which interact with receptors
on cells of the immune system. Adjuvants also contain compo-
nents interacting with immune cells, particularly of the innate
immune defences. In both respects, the involvement of dendritic
cells (DC) is crucial, due to their role as central players in the
immune defence development (Supplementary Fig. 1). DC ensure
both appropriate recognition of danger signals and correct
processing of the vaccine antigen, promoting efficacious devel-
opment of innate and acquired immune defences [3].

2. Immune defence induction via vaccination: the
critical role for DC

In order to appreciate how vaccines can be targeted to the
immune system, for enhancing their efficacy, it is necessary to

mailto:Kenneth.mccullough@ivi.admin.ch
http://www.sciencedirect.com/science/journal/0145305X
http://dx.doi.org/10.1016/j.dci.2008.07.015


K.C. McCullough, A. Summerfield / Developmental and Comparative Immunology 33 (2009) 394–409 395
appreciate the central role played by the DC therein, because these
are critical targets for vaccine delivery (Supplementary Fig. 1).
Most inactivated, protein-based vaccines induce acquired (spe-
cific) immune responses involving MHC Class II-restricted T-helper
(Th) and B lymphocytes: Antibody-dependent immune defences.
An additional defence important for removing infected or ‘‘altered
self’’ host cells is that involving MHC Class I-restricted cytotoxic T
lymphocyte (CTL) responses, although these are less evident
following vaccination with inactivated vaccines. Overall, the
central and key player for inducing efficacious acquired immunity
is the DC [4]. These areas are covered in detail elsewhere [3].
Following endocytosis of the vaccine, DC process the antigen
towards presentation of derived peptides to T lymphocytes (in
association with either MHC Class II or Class I molecules). Advances
in murine and rat immunology have shown that DC may ‘‘deliver’’
antigen in a more intact form to B lymphocytes, releasing the
antigen to stimulate the B lymphocytes [5]. Furthermore, DC
release cytokines of major importance for B lymphocyte activity:
type I interferon (IFN), IL-6, IL-12 and BAFF [6].

Efficacious vaccination is dependent on the efficiency with
which the vaccine interacts with the DC subsets. This raises the
question of vaccine delivery, which will influence how both
conventional DC (cDC) and plasmacytoid DC (pDC) – as well as
monocytes and macrophages – become involved. DC possess a
broad spectrum of cell surface receptors involved in the initiation,
promotion and execution of immune responses [7]; importantly,
the expression patterns for these receptors vary between cDC and
pDC. Among these are the TLR, scavenger receptors, and C-type
lectin receptors (Fig. 1). All are important pattern recognition
receptors (PRR), recognizing PAMP on pathogens – and indeed
antigens, adjuvants and vaccines – essential for the development
of innate immune responses and defences [8,9]. With PAMP
binding to PRR on the DC surface, they also offer potential as
targets for vaccine delivery. Ligation of particular PRR evokes
rapid activation of the cell, inducing pro-inflammatory cytokine
release and upregulation of co-stimulatory molecules on leuko-
cytes, as seen with DC and macrophages [9]. With other PRR, such
as certain C-type lectin receptors, their ligation leads to enhanced
endocytosis. For DC acting as antigen-presenting cells (APC), the
ligation can also lead to induction of DC maturation—an essential
step licensing these cells to induce potent effector as well as
memory immune responses [10,11]. A good example of PAMP
ligating PRR to activate cDC is seen with bacterial lipopeptides and
Fig. 1. Examples of known receptors on DC, which may have potential for targeting vacci

ligands with which the receptors interact.
lipoproteins recognized by heterodimeric TLR2-TLR1 or TLR2-
TLR6. Lipopeptides deliver a strong activation signal to DC, which
is the basis of their potent activity as immunoadjuvants in vitro

and in vivo, at least in rodents and primates [12–14]. C-type lectin
PRR such as the multilectin DEC-205 receptor and the mannose
receptor are more involved in enhanced endocytosis. Ligation of
these receptors has also shown potential for vaccine targeting and
activation of DC [15]. In the murine system, ligation of DEC-205
enhances receptor-dependent endocytic processes leading to
efficient recycling of the antigen through late endosomes—such
processing is likely to enhance antigen presentation to CD4+

helper T lymphocytes. In contrast, ligation of the mannose
receptor tends more to promote recycling through the peripheral
endosomal compartment.

These few examples of how targeting specific receptors on DC
can result in a different form of signalling to the DC is an important
consideration for targeting vaccines to the immune system.
Dependent on the receptor being targeted, the antigen may be
‘‘delivered’’ to different compartments of the DC, with important
consequences for the type of immune response induced. Conse-
quently the following sections will use selected examples of
vaccine developments to demonstrate how vaccine may be
targeting the immune system. When possible, examples will be
given for the porcine field. This will be elaborated using more
general advances in immunology characterizing the interaction of
DC with vaccine carriers promoting interaction with surface
receptors on the DC.

3. Recombinant vector vaccines with potential for targeting the
porcine immune system

An important element in the concept of recombinant vector
vaccines is selecting immunogenic structures of the pathogen to
replace the pathogen itself, ensuring its efficient delivery to the
immune system as in the form of a biologically active carrier. This
approach helps reduce the risks associated with handling the live
pathogen, and the problems of incomplete inactivation or
reversion of attenuation. The approach must ensure that the
vaccine retains a high level of immunogenicity, which is more
difficult to achieve with subunit or protein/peptide vaccines.

Viruses possess natural ligands for binding to receptors of the
cells they infect; receptors have been identified for some viruses
employed for vaccine design, but not for all (Fig. 2). Although
nes, based on work performed with vaccine targeting to DC, or from analyses of the



Fig. 2. Examples of viruses employed as vectors for vaccine delivery, as well as vaccines which can provide information in terms of potential receptors for vaccine targeting.

The figure also shows the receptors targeted by certain of the viruses, when this is known, as well as receptors which may be employed by virus vectors for targeting DC.
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many viruses infect epithelial cells, a large number can interact
directly with DC, in particular monocytotropic viruses. Also a
restricted infection of epithelial cells can be immunogenic after
antigen ‘‘transfer’’ to the DC, following exocytosis from the
producing cell.

A disadvantage of viral vectors is the immune response against
the vector itself, which restricts its application in terms of multiple
use for different vaccines. However, the formation of antibody
complexes with the vaccine can have certain advantages in terms
of the immune reaction induced. For example, FcgRI-targeting of
adenovirus vector can enhance vector-mediated gene transfer into
human DC, leading to an increased immune response against the
vector-encoded antigen [16].
Table 1
Examples of porcine vaccines based on poxvirus vectors

(a) Porcine vaccines based on a vaccinia virus vector

Target pathogen Target antigen

Japanese encephalitis virus prM and E protein

Japanese encephalitis virus prM, E, and NS1 p

PRSSV GP5 and M protein

PRV gp50 glycoprotein

TGEV Spike glycoprotein

(b) Porcine vaccines based on other poxvirus vectors

Vector Target pathogen

Fowlpox virus FMDV

Fowlpox virus PRRSV

ORF virus (Parapoxvirus ovis) CSFV

ORF virus PRV

Parapoxvirus and vaccinia virus Vector alone

Swinepox virus General review

Swinepox virus Feline leukemia virus
3.1. Vaccinia virus and other poxvirus recombinant vaccines

3.1.1. Past and current use as vaccine vectors

Vaccinia virus was one of the earliest viruses employed as a
vector for the generation of recombinant vaccines, generally for all
species [17]. In 1986, a recombinant vaccinia virus expressing
influenza virus haemagglutinin was tested in cattle, sheep and
poultry [18]. On the porcine front, a vaccinia virus was employed to
generate a recombinant vaccine expressing pseudorabies virus
(PRV) glycoprotein gp50 [19]. An overview of reports on vaccinia
virus recombinants employed as vectors for porcine vaccines is
given in Table 1, including the recent application of the
recombinant modified Ankara vaccinia virus [20] (Table 1a).
Reference

s [174]

roteins [175]

s [20]

[19]

, membrane and nucleoprotein [176]

Target antigen Reference

P1, 2A, 3C [177]

GP5/GP3 [178]

E2 glycoprotein [179]

gC or gD glycoprotein [180]

IFN induction [23,181]

General review [21]

Gag and Env [22]



Table 2
Examples of porcine vaccines based on a pseudorabies virus vector

Target pathogen Target antigen Reference

CSFV E2 envelope glycoprotein [29]

FMDV Capsid precursor protein (P1) [182]

FMDV VP1 [183]

FMDV; porcine parvovirus P1-2A; VP2 [184]

Japanese encephalitis virus NS1 protein [185]

PCV2 Capsid (ORF2) protein [186]

PCV2 ORF1-ORF2 fusion protein [187]

PRRSV GP5 and M proteins [188]

PRRSV Modified GP5 membrane protein [189]

PRRSV GP5 [190]

PRRSV GP5 membrane protein [191]

Pseudorabies virus All except gD, gE, TK [192]

Swine influenza virus (H3N2) HA [193]

TGEV S protein [194]
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Related to the application of vaccinia vectors, swine poxvirus
has also been proposed as the basis for a porcine recombinant
vaccine [21] (Table 1b). Although it has not been tested as a porcine
vaccine vector, swine poxvirus has clear potential, for example
from the work with feline leukaemia virus antigens and infection
of porcine cells [22] (Table 1b). Both fowlpox virus and
parapoxvirus (ORF virus) have been employed as vectors for
potential porcine vaccines (Table 1b). Interestingly, the ORF virus
vector also displays adjuvant potential for inducing IFN responses
[23] (Table 1b).

3.1.2. Potential for targeting DC

Whether vaccinia virus can enter porcine DC leading to viral
DNA replication or transcription is uncertain. From studies using
mouse and human cells, it appears that the virus does interact with
DC [24–28]; to date, the receptor involved has not been defined,
although it is possible to propose potential candidates (Fig. 2).
Certainly, vaccinia virus is less efficient at binding to human DC
compared with a human epithelial cell line [24]. Jenne et al. [25]
also demonstrated difficulties for vaccinia virus to replicate in
human DC – immature as well as mature – leading to an abortive
infection in which proteins under control of the late promoters
were lacking. Nevertheless, a certain level of protein translation
does occur in DC, which could promote antigen-specific lympho-
cyte proliferation.

As mentioned above, DC processing of the antigen alone is
inadequate for efficient promotion of immune responses; induc-
tion of DC maturation is also required, typically through ‘‘danger’’
signalling. With respect to vaccine vectors, there is a reported
absence of vaccinia virus-induced maturation in the DC [24].
Moreover, a reduced expression of certain costimulatory mole-
cules – CD80 and CD83, but not CD86 or MHC – on the virus-
infected DC, together with a reduced capacity for stimulating T-cell
proliferation was observed [25]. The modified vaccinia virus
Ankara was even more problematic for human DC in terms of
reduced cellular protein synthesis leading to increased apoptosis in
the virus-infected DC [27]. While these latter events would be
advantageous to the development of cytotoxic immunity, through
cross-presentation of the apoptotic cells, the results overall query
the value of direct interaction of vaccinia virus vectors with DC.
Yates and Alexander-Miller [28] showed that when vaccinia virus
infected immature DC, there was no induction of maturation,
yielding DC incapable of initiating T-cell activation. It was only
when mature DC were infected with vaccinia virus that functional
antigen-presenting cells were generated, capable of activating
vaccinia virus-specific CD8+ lymphocytes. Moreover, Nagorsen
et al. [26] noted that the efficiency of the vaccine virus vector-
delivered vaccine was dependent on the HLA haplotype and the
epitopes carried by the vaccine.

3.2. Pseudorabies virus recombinant vaccines

Non-transmissible pseudorabies virus vectors have been
created by deletion of the essential gD required for PRV
penetration [29]. Considering that this virus can still spread from
cell-to-cell, a biologically safer quadruple glycoprotein-deleted
PRV lacking gG, gI and gE was generated [30]. With such PRV
vectors, vaccines have been generated encoding proteins from a
number of viruses Table 2.

Although the potential of PRV vectors for targeting DC has not
been investigated, the reported capacity of PRV to infect and
replicate efficiently in macrophages would indicate a tropism for
monocytic cells including DC [31] (Fig. 2). Unfortunately, it has
been reported that PRV infection of macrophages is associated
with immunological malfunction [32,33]. In contrast, PRV was
seen to be a potent activator of porcine pDC [34], which would be
beneficial for its use as vector. Such results show that the
interaction of PRV with cDC and pDC needs further characteriza-
tion before one can propose this as a vaccine delivery vehicle
targeting DC. Indeed, the above results on both poxviruses and PRV
demonstrate the need to understand the type and status of the DC
being targeted by a vaccine carrier, to ensure the appropriate
processing leading to activation of effector immune defences.

3.3. Adenovirus recombinant vaccines

3.3.1. Past and current use as vaccine vectors

Adenovirus has been receiving much attention as a vector for
delivery of vaccines [35–37]. Recombinant replication-defective
adenoviruses have been generated for a number of porcine
pathogens (Table 3). These efforts have employed primarily
human adenovirus serotype 5 or porcine adenovirus serotype 3,
although canine adenovirus type 2 has also been tested.
Adenovirus-vectored antigens have also been produced in cell
culture and goat milk, for application as recombinant vaccines
rather than vectored vaccines [37,38].

Although porcine adenovirus might appear to be the more
obvious candidate of choice, application of human adenovirus does
have high potential. Torres et al. [39] analysed the efficiency of this
vector for targeting cells and organs of vaccinated pigs. They found
adenovirus antigen associated with epithelial cells of bronchioles,
macrophages, type II pneumocytes, and follicular dendritic cells.
However, it was unclear whether these adenovirus-positive cells
were accommodating replicating virus – therefore with the
potential for producing the heterologous antigen in a vectored
vaccine – or endocytosed antigen produced elsewhere.

Human adenovirus have also been engineered to express
immunostimulatory cytokines, for promoting innate resistance
against infection. A successful example of this is vaccination
against foot-and-mouth disease virus (FMDV); a recombinant
human adenovirus expressing FMDV P1 capsid precursor protein
and 3C protease was co-administered with an adenovirus
expressing porcine IFN-a [40]. This is particularly intriguing
considering the importance of type I IFN to the maturation of cDC
and in the development of innate responses following vaccination
[41].

3.3.2. Adenovirus interaction with DC

The mechanism by which adenoviruses may interact with DC
can be inferred from studies employing human monocytes/
macrophages, human cell lines and murine bone marrow-derived
DC (Fig. 2). Moreover, the immunomodulatory capacity of
adenoviruses has been demonstrated using murine bone mar-



Table 3
Examples of porcine vaccines based on adenovirus vectors

Target pathogen Target antigen Reference

General overview General overview Porcine adenovirus type 3: [35]

Vector only Vector development Porcine adenovirus type 3: [195]

CSFV gp55 (E2) glycoprotein Porcine adenovirus type 3: [196]

CSFV gp55 (E2) glycoprotein Porcine adenovirus type 3: [197]

FMDV VP1 Canine adenovirus type 2: [198]

FMDV P1 and protease Human adenovirus type 5: [36,199]

FMDV P1 and protease/IFN-a Human adenovirus type 5: [40]

Mycoplasma hyopneumoniae P97 adhesin Human adenovirus type 5: [200]

PCV2 Capsid (ORF2) protein Human adenovirus type 5: [201]

PCV2 Capsid (ORF2) protein Human adenovirus type 5: [202]

PRRSV GP3 envelope protein Human adenovirus type 5: [203]

PRRSV GP5 and M proteins Human adenovirus type 5: [204]

Porcine respiratory corona virus Spike glycoprotein Human adenovirus type 5: [205]

PRV gD glycoprotein Porcine adenovirus type 3: [206]

PRV gD glycoprotein Human adenovirus type 5: [207]

Swine influenza virus Haemagglutinin Human adenovirus type 5: [208]

Swine influenza virus Haemagglutinin Human adenovirus type 5: [209]

Swine influenza virus Haemagglutinin Human adenovirus type 5: [210]

TGEV Spike glycoprotein Human adenovirus type 5: [39]
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row-derived DC, in terms of maturation of the DC [42–46],
phenotypic modification [42,47,48], and cytokine induction
[42,45–49]. Related to this, Miller et al. [43] noted that the
induced maturation of DC depended on virus entry rather than
transcription of the viral genome, while Molinier-Frenkel et al. [44]
identified the penton capsomer and the fibre protein (and its knob
domain) as major inducers of DC maturation.

Bontkes et al. [50] found that adenovirus alone was poor at
infecting human pDC. In contrast, Basner-Tschakarjan et al. [46]
were able to transduce murine bone marrow-derived (with Flt3-L)
cDC and pDC with adenovirus, leading to cell maturation and
production of IFN-a. This effect was observed in the pDC only
when TLR9-dependent signalling was engaged. Such discrimina-
tory results from adenovirus interaction with DC subsets may
relate to the receptors required by different adenovirus serotypes,
or differences between rodents and humans (see the comment in
the next paragraph concerning CD46 expression). Interestingly, the
targeting of adenovirus to human DC was enhanced when the virus
was engineered to express CD40L on its capsid [51]. Bontkes et al.
[50] also used a CD40 targeting approach to improve virus
interaction with the DC; although this did not improve transduc-
tion efficiency, it did increase the maturation of the pDC.

3.3.3. Potential for targeting adenovirus to DC

The most straightforward approach for targeting vaccines to DC
would be to employ virus vectors known to interact with a
particular receptor on the DC. In this context, adenoviruses have a
clear application. Receptors have been identified on human DC, as
well as human or murine monocytes and macrophages, with which
particular adenoviruses can interact. However, an initial problem
was realised when the major cell receptor for virus binding was
characterized as the coxsackie-adenovirus receptor (CAR) [52].
Despite being a widely expressed cell adhesion molecule, this
receptor has not been found on DC or monocytic cell populations
[53,54]. In contrast, another receptor – CD46 – is expressed on DC
[55,56]. However, CD46 is employed by subgroup B adenoviruses
such as adenovirus 35. Subgroup C adenoviruses such as the widely
applied vaccine vector adenovirus 5, as well as canine adenovirus
type 2 vaccine vector, employ CAR [54–56]. Nevertheless, the work
with CD46 has shown its importance as a receptor for vaccine
targeting, being present on many subtypes of human DC.
Interestingly, it is not expressed on murine DC [57].

This variation among adenovirus subtypes with respect to
receptor targeting would create uncertainty about the application
of vectors such as the commonly employed adenovirus 5. Yet, such
vaccines have proven successful in pigs (see Table 3). One
explanation may be that the adenovirus vector targeted cells
other than DC, such as epithelial cells expressing CAR. Alterna-
tively, the vector may have used receptors other than CAR and
CD46 on DC. Integrins such as the complement receptor CR3
(CD11b/CD18, aMb2) [58], and glycosaminoglycans such as
heparan sulphate structures on the cell surface [59] may also
function as adenovirus receptors. In addition, certain adenoviruses
can employ av integrins for interacting with cells, at least cell lines
[60,61] and human monocytes and macrophages [59].

3.3.4. Appreciation of adenovirus targeting mechanisms

When considering adenovirus targeting of cells, it is important
to bear in mind that the virus interaction with cell surface
receptors is not a single event. Adenovirus can bind to cells via its
fibre protein, after which the viral penton base interacts with
cellular integrins such as avb3 and avb5 to promote virus entry.
This role of the penton base appears to be dependent on the RGD
motifs in the five identical subunits, at least with cells lines [60,61].
Involvement of the av integrins may be more important for virus
internalisation than for attachment to the cell [60]. Yet, modifying
the viral fibre knob of adenovirus type 5 to carry an RGD motif
results in enhanced infectivity for murine DC [62]. While the
interaction of the virus fibre protein is clearly important for
binding to cell lines, penton base interaction with aMb2 integrin is
important for binding to human monocytes and macrophages [58].
Akin to attachment via the fibre knob, interaction with aMb2

integrin still required the additional step involving av integrins for
virus internalisation.

In addition to the integrins as targets for adenovirus, interaction
with cell surface glycosaminoglycan structures can occur. This may
be particularly pertinent when considering that av integrins are
more efficiently expressed following activation of monocytes,
macrophage or DC. Wickham et al. [59] demonstrated that
adenovirus type 5 modified to carry a heparan sulphate-binding
heptalysine motif were more efficient at transducing human
monocytes and macrophages. A candidate heparin-binding KKTK
motif was also identified in the third pseudorepeat of the fibre
shaft from adenoviruses 2 and 5 [63]. Moreover, many viruses can
bind to heparan sulphate structures on cells, particularly following
cell culture passage of the virus as is often the case when producing
vaccine viruses. However, heparan sulphate structures are rather
ubiquitously expressed, and may not be ideal for enhancing DC
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targeting over interaction with other cell types. On the contrary,
CR3 is more restricted to cells of the innate immune system,
namely DC, macrophages and monocytes. Indeed, in contrast to
adenoviruses type 2 and 5 (subgroup C adenoviruses), adenovirus
type 3 (subgroup B) did not require heparan sulphate glycosami-
noglycans for binding to and infection of cell lines [63].

3.3.5. Modifying cell targeting by adenoviruses

Modulation of vaccine targeting can be achieved by introducing
a ligand on to the vaccine delivery vehicle, to enhance targeting of
the desired receptor. Again, adenoviruses provide some interesting
examples of the value in this approach. A chimeric adenovirus was
created by modifying the subgroup C adenovirus type 5 to carry the
subgroup B adenovirus 35 fibre antigen [55]. This increased
interaction with human DC up to 100-fold. A similar approach may
be achieved by applying short peptide motifs known for their
capacity to interact with integrins expressed on DC, as described
above in Section 3.3.3 [62]. One disadvantage with this approach is
that certain motifs, such as RGD, have the potential to bind with
different integrins. Nevertheless, the presence of the RGD motif in
chimeric adenovirus penton bases apparently did not influence
their interaction with integrins [54], suggesting an involvement of
other structures; perhaps fibre antigens carrying the KKTK motif of
the adenovirus 35 would be important [55]. Indeed, Perreau et al.
[54] proposed that chimeric viruses could employ the non-
integrin-binding capacity of the canine adenovirus 2 knob in
combination with the capacity of the human adenovirus 5 to
interact with integrins.

How different targeting events would influence DC handling of
a vaccine is dependent on the cell receptor being targeted. Indeed,
human adenovirus 5 and canine adenovirus 2 appear to be
endocytosed into distinct intracellular compartments [54]. The
roles of different receptors leading to distinct compartmentalisa-
tion within the cell, as well as the influence of multiple receptor
involvement, are important considerations when analysing the
potential for targeting vaccines to DC. While there is information
concerning the binding of particular vaccines to DC, there is less
information on the endocytic route taken thereafter. This is
unfortunate, because the endocytic process will determine if an
antigen is released (for interaction with B lymphocytes), processed
through MHC Class II (for Th lymphocytes), or processed via the
immunoproteasome for presentation in association with MHC
Class I (for Tc lymphocytes). The endocytic pathway employed will
also determine if genetic information carried by a viral vector
vaccine is translated into protein. These are important issues,
which will be raised again later during discussion of C-type lectin
receptor targeting.

3.4. Other virus receptors on DC with potential for vaccine targeting

3.4.1. Small icosahedral DNA virus receptors

Canine parvovirus is reported to interact with the transferrin
receptor (TfR) [64] (Fig. 2). This is referred to as an asymmetric
binding where only a few receptor molecules (5 � 2 TfR dimmers)
can bind per capsid. The authors suggested that the asymmetric
binding of TfR might be due to the virus possessing only one unique
site with the conformation for binding to the TfR. Alternatively, the
binding of the virus to the TfR might induce the asymmetry. Whatever
the mechanism, this binding differs from that associated with
picornavirus infection, in which up to 60 sites on the icosahedron can
be involved [65].

3.4.2. Small icosahedral RNA virus receptors

Numerous non-enveloped viruses, including FMDV, are known
for their potential to interact with heparan sulphate structures on
cell surfaces [66–69]. Heparan sulphate structures on DC are
important for binding cell-culture passaged FMDV, relating to
vaccine viruses [70] (Fig. 2). This virus also carries ligands for
integrin receptors [71]: avb1 [72], avb3 [73,74]) avb6 [71], and
avb8 [72]. However, it appears that the preferred integrins for
virus binding are either not expressed or are poorly expressed on
the DC [70]. Whether ligation of heparan sulphate structures is the
best target remains to be elucidated.

3.4.3. The potential of coronaviruses for vaccine targeting

Transmissible gastroenteritis virus (TGEV) has also generated
interest with respect to DC targeting. In addition, TGEV has been
employed as a vaccine vector; reviewed by Enjuanes et al. [75].
TGEV efficiently induces IFN production by pDC [41,76–78], an
ability which is independent of virus replication. Viral pseudo-
particles expressing M and E proteins, and resembling intact
virions, retained the interferogenic activity of the virus [79];
neither the virus genome nor the spike (S) protein necessary
for infection of cells were essential for IFN induction. The
induction of IFN did require virus interaction with the cell
surface, but not all virion structures were important. Relating to
the above report from Baudoux et al. [79], Riffault et al. [80] had
shown that antibody against the TGEV receptor aminopeptidase
N did not prevent the IFN induction; nor was antibody against
surface M protein effective. Moreover, reconstructing detergent
solubilised virus into virosomes did not reconstitute IFN
induction capacity. The authors concluded that the induction
of IFN required a complex native envelope protein structure. As
such, it has been difficult to identify the receptors involved in
this IFN induction, although it does seem certain that the
induction is being signalled from interaction with receptors on
the pDC surface. Insofar as being applicable for targeting vaccine
to DC, one may employ the pseudoparticles expressing M and E
proteins [79].

3.4.4. Sialic acids, sialylated structures on DC with potential for

vaccine targeting

Although influenza virus per se has not been applied as a viral
vector, derived virosomes (based on influenza virus envelope plus
surface glycoproteins) have high potential. In this context, the
virus biology is interesting in terms of DC targeting. Sialic residues
on cells, particularly a-2,3 and a-2,6-linked sialic acids, are well
established as receptors for influenza viruses. The efficiency of the
virosomal vaccine carrier (for example: [81-83]) would suggest
that a-2,6-linked sialic acids on DC (at least murine and human
DC) were the target for such vaccines. Indeed, Angel et al. [84]
demonstrated that virosomes interacting with pDC are reliant on
sialic acid structures on the cell surface; endocytosis of the
virosomes by pDC was inhibited by neuraminidase treatment.
However, one also has to consider the targeting of the C-type
lectin mannose receptors on DC; Reading et al. [85] demonstrated
the importance of the mannose receptor for influenza virus
infection of murine macrophages. Nevertheless, sialic acid
residues on DC would offer the potential for vaccine targeting,
particularly when the vaccine construct carries the haemagglu-
tinin glycoprotein.

Another important consideration is the varying phenotype of
DC, with respect to DC subsets and particularly DC differentiation
and maturation. Sialylated structures on DC are modulated during
differentiation or interaction with B cells resulting in an increase in
expression of a-2-3-sialylated O-glycans, as well as a-2-6- and a-
2-3-sialylated N-glycans [86,87]. Interestingly, such sialylated
glycans are important for DC endocytic activity. Maturation of the
DC resulted in a reduced expression of the glycans, relating to the
reduced endocytic activity of mature DC.



Table 4
Examples of porcine vaccines based on antigen display using chimeric constructs

Vector Target pathogen Target antigen Reference

Bacteriophage T4** FMDV** Capsid protomer** [91]

Bacteriophage M13 Taenia solium KETc1, KETc12, GK1; KETc7 [89]

Bamboo mosaic virus FMDV VP1 capsid protein [211]

Porcine parvovirus (VLP) PCV2 Capsid (ORF2) protein residues 165–200 [95]

Porcine parvovirus (VLP)* Parvovirus* All* [92]

PCV1 (non-pathogenic) PCV2 Capsid (ORF2) protein [94]

PRRSV (vaccine strain) PRRSV (virulent) All [212]

* Tested in mice.
** Tested primarily in mice.
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3.5. Particulate vaccines based on non-replicating viral particles

An alternative approach to the use of live, non-transmissible,
replicating vaccine vectors is the use of virus-like particles (VLP).
These lack a viral genome, physically carrying the vaccine antigen
of interest within their virion structure. With the foreign
(‘‘vaccine’’) antigen being within a chimeric structure, replication
is no longer necessary. In fact, chimeric vectors can be regarded as
‘‘delivering’’ the vaccine in a manner similar to that for an
inactivated vaccine. Chimeric viruses based on non-enveloped
VLPs can also be defined in terms of structures or sequences
interacting with DC receptors. Indeed, it can be seen that the non-
enveloped viruses mentioned in Section 3.4 would be candidates
for chimeric VLP-based vaccines.

There is quite a variety of vectors employed for bearing the
antigen of interest (Table 4). These range from chimeric peptide
constructs to viruses and bacteria [88–91]. One value of employing
non-enveloped virus particles for chimeric constructs is the
potential of displaying heterologous antigens, allowing for
targeting to the immune system via homologous or heterologous
viral ligands for receptors on the DC. Good examples of this
approach are the reported applications of porcine parvovirus and
porcine circovirus type 2 (PCV2; Table 4), which have been
employed for both homologous vaccines [92] and for delivering
heterologous epitopes [93–95].

4. Particle-based vaccine delivery

4.1. The advent of biodegradable vaccine carriers

Biodegradable polymers such as poly(lacticco-glycolic acid)
(PLGA) have been applied for protein-based vaccine delivery for
over a decade [96]. In addition, polyethyleneimine (PEI) loaded
Table 5
Reviews on application of nanoparticle vaccine delivery systems

Title

Nanoparticles and microparticles as vaccine-delivery systems

Implication of nanoparticles/microparticles in mucosal vaccine delivery

The use of soluble polymers and polymer microparticles to provide improved vaccine

Vaccine delivery—current trends and future

Polylactide-co-glycolide microparticles with surface adsorbed antigens as vaccine deliv

Nanoparticles as carriers for nasal vaccine delivery

Biodegradable poly(lactic-co-glycolic acid) microparticles for injectable delivery of vac

DNA-loaded biodegradable microparticles as vaccine delivery systems and their intera

Immunological aspects of polymer microsphere vaccine delivery systems

Microparticles as vaccine adjuvants and delivery systems

Recent developments in vaccine delivery systems

Recent advances in vaccine adjuvants

Microparticle vaccine approaches to stimulate mucosal immunisation

Chitosan and its derivatives in mucosal drug and vaccine delivery

Nanoparticles and microparticles for drug and vaccine delivery
PLGA carriers as well as histidine-rich polymers and lipids have
been used for nucleic acid delivery [97]. These polymers offer a
main advantage over the vaccine vectors described above in
Section 3, as well as those based on other viruses, bacteria or their
products. Biodegradable polymers do not induce a strong or
durable immune response against themselves. Moreover, they are
efficiently degraded into non-toxic metabolites, primarily via the
Krebs cycle. Particulate carriers are also flexible in their design,
composition and structure, which has led to the demonstration of
their high potential as vaccine carriers [98–106]. The design of
these particles has employed a number of components, the main
ones being PLGA, PEG-PLGA, PLA, PEG-PLA, hydrophobised
cholesterol and polycationic formulations. A list of reviews on
this topic is found in Table 5.

Particulate formulations offer a wide applicability for in vivo

delivery routes. In addition to their use for parenteral delivery,
translocation of nano- and microparticles into systemic immune
tissues has been observed after intranasal administration in
mice, concomitant with development of immune responses
[107–109]. An important consideration in this respect is the
particle size, which appears to be a determinant for the
performance of biodegradable particle vaccine delivery [110].
Particulate vaccine delivery has also been successful via the oral
route (for example, reviewed by O’Hagan et al. [111]). Moreover,
oral and nasal delivery of chitosan microparticles has been
compared with respect to diphtheria vaccine efficacy in mice
[109].

Despite these advances and high application value, there is little
information on the biological characteristics of DC interaction with
and processing of these particle-based vaccines. Moreover, further
analyses are required on how such vaccine constructs can activate
the ‘‘danger’’ recognition by DC necessary for promoting DC
maturation and the development of active immunity.
Reference

[213]

[214]

responses after parenteral and mucosal delivery [215]

[216]

ery systems [217]

[110]

cine antigens [218]

ction with dendritic cells [130]

[219]

[168]

[166]

[167]

[220]

[221]

[96]
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4.2. Biodegradable vaccine carriers employed for porcine vaccinology

The recombinant viruses employed for porcine vaccine delivery
(Tables 1–3) can be regarded as nanoparticle-based vaccines.
Indeed, the adenovirus vectors are effectively nanoparticles
delivering a DNA vaccine. In that context, the capacity of the
adenovirus to target particular receptors on the DC offers the
potential for defined vaccine targeting to the immune system,
which can be taken into the field of the biodegradable particle-
based vaccine delivery vehicle (see Section 6 below). Similarly, VLP
(Table 4) are nanoparticles carrying protein vaccine cargoes, albeit
forming an integral part of the viral structure. Indeed, the
bacteriophages T4 expressing the FMDV P1 protein (together with
the T4 expressing FMDV 3C) have been referred to as a
nanoparticle surface gene–protein display system [91].

Insofar as the biodegradable vaccine carriers are concerned,
there is much less information on their application for porcine
vaccines. This is somewhat surprising considering the extent of
their application for human vaccines, and vaccines tested in
murine models (see the reviews listed in Table 5). Nevertheless,
there are a number of articles demonstrating the potential of
biodegradable carriers for delivery of porcine vaccines (Table 6).
These also include chitosan-based nanoparticles to entrap
plasmids carrying immunomodulatory CpG-ODN motifs
[112,113]. Elaboration of this approach is seen with the
application of chitosan-based nanoparticles carrying plasmids
encoding porcine IL-2 [90] or IL-6 [112]. For these purposes, the
authors employed the net positive charge of chitosan nanopar-
ticles to entrap the DNA in the chitosan polymer matrix by ionic
cross-linking.

Zhao et al. [112] tested their delivery system in mice, co-
administered with a bivalent vaccine against Pasteurella multocida

and classical swine fever virus (CSFV). Their results were
encouraging in the context of how the nanoparticle-delivered
adjuvant enhanced the development of specific immunity and
resistance to challenge infection. It will be interesting to see how
this application of nanoparticle-delivered adjuvant functions in
the porcine host, particularly considering the differences between
murine and porcine immune system. As far as delivery of vaccine
antigen is concerned, early results using ovalbumin as a model are
showing considerable promise both in vitro with porcine DC
(Supplementary Fig. 2) and in vivo (Harwood et al., unpublished
results).
Table 6
Potential of nanoparticle/microparticle-based vaccine and adjuvant delivery systems fo

Delivery vehicle Vaccine antigen

Chitosan-nanoparticles Pasteurella multocida and CSF

Chitosan-nanoparticles encapsulating IL-2 gene Porcine paratyphoid vaccine*

Chitosan-nanoparticles decorated with CpG-ODN Porcine paratyphoid vaccine*

PLGA microspheres IgY (model protein for oral v

PLGA (200 nm) plus dimethyl-dioctadecyl-ammonium

bromide cationic surfactant.

DNA (anionic): surface coate

Negative-charged fluorescent particles (50–500 nm) None (testing transcutaneous

Enteric-coated polymers (AQ6) Actinobacillus pleuropneumon

Alum (sub-cutaneous) [224]

Starch microparticles Ovalbumin (surface coated o

Microspheres from enteric-coating material

(aqueous acrylic polymer) plus talc and glycerol

Mycoplasma hypopneumoniae

Nanoparticles and microbeads compared Trichinella spiralis L1 muscula

Bioadhesive intranasal delivery system

(esterified hyaluronic microspheres)

Influenza virus vaccine H1N1

Saccharomyces cerevisiae None (testing particle uptake

Gold particles Influenza virus (H1N1) DNA

Microspheres Mycoplasma hypopneumoniae

* Immunised mice with a porcine vaccine and/or porcine cytokine-based adjuvant.
4.3. Particulate vaccine carriers and nucleic acid vaccine delivery

4.3.1. General considerations

Application of nucleic acid vaccines demonstrates the factors to
be considered in the context of particle-delivered vaccines. An
important influence is the particle charge. Positively charged
particles facilitate association with nucleic acid, and also protein
antigens with the appropriate negative charge; via ionic cross-
linking with the particles. A major consideration – for both anionic
and cationic particles – is that sufficient charge be available for
binding the cargo. The particle charge is also important concerning
mode and efficiency of delivery in vivo. For example, Macklin et al.
[114] successfully employed gold particles for epidermal delivery
of a DNA vaccine to immunise pigs against H1N1 influenza virus,
using a device for particle-mediated gene transfer to the epidermis
[115]. Negatively charged nanoparticle constructs also show high
potential for delivery through pig skin [116]. Efficient permeation
of pig skin was obtained with the negatively charged particles
ranging in size from 50 to 500 nm, leading the authors to propose
such nanoparticles as potential delivery vectors for transdermal
vaccination.

Considering that the nucleic acid must be delivered to the target
cell in which it will most efficiently transcribe, strong candidate
targets are epithelial, fibroblastic or muscle cells; cells with
dividing nuclei would increase the chance of DNA entry into the
cell nucleus for transcription. The low rate of nuclear division in DC
may restrict their capacity to handle DNA vaccines [117].
Nevertheless, targeting DNA vaccines to DC can be successful
when applied via viral and bacterial vectors. For example,
adenoviruses targeting DC do promote transcription of their
DNA (see Section 3.3); the Salmonella typhimurium vector interacts
efficiently with murine DC in vitro, and promotes expression of the
encoded antigen both in vitro and in vivo [118,119].

DNA vaccine processing by DC is less promising when the DNA
is applied directly to the DC. Ceppi et al. [117] showed that porcine
DC directly transfected with DNA do not translocate the DNA into
the nucleus nor permit transcription. Franco et al. [120], showed
uptake of a mycobacterial DNA vaccine by human macrophages
and DC, but no apparent nuclear translocation or protein
production, though mRNA was detectable in monocytes. Trans-
fected cells could induce PBMC proliferation, but this was obtained
with PBMC from patients positive or negative for reactivity against
mycobacterial antigens.
r application in the porcine field

Vaccine adjuvant Reference

V* Porcine IL-2 gene + CpG-ODN; (DNA)* [112]

Porcine IL-2 gene (DNA)* [90]

CpG-ODN (DNA)* [113]

accine delivery) None (oral vaccination) [222]

d on to particles None (in reconstituted gastric mucus) [223]

delivery) None (applied to pig skin in diffusion chambers) [116]

ia None (oral)

n to particles) None (applied to porcine nasal mucosa in vitro) [225]

None (oral vaccination) [226]

r larvae. Various adjuvants compared [227]

. Mucosal adjuvants LTK63 and LTR72

(detoxified heat-labile enterotoxin)

[228]

) None (testing transcytosis by M cells) [229].

vaccine None (gene gun-based DNA vaccination) [114]

Priming with adjuvanted, boosting with

encapsulated antigen

[230]



K.C. McCullough, A. Summerfield / Developmental and Comparative Immunology 33 (2009) 394–409402
Following direct intradermal inoculation of mice with DNA
vaccine encoding influenza virus nucleoprotein (NP), Bot et al.
[121] found both MHC Class II+ and MHC Class II� cells carrying the
NP antigen. However, MHC Class II is insufficient for defining DC or
Langerhans cells. Fibrocytes, which are important for activating
cytotoxic T-cells, are also MHC Class II positive; it was interesting
that adoptive transfer of the NP+ MHC Class II+ cells did induce
cytotoxic T-cells. Although the authors argued against it, the
results do not rule out translocation of endocytosed material,
especially considering the capacity of DC to endocytose free
antigen and also antigen-producing cells for cross-priming. Indeed,
Watkins et al. [122] concluded that EGFP synthesised following
DNA vaccination of sheep was leaching out of the skin for
associating with DC in the afferent lymph. This was based on
observations that both plasmid and protein were found in lymph
cells and plasma, but only the protein was detected in lymph DC.

4.3.2. Increasing the efficiency of the DNA vaccine for activating DC

A number of groups have sought to improve the consequence of
DNA vaccine interaction with DC, mostly in murine models. One
approach was to encode DC-activating or DC-recruiting cytokines
(reviewed by Kutzler and Weiner [123]). In these cases, the DC are
not necessarily the targets for the vaccine, but become involved by
enhanced attraction to the site of antigen production, for
endocytosis of the antigens or antigen-producing cells. DC can
also be directly activated by DNA vaccines, through CpG motifs in
the DNA interacting with TLR9, although Spies et al. [124] showed
that such activation can be TLR9-independent.

Another approach was to increase the targeting of the encoded
antigen rather than the DNA. Indeed, You et al. [125] stated that DC
showed a limited capacity for uptake of DNA vaccines. Their
solution was to encode an antigen with IgG Fc in a fusion protein
for vaccination of mice, promoting interaction with the FcR of the
DC. Nchinda et al. [126] and Gu et al. [127] employed similar
approaches with mice, using DNA encoding a fusion protein with a
single chain Fv antibody specific for the DC receptor DEC 205 [126],
or a fusion protein with heat shock protein as the targeting moiety
[127].

4.3.3. Application of gold particles for DNA delivery

The above processes do not consider the targeting of the vaccine
by delivery vehicles. In the context of DNA vaccines, much work
has been performed using gold particle-based delivery, particu-
larly in mice. Although many of these studies mentioned that DC
were the key players in promoting immune response development,
the majority did not directly quantify vaccine interaction with the
DC. This is a major point of criticism raised by Lauterbach et al.
[128]. They sought to elaborate on this question by using DNA
constructs for either ubiquitous expression (CMV promoter) or
specific expression in DC (CD11c promoter). Following biolistic
vaccination of mice with DNA-coated gold particles, both forms of
construct efficiently induced antibody responses. However, the
DNA encoding for DC-specific expression was insufficient at
inducing optimum T lymphocyte responses. Porgador et al. [129]
also noted that lymph node cells directly expressing DNA-encoded
antigen following vaccination of mice were rare. They did find DC
carrying the encoded peptide, leading to the proposal that the DC
were involved in cross-priming of material produced by trans-
fected myeloblasts.

4.3.4. Application of biodegradable particle for DNA delivery

Gold particles for vaccine delivery can be problematic, due to
their non-biodegradability and risk of persistence and toxicity.
This is not a problem for biodegradable micro/nanoparticle
delivery, which has also been promoted for ‘‘targeting’’ DNA
vaccines to DC. However, many of these articles use the
observation that an immune response was generated against the
antigens encoded by the DNA as evidence for targeting of the DC
(for example, see the review by Jilek et al. [130]). This is rather
speculative, and cannot be considered as proof. On the other hand,
the biodegradable particles themselves do interact efficiently with
DC (reviewed by Jilek et al. [130]). Insofar as DNA vaccine delivery
is concerned, the most convincing work comes from in vitro studies
using cell lines. Jilek et al. [131] successfully transfected a murine
DC line with PLGA microparticles carrying DNA encoding green
fluorescent protein (GFP). However, the number of cells expressing
GFP was low, which the authors related to the requirement for DNA
to escape the phagosome wherein the PLGA particles would be
degraded. This is a critical point considering the cytosolic
localisation of phagosomes contrasting with the cellular localisa-
tion of DNA transcription machinery. Indeed, Walter and Merkle
[132] showed that particle transfection efficiency is low in
phagocytic cells compared with non-phagocytic cells.

Biodegradable particles can target DC in vivo, as observed with
DC and macrophage endocytosis of PLGA microparticles in the
spleen [133] and draining lymph nodes [134] of vaccinated mice.
However, these authors did not determine if the encoded antigen
was expressed in DC or non-immune cells; the particles were
found in both lymphoid and non-lymphoid organs. Moreover,
Walter and Merkle [132] proposed that application of biodegrad-
able particle-based DNA delivery in vivo is very likely to lead to
transfection of non-phagocytic cells such as fibroblasts.

4.3.5. Future prospectives for nucleic acid vaccination

Although much of the work to date has been in mice, DNA
vaccination has been reported in pigs. Dincer et al. [135] analysed
epidermal delivery of DNA-gold particles in pigs and mini-pigs.
Antigen expression was detectable as early as 4 h post-vaccination,
but it is uncertain if this reflected interaction of the DNA with non-
immune cells. Nevertheless, one can conclude that particle-based
DNA vaccination can be successful in pigs. Application of DNA-
loaded PLGA microparticles may have a future for porcine
vaccination considering the promise shown from studies in mice,
guinea pigs, non-human primates and humans (reviewed by Jilek
et al. [130]). While these particles can be targeted to DC, and
certain DC may well be capable of allowing DNA transcription,
particle-based delivery of DNA vaccines would be improved by
targeting non-immune cells. Both Walter and Merkle [132] and
Porgador et al. [129] suggested that the cells directly targeted by
the particles for DNA transcription may be non-phagocytic cells.

One may also consider the reported differences seen with
processing of DNA and RNA by DC [117]. This work would suggest
that RNA vaccines have a higher potential for biodegradable
particle-based delivery to DC. Certainly, DC will accommodate RNA
translation and promote processing of the derived protein for
induction of specific immunity [70]. It will therefore be interesting
to see how the work advances on biodegradable nanoparticles
enhancing the uptake of RNA by porcine DC (Supplementary Fig. 3).

5. Targeting vaccines to DC: potential for biodegradable
particle targeting

5.1. General considerations

There have been a number of reports on vaccine carriers
targeting DC, but primarily in the murine and human field.
Gamvrellis et al. [136] reviewed a number of vaccine constructs
which could facilitate uptake by DC. In order to pursue this topic
with respect to targeting vaccines to porcine DC, it is necessary to
appreciate the advances made in the murine and human fields.
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Current work is seeking to characterize how DC interact with
vaccine carriers, particularly the biodegradable nanoparticle
carriers. These have a high potential for application across a
number of species and for different vaccines. This is due to their
uptake relying on relatively ‘‘simple’’ components such as ionic
charge, carbohydrate moieties in the particle structure, or particle
size, rather than peptide-based (or lipoprotein- or glycoprotein-
based) entities as is the case with many viral vectors. Moreover,
biodegradable particles lend themselves more readily to modifica-
tion, in both design and ‘‘decoration’’ to carry specific ligands for
targeting DC receptors (Fig. 1).

Biodegradable particle structure has been modified and
analysed in terms of how this influences DC endocytosis and
intracytoplasmic delivery of the vaccine cargos. Not only can they
be employed as carriers of protein and nucleic acid-based vaccines
(Tables 5 and 6), but also as carriers of the adjuvant (Table 6). When
the two approaches can be combined, an efficient mutual targeting
of vaccine and adjuvant may be achievable. When targeting a
vaccine to DC, it is necessary to concomitantly deliver a ‘‘danger’’
signal to promote activation and maturation of the DC system.
Dependent on the ‘‘danger’’ signal, it may be desirable to co-deliver
this with the vaccine in the same particle, or to use two different
particles—one for the vaccine (targeting for example cDC) and one
for the adjuvant (targeting for example pDC).

5.2. Choice of vaccine cargo

When attempting concomitant delivery of vaccine and adjuvant
to the DC, it is likely that DNA vaccines would not be the appropriate
vaccine choice—protein or RNA vaccines may have greater potential.
RNA vaccines also need to target cells, but unlike DNA do not require
a dividing nucleus for translation of their encoded genes into protein.
DC can certainly accommodate RNA translation, as witnessed when
DC are transfected with RNA encoding the complete genomic
sequence of classical swine fever virus (CSFV) [137] or FMDV [70]).
Unfortunately, RNA does not efficiently enter DC without assistance
[137]. Electroporation or lipofection [70,117] do allow ‘‘delivery’’ of
the RNA, but these are not applicable of techniques for in vivo

application, except if one relates lipofection to the application of
liposomes for vaccine delivery. In this respect, nanoparticles offer a
high potential for RNA delivery to DC, as they do for DNA delivery to
epithelial or muscle cells.

The element which must be considered when applying
nanoparticles for targeting protein or RNA vaccines to DC is the
influence of targeting on the cellular site of vaccine delivery.
Protein is ideally delivered into an acidifying endosomal system, to
promote its processing for presentation in association with MHC
Class II to Th lymphocytes. For processing in association with MHC
Class I, leading to activation of Tc lymphocytes, a different
intracellular localisation is required. In the case of RNA, a cytosolic
delivery is required, to ensure that the delivered RNA is not
degraded by cellular RNases. PLGA particles are reported to escape
from endosomes, delivering their payloads into the cytoplasm
[138,139]. Nevertheless, the processes of cellular uptake, retention
and processing are not well characterized for particulate vaccine
delivery vehicles interacting with DC. This is certainly the case for
particles decorated to target and/or activate PRR on the DC. How
this would influence delivery to intracellular compartments is of
pertinence when choosing the targeting ligand. A good example is
the comparison of material delivered through ligation of the
DEC205 receptor compared with ligation of the mannose receptor.
Targeting DEC205 can lead to antigen recycling through late
endosomes, whereas ligation of the mannose receptor may
promote more of a recycling process through the peripheral
endosomal compartment [15].
5.3. Potential for DC targeting

5.3.1. Potential for DC targeting using antibody against cell receptors

A simple approach for DC targeting is the application of
antibodies against defined DC receptors. While this has clear
potential as a targeting ligand, the overall applicability of such an
approach is less certain, whether that be for human or porcine
vaccines. Heterologous antibody risks inducing an immune
response from the host, while isologous antibody can pose
problems when in immune complexes with the vaccine. For the
latter, one has to consider removing the Fc portion of the antibody,
or preventing its interaction with FcR on cells of the innate
immune defences. Nevertheless, antibody interacting with the
vaccine carrier would have a role to play, as is the case during the
natural humoral responses against an antigen: Immune complex
formation would push the equilibrium of the immune response
towards memory development.

An example of antibody-based DC-targeting is seen with the
Siglec (sialic acid-binding immunoglobulin superfamily lectin)
receptors, primarily expressed on cells of the immune system
[140]. Siglecs bind specific glycan structures containing sialic acid
[141,142]. When murine pDC were targeted with ovalbumin
conjugated to anti-Siglec-H antibody [143], an efficient endocy-
tosis of the ovalbumin was observed, leading to stimulation of
CD8+ T lymphocytes. The Siglec-5 receptor can also be targeted
with specific antibody for enhanced endocytosis. Anti-Siglec-5
(Fab)2 fragments mediated rapid uptake into early endosomes of
human monocytes [144].

One should note that the Siglec family is distributed throughout
the immune system, but many are actually inhibitory receptors,
carrying immunoreceptor tyrosine-based inhibitory motifs (ITIM).
Siglec-10 is one such receptor on human DC [145], as is Siglec-7 on
human DC and monocytes [146]. In contrast, Siglec-H actually
lacks tyrosine-based signaling motifs in its cytoplasmic tail,
functioning as an efficient endocytic receptor on murine pDC
and macrophages, as observed with anti-Siglec-H antibody
targeting [143]. Siglec-15 is another receptor of this family which
does not carry an ITIM, being expressed on human macrophages
and DC [147]. Lysine residues in its transmembrane domain
interact with DNAX activation proteins DAP12 and DAP10.
Interestingly, Siglec-15 expression appears to be conserved among
species [147].

Another important characteristic of the Siglec expression on DC
is the modulation associated with maturing cells, a modulation
also noted with another glycan-binding DC receptor family, the b-
galactoside-binding galectins [148]. Maturation-dependent mod-
ulation is also seen with the expression of C-type lectin receptors
on DC [149]. In contrast to many of the galectin and Siglec reactions
[148], the expression of C-type lection receptors is downregulated
as the DC mature, a phenomenon related to reduced antigen
uptake by maturing DC [149]. C-type lectin receptors such as DC-
SIGN have also been targeted using specific antibodies, in murine
and primate models for vaccine delivery (for example [150,151]).

5.3.2. Potential for DC targeting using ligands for cell receptors

In addition to using antibody against DC receptors for vaccine
targeting, a number of ligands for particular receptors have been
identified, which offer potential for vaccine targeting. Siglec-15
preferentially recognizes Neu5Aca2-6GalNAca [147]. Galectins
bind glycoconjugates containing b-galactose structures [148,152].
However, it is uncertain how vaccine particles interacting with
different Siglecs would signal the DC, and how this would influence
the outcome of vaccine handling by the cells. Interaction of a
vaccine with a Siglec carrying an ITIM would not necessarily be
detrimental for vaccine targeting, because it is not yet certain how



Table 7
Mannosylated nanoparticle/microparticle-based vaccine enhancing targeting of the immune system

Delivery vehicle Vaccine antigen Reference

Mannosylated anionic poly(varepsilon-caprolactone)-poly(ethyleneglycol)-poly(varepsilon-caprolactone) Human basic fibroblast

growth factor

[231]

Mannosylated cationic liposomes: N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride

(DOTMA)/cholesten-5-yloxy-N-(4-((1-imino-2-D-thiomannosyl-ethyl)amino)butyl)formamide (Man-C4-Chol)/Chol

DNA vaccine [232]

Mannosylated cationic liposomes: cholesten-5-yloxy-N-{4-[(1-imino-2-D-thiomannosylethyl)amino]butyl-formamide

(Man-C4-Chol) with cationic lipid

Ovalbumin [233]

Mannosylated cationic nanoparticles: emulsifying wax plus CTAB cationic surfactant; mannosylation of nanoparticles

with or without entrapped endosomolytic agents, dioleoyl phosphatidylethanolamine (DOPE) and cholesterol

DNA vaccine [234]
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DC would respond to vaccines using Siglec ligands for targeting
purposes. For example, Siglec-10, which carries an ITIM, is reported
to bind human red blood cells and soluble sialoglycoconjugates
[145]. The Siglec-H, which lacks tyrosine-based signaling motifs, is
endocytosed leading to the processing and presentation of
captured antigens [153]. Yet, this Siglec signals intracellularly
via the DAP12 adaptor with which it is associated, leading to
reduced pDC responses against TLR ligands. Siglec-15 also signals
via DAP12 and DAP10, but it has been suggested that this signaling
implies delivery of activating signals to the cell [147]. Another
receptor, Siglec-1 (CD169), is reported to be the receptor for
porcine reproductive and respiratory syndrome virus (PRRSV)
binding to and internalisation by porcine macrophages [154].
Considering that virus interaction with this receptor would lead to
internalisation, targeting Siglec-1 may prove a useful vaccine
targeting strategy. Siglec-1 is also expressed by DC, being
upregulated on mature cells, along with Siglec-2 and Siglec-7 as
well as two of the galectins—galectin-3 and galectin-8 [148].

There are also a number of ligands defined for C-type lectin
receptors – such as DC-SIGN – which would provide useful
targeting moieties. Examples of these are the GlcNac(b1-3)-
Gal(b1-4)-Glc-R oligosaccharide forming the outer core of
Neisseria meningitidis lipopolysaccharide [155], and Gal(b1-
4)(Fuc(a1-3))GlcNAc and Fuc(a1-3)Gal(b1-4)(Fuc(a1-3))GlcNAc
determinants relating to the glycosphingolipids of Schistosoma

mansoni [156]. With respect to the studies on Neisseria meningitidis

lipopolysaccharide interaction with DC-SIGN [155], mannan and
N-acetylglucosamine (GlcNac) were found to interfere with
bacterial binding. Mannan, including oxidized and reduced
derivatives, enhanced antigen targeting to and endocytosis by
DC. This resulted in an activation of the DC and immune response
induction in vivo, at least in the mouse [157]. Moreover, the
differential application of the oxidized and reduced forms of
mannan can favour a more Th1 or Th2 type response, respectively
[158].

Certainly, mannan and other mannosylated structures, which
can bind to the mannose receptor CD206 as well as DC-SIGN, have
been employed for targeting mannose-binding C-type lectins on
DC (Table 7). A number of vaccine antigens also offer this targeting
facility, through mannose-containing moieties inherent in their
structures. Either these or synthetic structures can be conjugated
to the vaccine delivery vehicles, an approach which has found
favour with the mannosylation of biodegradable nanoparticle
vaccine carriers.

5.3.3. TLR receptors on DC with potential for vaccine targeting

Related to the approach with ligands for C-type lectin and Siglec
receptors, it is also possible to target other DC receptors, including
the TLRs (Fig. 1) important for adjuvant-dependent activation of
the cells. Certainly, TLR ligands such as chemically defined
lipopeptides have potential as adjuvants [159]. Although lipopep-
tides have not been reported in terms of vaccine delivery for pigs,
lipopeptides and lipoproteins have been tested for their adjuvant
potential. These have been employed either as an integral
antigenic component of the vaccine [160–162], or admixed with
the vaccine antigen in a more classical manner [163]. The
disadvantage of lipoproteins is that they themselves can be
antigenic. In contrast, lipopeptides such as the synthetic com-
pounds based on tri-palmitoyl-S-glyceryl cysteine (Pam3Cys) and
di-palmitoyl-S-glyceryl cysteine (Pam2Cys) tend to serve primarily
as PAMPs for TLR2 dimers, thus allowing for their application in a
more generic sense [164].

Related to this area is the application of lipid-based vaccine
carriers, liposomes [165]. Liposomal vaccine delivery and applica-
tion as an adjuvant have been widely reported for murine and
human studies [166–171]. VLPs can also be constructed to bear
lipopeptide surface structures. By inference to the capacity of TLR2
homo- and heterodimers to bind such structures, this allows for
potential vaccine targeting and activation of DC [169,172,173].

6. Overall conclusions

This overview on particulate vaccine targeting to the immune
system has presented the current knowledge concerning the
relationship between the surface structure of vaccine delivery
vehicles and the manner by which DC interact with the particle
cargo. Although there is some evidence that vaccine targeting to DC
has high potential for porcine vaccines, most of the information
comes from inference to work with murine and human DC.
Therein, a major effort is being made in the development of both
viral and synthetic vaccine carriers. A critically important
consideration therein is how receptor ligation influences the
characteristics of vaccine interaction with the DC. Whether protein
or RNA delivery is being employed, the antigen ultimately present
in the DC – delivered by the carrier or translated from the delivered
RNA – has to be processed via endosomal recycling and processing.
Accordingly, current research on vaccine targeting to DC is seeking
to determine the influence of the vaccine delivery vehicle surface
decoration on modulation of DC activity. This is linking to the
cytosolic localisation of the delivered vaccine cargo, which will be
different for a protein cargo compared with an RNA cargo. The key
element is to define the manner of targeting to the DC which will
promote the appropriate delivery, leading to efficacious immune
defence development (Supplementary Fig. 4).
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in

the online version, at doi:10.1016/j.dci.2008.07.015.
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