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Abstract

Introduction—Bariatric surgery-induced weight loss may reduce resting energy expenditure 

(REE) and fat-free mass (FFM) disproportionately thereby predisposing patients to weight regain 

and sarcopenia.
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Methods—We compared REE and body composition of African-American and Caucasian Roux-

en-Y gastric bypass (RYGB) patients after surgery with a group of non-operated controls (CON). 

REE by indirect calorimetry; skeletal muscle (SM), trunk organs, and brain volumes by MRI; and 

FFM by DXA were measured at post-surgery visits and compared with CON (N = 84) using linear 

regression models that adjusted for relevant covariates. Ns in RYGB were 50,42, and 30 for 

anthropometry and 39, 27,17 for MRI body composition at years 1,2, and 5 after surgery, 

respectively.

Results—Regression models adjusted for age, weight, height, ethnicity, and sex showed REE 

differences (RYGB minus CON; mean ± s.e.): year 1 (43.2 ± 34 kcal/day, p = 0.20); year 2 (− 27.9 

± 37.3 kcal/day, p = 0.46); year 5 (114.6 ± 42.3 kcal/day, p = 0.008). Analysis of FFM components 

showed that RYGB had greater trunk organ mass (~ 0.4 kg) and less SM (~ 1.34 kg) than CON at 

each visit. REE models adjusted for FFM, SM, trunk organs, and brain mass showed no between-

group differences in REE (− 15.9 ± 54.8 kcal/day, p = 0.8; − 46.9 ± 64.9 kcal/day, p = 0.47; 47.7 ± 

83.0 kcal/day, p = 0.57, at years 1, 2, and 5, respectively).

Conclusions—Post bariatric surgery patients maintain a larger mass of high–metabolic rate 

trunk organs than non-operated controls of similar anthropometries. Interpreting REE changes 

after weight loss requires an accurate understanding of fat-free mass composition at both the organ 

and tissue levels.

Clinical Trial Registration—Long-term Effects of Bariatric Surgery (LABS-2) NCT00465829
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Introduction

Bariatric surgery is widely used in combatting obesity and its co-morbidities. Weight loss 

magnitude and maintenance following surgical procedures clearly surpass those of 

conventional methods such as low-calorie diets, exercise, and behavior modification. While 

the benefits of weight loss surgery are numerous and compelling [1,2], questions about 

changes in body composition and resting energy expenditure (REE) remain. The influence 

of weight loss on REE in the long term remains controversial, with REE adjusted for fat-free 

mass (FFM; body weight minus fat mass) reported to be lower [3–5], not different [6–8], or 

higher [9] after weight loss. Low REE at reduced body weight may contribute to weight 

regain [10].

Of concern are the loss of FFM and its components. Excessive loss of skeletal muscle (SM), 

a major constituent of FFM (~ 45%), has implications for sarcopenia, frailty, and loss of 

mobility, crucial for independent functioning [11–13]. SM is a significant contributor to 

REE (~ 20%) and REE makes up ~ 70% of total energy expenditure and, thus, energy 

balance. Except for one report on SM [14], changes in the organ-tissue composition of FFM 

after surgery (e.g., SM, liver, kidney, heart, brain) and their potential effect on REE have not 

been studied.
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The lack of homogeneity in heat-producing tissues that constitute FFM has long been 

recognized [15–18] with the existence of large between-organ differences in the rates of 

energy flux. Brain and visceral organs have high rates of heat production in the post-

absorptive state whereas adipose tissue and skeletal muscle have relatively low rates. 

Specifically, the brain, liver, heart, and kidneys account for 58% of total calculated REE yet 

comprise 5.7% of mean body weight and 6.9% of FFM [17].

Most studies have found decreases in FFM and REE following surgery but the critical issue 

is whether the degree of loss in FFM and REE is appropriate or disproportionate, and 

whether the declines are temporary or enduring. The matter has been studied in two ways: 

by comparing post-surgery measured vs predicted values based on regression equations (or 

ratios), derived either from own sample before surgery or from published equations; or by 

comparing post-surgery patients with matched non-surgery controls of similar 

anthropometries (BMI, weight, age, sex) who represent the normal range of FFM and REE. 

Many studies using the former method find evidence for excessive REE reductions [19–23] 

although there are exceptions [6,8,9]. In contrast, investigators using the second approach 

have not found evidence for excessive REE decline. Skogar et al. [24] compared 27 Roux-

en-Y gastric bypass (RYGB) surgery and duodenal switch patients with 17 matched controls 

at 2 years post-surgery and reported no between-group differences in FFM (by BodPod) or 

REE (estimated by BodPod equations, not measured). Schiavo et al. [25] compared FFM 

and REE 3 years after sleeve gastrectomy with BMI-, age-, and sex-matched controls and 

reported no differences in REE or FFM. Mirahmadian et al. [26] compared FFM and REE of 

RYGB patients with age-, sex-, and weight-matched controls, 3 months post-surgery, and 

reported substantial decreases in FFM and REE, which did not differ between the surgery 

and controls. Strain et al. [27] reported greater FFM by bioelectrical impedance analysis 

(BIA) in patients 2 years post-surgery compared with controls.

Among the methodological problems of previous research are limitations of methods for 

body composition (e.g., known BIA measurement errors in severe obesity [28]); REE 

predictions from BIA or BodPod, or from anthropometric equations, rather than actual 

measurements; inappropriate use of ratios; small sample sizes; and imprecisely matched 

controls.

We present results from 3 post-surgery visits over 5 years on REE and organ-tissue body 

compartment sizes measured by DXA for FFM; MRI for SM, the liver, the kidney, the 

spleen, and the brain; and indirect calorimetry for REE, and compare these with 

measurements from an archived sample of non-operated, weight-stable, healthy controls.

Methods and Procedures

Surgery Participants

Between November 2006 and February 2009, 64 participants enrolled in the Longitudinal 

Assessment of Bariatric Surgery 2 (LABS-2) at the Weill Cornell Medical College and the 

University of Pittsburgh Medical Center sites were invited to participate in this ancillary 

study [29], An additional 41 non-LABS-2 participants were enrolled for a total of 105 

participants. Ninety-two patients returned 1 year post-surgery. Of these, 77 were of the same 
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ethnicity as our control group (AA or Caucasian). Fifty-eight had Roux-en-Y gastric bypass 

(RYGB) surgery, 8 had biliopancreatic diversion (BD), 8 had sleeve gastrectomy, and 3 had 

biliopancreatic diversion with duodenal switch. Since different procedures may have 

different effects on REE or body composition, and the sample of cases with other procedures 

is small, this analysis is confined to AA and Caucasian patients who had RYGB. The follow-

up and disposition of cases during the study are shown in Fig. 1.

Non-surgery Participants

The control sample was 114 healthy, weight-stable (< 2 kg change within 6 months by self-

report), AA and Caucasian men and women enrolled in a study between 1995 and 2006 with 

similar data collection methods [30, 31].

Measures

In the early morning after an 8-h fast, subjects were weighed in a hospital gown to the 

nearest 0.1 kg (Weigh-Tronix, New York, NY; and BWB 800 Tanita Corp., Pittsburgh) and 

their height was measured to the nearest 0.5 cm using a stadiometer (Holtain; Crosswell, 

Wales-New York; and Perspective Enterprises, Portage, MI-Pittsburgh).

Indirect Calorimetry

REE was measured by indirect calorimetry (TrueOne® 2400, ParvoMedics Inc, Salt Lake 

City, UT). Under thermoneutral and quiet conditions, subjects rested comfortably on a bed, 

and a plastic transparent ventilated hood placed over the head for 40–60 min sampled 

expiratory gases from which the rates of oxygen consumption and carbon dioxide production 

were measured by system analyzers. Gas exchange results were evaluated during the stable 

measurement phase (10–20 min) and converted to REE (kcal/day) using the formula of Weir 

[32].

Magnetic Resonance Imaging

Skeletal muscle mass was measured using a whole-body multislice MRI protocol, as 

previously described [33]. Participants were placed on a 1.5-T MRI scanner (GE, 6X 

Horizon, Milwaukee, WI) table and scanned with arms above their heads. Approximately 40 

axial images with 10-mm thickness and a 40-mm interslice gap were acquired across the 

entire body. SliceOmatic image analysis software (Tomovision, Montreal, Canada) was used 

by a single image analyst to tag skeletal muscle (SM) on each image and SM volume was 

converted to mass using an assumed density of 1.04 kg/L [34], The coefficient of variation 

for SM obtained from a repeat blinded analysis of the same whole-body MRI by a single 

analyst in our lab is 2.4%.

The protocol for organs and brain volumes has been previously described [30] and included 

40 contiguous abdominal axial MRI images for liver, kidney, and spleen volumes. Brain 

volumes were acquired by using 1 of 2 protocols: an axial orientation for images collected 

before 2001 (most CON) and a 3-dimensional coronal orientation for RYGB patients.
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Dual-Energy X-ray Absorptiometry

Fat-free mass (calculated as body weight minus total body fat) was measured using a whole-

body dual-energy X-ray absorptiometry (DXA) scanner (GE Lunar, DPX or DPXL for 

controls; GE iDXA for bariatric, Madison, WI). The between-measurement technical errors 

for TBF and FFM in the same subject are 3.4% and 1.2%, respectively [35].

Statistical Methods

Descriptive statistics (number, mean, standard deviation) were calculated for subject 

characteristics at each visit year [1, 2, 5] post-surgery (RYGB) and for CON. Linear 

regression models compared adjusted mean REE of the RYGB at each visit with CON 

covarying for anthropometries (age, sex, ethnicity, height, and weight). Between-group 

differences in body composition were investigated with similar models. A subsequent 

analysis evaluated adjusted group REE differences after covarying for body composition.

Regression models were checked for outliers and violations of modeling assumptions 

including normality and homoscedasticity of residuals. Ethnicity was retained in the models 

as it reduced error variability but no interaction effects of ethnicity on the RYGB vs CON 

differences were noted. A sensitivity analysis that included all bariatric and control cases 

regardless of BMI led to conclusions similar to the analyses reported here and are not 

reported separately. Interaction tests of group by FFM, SM, organs, and brain at each visit 

on REE tested whether the energy cost of tissue was different after weight loss due to 

metabolic adaptation.

Maximum likelihood regression models were fitted using the MIXED procedure in SAS 

v9.4 (SAS Institute, Cary, NC). Statistical significance was set at p< 0.05, two-tailed, except 

when adjustment for multiple comparisons was made as noted in the text or footnotes.

Results

For the comparison of post-surgery RYGB with CON, a BMI range of 22–38 kg/m2 was 

chosen. This range allowed for the inclusion of 84 of 114 CON, and 50 of 58 RYGB with 

same organ-tissue body composition data, yet ensured that RYGB were substantially below 

their pre-surgery baseline weight at the time of visit. Mean change from baseline to year 1 

was as follows: BMI –15.2 kg/m2, range – 3.2 to – 28.5; weight –42 kg, range – 10 to – 76 

(data not shown). Table 1 shows the anthropometric characteristics and body composition of 

RYGB at each visit and CON.

REE During Weight Maintenance (Year 1-Year 5 Post-RYGB)

To describe the trajectory of REE changes from years 1 to 5 in RYGB, a repeated measures 

regression model adjusting for age, ethnicity, sex, height, and weight (final row of Table 1, p 
for year = 0.024) was fitted. REE increased by ~ 118 keal/day from years 2 to 5 (p = 0.022, 

Tukey-Kramer adjusted).
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REE and Body Composition of RYGB Compared with Controls

REE of RYGB and CON were compared using multiple regression models adjusting for age, 

ethnicity, sex, height, and weight (Table 2). Younger age, male sex, Caucasian ethnicity, and 

greater body weight were independently associated with higher REE.

Given the central role of body composition in determining REE, body composition of CON 

and RYGB was compared (Table 3). A pattern emerged of greater FFM and less SM in 

RYGB than in CON at each visit. Importantly, however, RYGB has greater abdominal organ 

mass throughout the follow-up years. Given the high energy cost of these organs (> 200 

kcal/kg/day) [17], this difference in organ mass could account for an elevated REE despite 

the adjustment for anthropometric characteristics (Table 2, year 5) while mitigating or 

obscuring any decrease in REE that could otherwise follow RYGB at years 1 and 2.

REE Multiple Regression Models Adjusting for Tissue-Organ Mass

To investigate whether the between-group REE differences observed in the REE-

anthropometric analysis would be sustained after adjusting for body composition 

differences, the anthropometric variables in the regression model were replaced with FFM, 

SM, trunk organs, brain, and weight (Table 4). The regression coefficients give an indication 

of the energy cost per unit of each tissue-organ. The between-group difference in REE 

(RYGB minus CON) was not statistically significant at any year.

Additional Analyses

Adding FFM to the regression of REE on anthropometric variables to account for year 5 

between-group REE difference showed the difference decreased by ~ 15 kcal to 99.0 

kcal/day but remained significant (p = 0.02).

We tested for body compartment by group (RYGB vs CON) interactions at each year, an 

effect that might signal a difference in energy cost per unit of mass (adaptive thermogenesis) 

in RYGB who have undergone substantial weight loss compared with CON. No significant 

interactions were found.

Discussion

This study provides evidence that RYGB patients are not dis-advantaged by a 

disproportionately low post-surgery REE or loss of FFM compared with a non-operated, 

weight-stable, CON group at 1, 2, or 5 years post-RYGB surgery. Rather, RYGB body 

composition favored higher REE compared with anthropometrically similar controls. The 

metabolic contribution of ~ 1.3–2.2 kg less SM (~ 16–25 kcal/day) is more than offset by 

larger abdominal organs (0.36–0.47 kg; ~ 90–115 kcal/day). In view of these results, the role 

of a reduced REE in weight regain after RYGB surgery is questionable.

The longitudinal analysis of REE over the RYGB follow-up period indicated an increase in 

REE from years 2 to 5. The means appear to suggest a decrease from years 1 to 2 and an 

increase thereafter; but only the increase from years 2 to 5 is significant. The non-significant 

REE differences between RYGB and CON in years 1 and 2 after adjustment for body 

composition suggest that surgery may lead to a transient decrease in REE during the initial 2 
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years. However, this decrease is not noticed in comparisons with anthropometrically similar 

controls due to body composition differences.

We note that adding FFM, a composite of the lean tissues in the body, to the anthropometric 

regressions did not explain the between-group REE differences observed in year 5; a 99-kcal 

difference remained. Thus, controlling for FFM with weight and other anthropometries was 

inadequate to explain body composition effects on REE and is in contrast to reports from 

longitudinal studies that changes in REE could be explained by changes in FM and FFM [6, 

8].

It is difficult to reconcile the numerous longitudinal studies that report metabolic adaptations 

with the many longitudinal and cross-sectional studies that do not. One obvious variation is 

the post-surgery follow-up time; reports of adaptation soon after surgery (≤ 6 months) are 

sometimes no longer observed at a later follow-up [36, 37] but this is not a consistent 

difference. Another variation is whether ratios (e.g., REE/FFM, REE/BW) or regressions are 

used in the analysis. While convenient and easily calculated, ratios often lead to erroneous 

conclusions [38]. Some longitudinal investigations are weakened by body composition 

measurements on severely obese patients using BIA which is known to be affected by 

hydration. However, the critical vulnerability of all two-compartment body composition 

longitudinal studies is that they require the questionable assumption that the components of 

FFM (SM, liver, kidney, digestive organs, skin, connective tissue, etc.), which have vastly 

different energy requirements, remain in the same proportion to all other lean tissues after 

weight loss as before. This is not the case for SM and FFM [14], Research on other organ-

tissue changes after conventional weight loss has yielded conflicting results [39, 40]. Absent 

this stability in proportions, metabolic adaptation (a measured REE lower than predicted 

REE) may be a consequence of changes in the composition of FFM.

This study has several strengths compared with previous work. One is the use of high-

quality measures of body composition including SM, trunk organs, and brain, and a long 

follow-up period. Another is the availability of a large archived control group that had 

undergone similar high-quality REE and body composition measurements. Additionally, the 

use of multiple regression analyses allowed us to compare groups precisely matched for 

covariates without the requirement of initial matching on BMI, sex, age, and ethnicity.

Limitations include subject attrition effects on statistical power. Organ mass calculated from 

organ volume used a constant density that may be questionable in severe obesity where 

ectopic fat infiltration is common. The unmeasured organs not included in our models could 

help clarify the role of shifts in the organ-tissue composition of FFM on REE after weight 

loss. Levels of thyroid hormones were not measured in the surgery group at follow-up and 

hormone differences could have contributed to the observed REE differences with controls. 

Statistically non-significant differences in this study do not necessarily mean clinically 

insignificant—small differences may be of clinical significance if sustained over long 

durations. More definitive conclusions await further, more powerful, studies.
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Conclusion

REE of RYGB patients was not different at years 1 and 2 but was higher at year 5 than that 

of non-surgery controls of similar anthropometries. RYGB patients maintained a larger mass 

of trunk organs (liver and kidney) which, if included in regression models, account for a 

higher REE at year 5. Unmeasured changes in organ-tissue composition of FFM following 

bariatric weight loss surgery may be confounding our understanding of REE changes.
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Fig. 1. 
Follow-up and disposition of surgery cases and non-surgery controls
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