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Abstract
Cell-cell fusion is a normal biological process playing essential roles in organ
formation and tissue differentiation, repair and regeneration. Through cell fusion
somatic cells undergo rapid nuclear reprogramming and epigenetic modifications
to form hybrid cells with new genetic and phenotypic properties at a rate
exceeding that achievable by random mutations. Factors that stimulate cell fusion
are inflammation and hypoxia. Fusion of cancer cells with non-neoplastic cells
facilitates several malignancy-related cell phenotypes, e.g., reprogramming of
somatic cell into induced pluripotent stem cells and epithelial to mesenchymal
transition. There is now considerable in vitro, in vivo and clinical evidence that
fusion of cancer cells with motile leucocytes such as macrophages plays a major
role in cancer metastasis. Of the many changes in cancer cells after hybridizing
with leucocytes, it is notable that hybrids acquire resistance to chemo- and
radiation therapy. One phenomenon that has been largely overlooked yet plays a
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role in these processes is polyploidization. Regardless of the mechanism of
polyploid cell formation, it happens in response to genotoxic stresses and
enhances a cancer cell’s ability to survive. Here we summarize the recent
progress in research of cell fusion and with a focus on an important role for
polyploid cells in cancer metastasis. In addition, we discuss the clinical evidence
and the importance of cell fusion and polyploidization in solid tumors.

Key words: Cell fusion; Hybrid formation; Polyploidization; Macrophage; Cancer
progression; Oncologic treatment resistance
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Core tip: Cell fusion is a normal biological process involved in organ formation and
tissue repair. Through cell fusion, somatic cells undergo nuclear reprogramming and
epigenetic modifications to form hybrid cells with new properties. Fusion of cancer cells
with macrophages plays a major role in cancer metastasis and results in resistance to
chemo- and radiation therapy. Cell fusion might be a potential target for the development
of new antitumor therapies through macrophage depletion in tumour stroma and
prevention of cell fusion and post-hybridization events involving chemotaxis and cell
migration to lymph nodes and distant metastases.
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INTRODUCTION
Cell fusion is a common biological process that produces viable cells and plays a
major  role  in  mammalian tissue  development  and differentiation.  Cell  fusion is
essential  during  embryogenesis  and  morphogenesis,  e.g.,  when  trophoblasts  in
placenta fuse to form syncytiotrophoblasts,  in developing of skeletal muscle that
arises from the fusion of mesodermal cells[1], and when osteoclasts and multinucleated
giant cells are generated from the fusion of macrophages[2,3]. Cell fusion also plays a
role in tissue repair and regeneration, e.g., in liver, heart and intestine[4-6]. Through cell
fusion, somatic cells undergo nuclear reprogramming and epigenetic modifications to
form pluripotent hybrid cells. Cell fusion can result in rapid modifications of the
genetic and epigenetic programs of cells, generating cells with new properties at a rate
exceeding that achievable by random mutations[6-8].

Cell  fusion may result  in two forms of hybrids:  Heterokaryons or synkaryons.
When bi-  or  multinucleated hybrids are generated (heterokaryons),  the parental
genomes are located in different nuclei, segregated from one another. These hybrids
are capable of cell divisions resulting in daughter cells expressing both parental sets of
chromosomes in a single nucleus[9,10].  Hybrids with parental genomes mixed in a
single nucleus are called synkaryons[11-14]. In culture, fusion events depend on the cell
density, the cell ratio of the parental populations and their microenvironment[15].

CELL FUSION, POLYPLOIDIZATION AND CANCER
Polyploid cells contain more than two basic sets of chromosomes. Polyploidy is a
natural phenomenon that contributes to tissue differentiation, normal organogenesis
and tissue repair[16,17]. It appears that most polyploid cells in mammals are formed
through cell fusion[18], but also through abnormal cell division such as endoreplication,
endomitosis and failed cytokinesis after completion of mitosis[19-21]. The formation of
multinucleated  fusion  hybrids  may  allow  genetic  complementation  capable  of
rescuing loss of gene function after chemotherapeutic or radiation induced DNA
damage[22-24]. Formation of polyploid cells with a selective advantage may serve as a
cell survival mechanism[25].

In 1911, a German professor, Otto Aichel, proposed that fusion of cancer cells with
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leucocytes  produces  hybrids  with  a  metastatic  phenotype.  A  century  later,  this
prescient insight has proven to be correct in many studies. Indeed, leucocyte-cancer
cell fusion causes cellular reprogramming and generates new clones of hybrids at
least some of which acquire the ability for chemotactic migration by combining the
epigenetic program of the leucocyte with the uncontrolled cell division of the cancer
cell[8,26,27] (Figure 1). Tumour cells are fusogenic and fuse with other cancer cells and
non-neoplastic cells in the tumour stroma. Spontaneous fusion between cancer cells is
a  well-documented  phenomenon  in  solid  tumors  and  generates  heterogeneous
subpopulations of tumor cells[28-31]. Several studies have shown that fusion of cancer
cells with non-neoplastic cells facilitates several malignancy-related cell phenotypes,
e.g., reprogramming of somatic cell into induced pluripotent stem cells and epithelial
to mesenchymal transition (EMT) (Figure 1). These processes also produce cellular
polyploidy.

Polyploid giant cancer cells (PGCCs) are cells with multiple nuclei or a single giant
nucleus containing multiple sets of chromosomes. Compared to regular diploid cells,
PGCCs can be 10 to 20 times larger in size and have tetraploid or greater (≥ 4C) DNA
content[32]. The mechanism leading to formation of PGCC may have similarities to
wound repair and tissue regeneration, each of which utilizes or depends on cell fusion
and endomitotic and endoreplication mechanisms. Regardless of the mechanism of
polyploid cells formation, it happens in response to genotoxic stresses such as those
occurring  in  hypoxic/necrotic  regions  of  the  tumor  and  during  chemo-  and
radiotherapy. Polyploidy then enhances a cancer cell’s ability to survive. Even though
the  formation  of  hybrids  between  cancer  cells  and  bone  marrow  derived  cells
(BMDCs) most likely occurs stochastically[26], disease progression and standard of care
treatments  such as  chemo- and radiotherapy,  can act  as  driving forces  that  may
increase the frequency of hybridization events[33,34]. The basis of this increase may be
due to increased inflammation and/or an aberrant wound and damage response
mechanism leading to the formation of PGCC[35,36].

Aneuploidy is a hallmark of cancer and is proposed to have a fundamental role
during tumour initiation and progression. Approximately 90% of solid tumors and
75%  of  hematopoietic  malignancies  have  abnormal  chromosome  numbers[37,38].
Centrosome aberrations are suggested as one mechanism that causes the formation of
aneuploid genomes. An important evolutionary feature of polyploid cancer cells is the
generation of aneuploid clones during the reversal of the polyploid state, which is a
chaotic  process  with many genomic translocations,  amplifications and deletions
occurring during creation of progeny[39]. The presence of centrosome aberrations in
polyploid cancer cells suggests that cell fusion and the formation of polyploid cancer
cells may be strong contributors to aneuploidy[40,41].

Cell fusion and cancer-stem cells
Cancer stem cells (CSCs) are subpopulations of tumour cells with stem cell-like traits.
These  traits  include  high  plasticity  and  the  capacity  for  self-renewal  through
asymmetric division. CSCs sustain tumourigenesis and generate diverse progeny with
the ability to remain dormant while demonstrating resistance to conventional cancer
therapeutics[42]. The stem cell theory in cancer, however, is debated due to controversy
about  evidence  supporting  the  origins  of  CSCs,  their  differentiation  and
dedifferentiation,  genetic  heterogeneity,  symmetric  and asymmetric  concepts  of
cellular division, and clonal evolution[43,44].

Cell  fusion  could  be  a  mechanism to  generate  CSCs  (Figure  2).  Gauck et  al[45]

showed that spontaneous fusion of human breast epithelial cells and human breast
cancer cells can give rise to hybrid cells that possess CSC properties with significantly
increased colony forming capacity compared to the maternal epithelial cells.  In a
polyethylene glycol mediated fusion experiment, Flasza et al[46] demonstrated that
murine P19 and human NTERA2/D1 embryonal carcinoma hybrid cells displayed
heterogeneity in cellular morphology and gene expression. The hybrids expressed
stemness factors octamer-binding transcription factor 4, homebox protein Nanog and
Sex Determining Region Y-Box 2, indicating the activation of endogenous human
markers of  pluripotency.  In another example,  spontaneously formed heterotypic
hybrids between mesenchymal stem cells and lung cancer cells expressed the stem
cell marker prominin-1, which was increased 30-fold in hybrids cells compared to
their maternal lung cancer cells. The hybrids also exhibited increased expression of
the  transcription  factors  octamer-binding  transcription  factor  4,  Aldehyde
dehydrogenase 1, B-lymphoma Mo-MLV insertion region 1, and Sex Determining
Region Y-Box 2, suggestive of a stem cell-like phenotype[47].

Cell  fusion  causes  chromosomal  instability,  tumour  heterogeneity  and  DNA
exchange
Most  malignant  tumors  are  polyclonal.  Clonal  heterogeneity  may be  caused by
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Figure 1

Figure 1  A schematic diagram of the process of cell fusion, hybrid formation and metastasis. A motile bone
marrow derived cells (red) such as a macrophage or stem cell is drawn to a cancer cell (blue). The outer cell
membranes of the two cells become attached. Fusion occurs with the formation of a bi-nucleated heterokaryon
having a nucleus from each of the fusion partners. The heterokaryon goes through genomic hybridization creating a
cancer cell-bone marrow derived cells hybrid with co-expressed epigenomes, conferring deregulated cell division and
metastatic competence to the hybrid. BMDC: Bone marrow derived cell.

oncogenic mutations in single cells,  epigenetic modulations[48],  and cell  fusion[49].
Chromothripsis,  massive  genomic  rearrangements [50],  is  defined  as  a  single
catastrophic event in the development of cancer[51]. In oral squamous cell carcinoma
cell lines in culture, irradiation predisposes to cells chromothripsis. The finding of
fragmented DNA in aneuploid hybrid cells is an indicator of chromothripsis[52].

Cell  fusion may be homotypic between the same types of cells in the tissue or
heterotypic  between  different  cell  types  like  epithelial  cells  and  macrophages.
Heterotypic fusion can cause multiple changes in gene expression profiles in the
resultant hybrids[10]. Clonal heterogeneity patterns within primary tumors are often
similar to those of distant metastases with similar gene expression profiles. Using a
Cre-loxP model system, Searles et al[53] showed that Cre transfer occurred between
cancer and non-cancer cells both in cell cultures and in mice. The rapid transfer of Cre
could not be explained by extracellular vesicles but rather by cell fusion.

Cell fusion, cancer and EMT
In  order  to  form  metastases,  tumour  cells  need  to  navigate  through  a  series  of
obstacles that require a variety of cellular functions and abilities that were absent in
the transformed cells of origin. The functions include an invasive escape from the
tumour and intravasation into blood or lymphatic vessels. All steps of the metastatic
cascade require an ability to overcome the induction of cell  death. To escape the
circulation, tumour cells need to adhere to the vessel wall and undergo extravasation
into other tissues. Once in the tissue, cell growth is required to form metastasis. One
mechanism put forth to explain the changes required to perform these functions is
EMT. This model explains how neoplastic cells may gain a migratory and invasive
phenotype allowing them to escape from the primary tumour. Many studies have
identified a subset of embryonic-like transcription factors, such as zinc finger protein
SNAI1 and basic helix-loop-helix factor Twist, that form the basis of a gene expression
program  that  drives  the  transitional  change  of  the  phenotype.  An  alternative
mechanism is that cancer-mesenchymal cell fusions generate hybrids that gain the
genetic,  phenotypic  and functional  properties  of  both  maternal  cells.  Xu et  al[54]

showed in an in vivo non-obese diabetic/severe combined immunodeficiency mouse
model that fusion of mesenchymal stem cells with non-small cell lung cancer cells
results  in  hybrids  that  express  both  epithelial  and  mesenchymal  markers  with
increased migratory and invasive capabilities compared to their maternal cancer cells.

In studies by Zhang et al[55], analysis of polyploidy giant cells (referred to by the
authors  as  “PGCC”)  in  colorectal  cancer  revealed  a  strong  association  with  the
presence  of  lymph node  metastasis.  Potentially  the  PGCC were  responsible  for
metastasis as a subset of “budding” daughter cells showed a greater migratory and
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Figure 2

Figure 2  The cell fusion theory in relation to cancer progression mechanisms. A cancer cell and a leukocyte form a hybrid that acquires genetic, phenotypic and
functional properties from both maternal cells. The hybrid cells develop properties associated with cancer metastasis, such as epithelial mesenchymal transition,
stemness, invasiveness, treatment resistance and may lose some of the maternal cancer cell's tissue-specific phenotype. EMT: Epithelial to mesenchymal transition.

invasive  phenotype  and  expressed  the  EMT-related  proteins  Twist  and  Snail.
Similarly, PGCCs induced by the hypoxia mimetic cobalt chloride were capable of
generating small diploid cell progeny that also displayed higher levels of EMT related
protein expression including vimentin and N-cadherin. These daughter cells had a
more invasive phenotype compared to the parental cell type. Importantly, the authors
showed that patient samples from breast tumours and metastasis had an increased
number of PGCCs with vimentin and N-cadherin expression compared with patient
breast tumour samples with no metastasis[56], indicating a higher metastatic potential
of the progeny from the PGCCs.

PGCCs and mitochondrial function
PGCCs form under a diverse set of stimuli as they are found within and adjacent to
necrotic regions of tumours, driven by conditions of hypoxia, nutrient deprivation
(starvation) and low pH. Individually these stimuli have been shown to induce PGCC
in vitro. Importantly, oxidative stress is the common feature that links these stimuli.
Chemotherapies and radiotherapy which can dramatically induce the transformation
to PGCCs also generate oxidative stress generated through excess reactive oxygen
species (ROS).  Mitochondria are the main generator of  ROS and may also act  as
“sensors” to trigger the PGCC transformation which form and exist under conditions
of  high  oxidative  stress[57-60].  Roh  et  al[57]  showed  that  PGCCs  have  increased
mitochondrial  content  as  well  as  elevated  levels  of  ROS.  The  authors  found  a
correlation between the high ROS levels characteristic of the polyploid cells together
with taxol resistance that could be reversed with the use of antioxidants. Similarly, the
ROS-producing agent plumbagin induced features of PGCCs on prostate cancer cells,
in line with the idea that polyploidy provides a survival advantage to cells that are
exposed to high levels of ROS. The authors suggested that besides impacting cancer
cell resistance to therapy, the polyploid state could also contribute to the generation of
CSCs  in  response  to  stress[59].  In  the  tumour  microenvironment,  where  growth
conditions deteriorate and oxidative stress increases with progression[61], PGCC are
induced at higher rates[33,62].  Even the number of circulating hybrid cancer cells is
increased as shown in liquid biopsies[63-66].

How cell fusion promotes tumour progression
Cell  fusion contributes to tumour progression not only through alteration of the
composition and biology of tumour cells per se, but also by modifying the tumour
microenvironment. Hybridization of cancer cells with e.g., BMDCs, generates hybrids
with a significantly faster growth rate in vivo[67,68] and enhanced abilities of colony
formation[68],  cell migration and invasion[47].  Thus, cell fusion alters the biological
behaviour of a tumour through the development of new metastatic tumour cell sets
with growth-promoting properties, contributing to enhanced tumour growth and
metastasis[69]. Similar observations have been reported in several other studies over
the past three decades[14,70-73].

Cell fusion also contributes to neo-angiogenesis and thus facilitates hematogenic
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and lymphatogenic intravasation of tumour cells. Recently, Shen et al[74] demonstrated
that dendritic cells can fuse with endothelial progenitor cells and generate hybrids
with a significantly faster growth rate, while also producing a greater number of
micro-vessels compared to their maternal endothelial progenitor cell. Busund et al[75]

showed that  in  vivo  growth of  cultured tumours consisting of  Metha-A sarcoma
cell/macrophage  hybrids  had  a  significantly  higher  intratumoural  microvessel
density and maturation compared to tumours from maternal Metha A sarcoma cells
alone. The hybrids released significantly higher amounts of angiogenic peptides, such
vascular endothelial growth factor (VEGF), compared to both maternal macrophages
and cancer cells. In renal tissues of individuals with gender-mismatched transplants
who had transplant rejection and chronic inflammation, Kerjaschki et al[76] provided
clinical evidence that BMDCs, presumably macrophages, function as progenitors of
lymphatic endothelial cells, and contribute to lymphangiogenesis by incorporating
into the new lymphatic  vessel.  Moreover,  the macrophage might differentiate to
VEGF producing cells that drive the division of endothelial cells[77,78].

MACROPHAGES AS FUSION PARTNERS IN CANCER
Macrophages  are  a  heterogeneous  population  of  cells  derived  from monocytes.
During embryogenesis, they appear first in the yolk sac, then in the liver, and finally
in bone marrow. Large populations of tissue macrophages exist in the small intestine,
liver (Kupffer cells), and lungs. Blood monocytes arise in the marrow from precursor
cells (monoblasts) and enter inflamed or infected tissues, where they may mature into
macrophages and increase the resident macrophage populations. Monocytes may also
mature into dendritic cells presenting antigens to T cells.  Fusion is an important
function  of  macrophages  and  results  in  the  formation  of  osteoclasts  and
multinucleated giant cells[3].

Macrophages show two different polarization states, M1 and M2, in response to
different signals in the microenvironment. M1 macrophages are pro-inflammatory
and  characterized  by  the  release  of  inflammatory  cytokines  and  microbicidal/
tumoricidal activity. M2-macrophages have an immunosuppressive phenotype and
are polarized by anti-inflammatory molecules such as Interleukin (IL)-4, IL-13, and IL-
10,  apoptotic  cells,  and  immune  complexes.  M2  macrophages  release  anti-
inflammatory  cytokines  and  have  scavenging  potentials  as  well  as  supporting
angiogenesis and tissue repair. Monocyte/macrophage cells are important for tumour
cell  migration,  invasion and metastasis.  Tumour associated macrophages (TAM)
represent the M2-type and promote tumor progression[79-83].

Monocytes are actively recruited to the tumour stroma, and high infiltration of
TAMs in many tumour types correlate with lymph node involvement and distant
metastases[84].  Inhibition  of  macrophage  infiltration  in  tumours  may  suppress
metastasis[85,86]. The clinical significance of macrophage infiltration in tumour stroma,
however,  is  still  controversial.  High  infiltration  of  TAMs  is  correlated  to  poor
prognosis in breast, prostatic, ovarian and cervical carcinoma[87]. In colorectal cancer,
there are conflicting data of the clinical significance of macrophage infiltration, but
several studies show that low macrophage density in tumour stroma is associated
with an unfavourable prognosis[87-89].

TAMs contribute to angiogenesis, lymphangiogenesis and tumour progression by
expressing pro-angiogenic growth factors such as matrix metalloproteinase-12, IL-1,
VEGF, and IL-8. Clinical studies have shown that increased infiltration of TAMs in
solid tumours is associated with high micro-vessel density and poor prognosis. These
data are particularly strong for hormone-dependent cancers, such as breast cancer[87,90].

INFLAMMATION AND CELL FUSION
The mechanisms causing cell  fusion and polyploidization in tumours have close
similarities  to wound repair  and tissue regeneration in non-transformed tissues.
Under  normal  conditions,  fusion  events  are  exceptionally  rare  but  increase
dramatically  in  pathological  conditions  such  as  after  tissue  injury  and  during
inflammation. Nygren et al[34] showed that BMDC contribute to the formation of stable
and reprogrammed fusion-hybrids in liver,  heart and myocardium during tissue
repair.  Interestingly, the authors observed that despite an attraction of fusogenic
blood cells to these tissues following injury-induced inflammation, the cell fusion was
restricted to a subset of cells implicated in syncytia formation during development.
Johansson et al[91] reported in a parabiotic experimental mouse-model that chronic
inflammation,  induced  by  idiopathic  ulcerative  dermatitis  and  autoimmune
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encephalitis,  could  increase  myelomonocytic  cells  in  peripheral  blood  and
consequently significantly increase (10–100-fold higher) heterokaryon formation of
BMDCs with Purkinje neurons.

HYPOXIA/TISSUE STARVATION AND CELL FUSION
The tumour microenvironment is  usually characterized by poor vascularization,
resulting  in  hypoxia  and  deficient  access  to  vital  nutrients  and  elimination  of
metabolic by-products. Necrosis is common in the deeper parts of the tumour. Despite
these seemingly harsh conditions, cells that subsist in this environment have been
linked to a more malignant phenotype with stem cell-like properties[92,93].

As mentioned above, cell fusion is induced by hypoxia and apoptosis. Noubissi et
al[94] used bimolecular fluorescence complementation to detect in vitro spontaneous
fusion events between co-cultured multipotent stem/stromal cells (mSSC) and either
human breast epithelial cells (MCF-10a) or breast cancer cell lines (T47D, MDA-MB-
231 and MCF-7). The co-cultures were grown in hypoxic condition (2% O2 compared
to  standard tissue  culture  conditions  of  21% O2)  and it  was  found that  hypoxia
stimulated a significant increase in fusion between the mSSC and the T47D or MCF-7
non-metastatic breast cancer cells. Hypoxia had, however, no significant impact on
the fusion ability of MDA-MB-231 metastatic cancer cells. The authors suggest that
hypoxia might promote fusion of non-metastatic cancer cells and therefore enables
metastasis,  an event that perhaps is  not advantageous for the already metastatic
MDA-MB-231 cells. It was found also that apoptosis was enhanced by hypoxia in
T47D and MCF7 non-metastatic cancer cells. The fusion events were increased if the
cell co-cultures were supplemented with apoptotic T47D cells in both normoxic and
hypoxic  conditions,  indicating that  cell  fusion could be stimulated by apoptosis
independently of hypoxia. Melzer et al[95] reported similar in vitro observations and
found that cell fusion events varied dramatically between benign or malignant breast
cells when used as fusion partners for mSSC. Co-cultures of mSSC with MCF-10a
revealed increased fusion events up to 10-fold (> 2%) compared with co-cultures with
MDA-MB-231  (0.2%)  or  with  MCF-7  (0.1%).  In  line  with  the  observations  that
inflammation can induce cell fusion, the author stimulated the cell co-cultures with
pro-inflammatory  cytokine  TNF-α  and  found  significant  hybrid  cell  formation
compared to non-treated cells.

Using different cancer cell lines treated with the hypoxia mimetic cobalt chloride to
induce polyploidization, Zhang et al[55] showed that the formation of PGCCs could
occur either through cell-fusion or endoreplication.  The cells  had increased size,
developed enlarged nuclei and could survive for extended periods of time, while cells
with normal morphology could be selectively eliminated. The PGCCs displayed CSC
markers and properties and could therefore be potentially more tumourigenic[96].

CLINICAL SIGNIFICANCE OF CELL FUSION AND
POLYPLOIDIZATION IN CANCER
PGCCs are found in most cancers and correlate to poor survival[97-100]. Reports of mono
and multinucleated cancer cells can be found in the literature dating back to the early
20th century[101-103]. PGCCs are also described as “multi-nucleated giant cells”, “tumour
budding”, “micropapillary”, and “osteoclast-like giant cells”. Across many cancer
types,  when  present  in  high  numbers,  PGCCs  of  epithelial-origin  show  highly
malignant characteristics, including chemo-resistance, with short patient survival and
are designated with World Health Organization sub-classification status. These rare
cancers include, giant cell  carcinoma of the lung (a sub-classification of the large
cell/sarcomatoid  carcinomas  of  the  lung)  and  pleomorphic  carcinoma  of  the
lung[104-106]. Although rare, these cancers provide important insights into the highly
malignant nature of the PGCCs. Patient survival is typically worse than in those with
the non-PGCC cancer component due to poor or refractory responses to standard
treatments, short relapse intervals and enhanced metastatic spread[32,56,97,99].

PGCC  formation  has  been  demonstrated  to  increase  during  tumour
progression[55,56,99,100], as late stage cancers have elevated numbers of PGCCs. It might
be predicted that through increased PGCC formation in late stage disease, increased
numbers of heterotypic fusion events also occur. Recent studies on liquid biopsies
show the  presence  of  hybrid-like  expression  in  multinucleated  giant  cells.  This
phenotype is shown to correlate with malignancy and poor survival[66,107-109].

Several studies have shown that after standard of care treatments treatments with
radiation[33,35,110], chemotherapy[40] or targeted therapy[111], PGCC can be formed using
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cell fusion as a mechanism. The PGCCs can overcome the treatment-induced damage
and produce progeny that are resistant to treatments to which the cancer cells are
normally  sensitive.  This  has  been  demonstrated  for  both  irradiation  and
chemotherapy  and  may  be  an  important  factor  in  disease  relapse  and  patient
outcome[40,112-114].

PGCCs have been shown in many tumour types to be associated with increased
therapy resistance and poor survival[104,106,115]. For example, in a syngeneic rat tumour
model, Puig et al[116] showed that despite an initial shrinkage of tumours in response to
cisplatin treatment, tumour cells enter a latent phase from which they are eventually
able to escape and resume growth. These cells survived for weeks and while some
eventually died, others were able to undergo a reversal of polyploidization giving rise
to new colonies of diploid cells, which were more resistant to cytotoxic drugs and
were responsible for tumour relapse. Additionally, a single large multinucleated cell
isolated from the murine fibrosarcoma cell line UV-2237 could produce tumours in
mice.  These  large  multinucleated  cells  were  also  more  resistant  to  doxorubicin
suggesting that they could be driving the relapse[117].

Clinical evidence of cell fusion
It has been well demonstrated that leucocyte-cancer cell fusion produces hybrid cells
that  express  genetic  and  phenotypic  characteristics  of  both  maternal  cells[71,118].
Clinically, it is difficult to detect or genetically confirm fusion events because the
genetic  content  of  maternal  cells  and  any  hybrids  have  the  same  origin.  The
expression of tissue specific proteins by tumour cells and other fusion cell partners,
like  TAMs,  may,  however,  constitute  surrogate  markers  that  could  be  used  for
detecting the presence of fusion events in tumour tissue from clinical patient material.

CD163  is  a  macrophage  specific  trans-membrane  scavenger  receptor  and  its
presence indicates that the cells have an M2-macrophage phenotype[119]. Macrophage
traits in cancer cells, exemplified by CD163 expression, have been reported for several
types of tumours, e.g., renal cell[120], breast[121], colorectal[122,123] and bladder[124,125] cancers.
Based  on  the  cell  fusion  theory,  the  macrophage  phenotype  in  cancer  cells  is
suggested to be caused by fusion between TAMs and tumour cells[71,126,127].

In an in  vitro  model,  Shabo et  al[126]  showed that  cancer cells  did not  acquire a
macrophage phenotype by paracrine interaction between macrophages and MCF-7
breast  cancer  cells.  In  contrast,  macrophage/MCF-7  hybrids  (generated  via
spontaneous cell fusion) expressed macrophage-like markers, CD163 and the pan-
leucocyte marker CD45. The hybrids also showed genetic characteristics from both
parent cells. Powel et al[71,128] provided in vivo evidence of fusion between circulating
BMDCs and cancer cells during tumourigenesis, demonstrating that macrophages
were cellular partners in this process. Silk et al[118] showed similar in vivo characteristics
in human intestinal epithelium. These studies clearly support the many observations
that macrophage traits in cancer cells are explained by fusion between tumour cells
and TAMs[4,67,75].

Shabo et al[121] reported that CD163 expression by tumour cells in breast cancer was
seen in 48% of a cohort of 133 female patients.  The patients with CD163-positive
tumours had reduced recurrence-free survival times. Further, CD163 expression by
cancer cells was more common in advanced cancers. Epithelial cells in normal breast
tissue showed no expression of CD163. In a similar study, the same research group
reported CD163 expression by tumour cells in 23% of 139 patients with rectal cancer.
Again,  CD163  expression  was  not  seen  in  any  of  the  non-cancerous  areas  from
adjacent or distant rectal tissue. CD163 expression by tumour cells was associated
with  earlier  local  recurrence  and shorter  cancer  specific  survival,  and inversely
correlated to apoptosis. Notably, the expression of CD163 by cancer cells was more
common (31%) in tumours from patients treated with preoperative radiotherapy
compared to those not treated (17%).

The expression of macrophage traits by cancer cells was proportional to intra-
tumoural macrophage density indicating that increased recruitment and infiltration of
macrophages  in  tumour  tissue  may  result  in  higher  rates  of  fusion  between
macrophages and cancer cells in tumour stroma[122,124]. The frequency of cell fusion
events  in  vivo  was  as  high  as  1% in  experimental  tumour  models[27].  The  fusion
efficiency  increased  proportionally  to  the  presence  of  inflammation[91]  and  the
metastatic potential of tumour cells[129]. Macrophage-cancer cell hybrids are generated
spontaneously in cultured breast cancer cells at an average rate of 2 % and are able to
survive cell culture for several weeks[126]. Del Monte demonstrated that one gram of
tumour contained some 108 tumour cells[130]. Based on this calculation, a rate of 1%-2 %
frequency of cell fusion events means that each gram of solid tumour may contain as
many as 1-2 million hybrids. Although the proportion of hybrids may be small in
relation to the total tumour mass, the spontaneity of cell fusion and the survival of the
hybrids may generate deadly derivative clones with important clinical implications.
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Garvin et  al[131]  calculated the  proportion of  cancer  cells  expressing CD163 in  83
patients with breast cancer and found that the number of CD163-positive cells in all
breast tumors studies averaged 9% (range 0%-41%). CD163-expression of > 15% of
cancer cells was associated with breast cancer-related death (P = 0.02). The authors
also reported that the mean number of cancer cells expressing CD163 was positively
associated with mitotic index supporting a connection between fusion events and the
density of TAMs seen in tumours. It is likely that the plasticity of reprogrammed
cellular phenotypes originating in hybrids may form both dominating as well  as
volatile clones in the tumour environment.

Through cell fusion cancer cells acquire new phenotypes but may also lose other
traits that are specific for their tissue origin, a process known as de-differentiation.
These traits are essential in the clinical assessment, e.g., the estrogen receptor (ER)
pathway is involved in cell growth and regulation of breast cancer cells. Moreover,
estrogen  is  a  potent  breast  mitogen  and  ER-inhibitors  and  estrogen-producing
enzymes  (aromatases)  are  well-established,  effective  therapies[132].  ER  is  down-
regulated in progeny cells generated by fusion between macrophages and breast
cancer cells[133]. In immuno-histochemical studies of biopsies, macrophage traits in
cancer cells (indicating fusion events) was associated with ER-negative tumours[121,131].
These observations have clinical relevance as down-regulation of ER in breast cancer
cells will change the pathologic staging and the treatment options for the patients.

Cell fusion pathways as diagnostic and therapeutic targets
Clinical investigations of tumour biology with a focus on cell fusion as an underlying
mechanism are limited, probably because this theory has been difficult to investigate
and has not been firmly established as other topics,  such as the cancer mutation
theory. In light of findings on the role of cell fusion in tumour biology reported over
the past 30 years, we believe that cell fusion pathways might constitute a target in
cancer diagnostics and treatment. As discussed previously, cell fusion contributes to
tumour progression by generating new cancer cell clones with enhanced metastatic
properties. Morphologically, hybrid cells have similar appearance to their maternal
cancer cells. Hence, the malignant potential of tumours might be underestimated if
hybrid  cells  are  not  detected  during  clinical  histopathological  assessment.  For
example,  Busund  et  al[75]  showed  that  in  vivo  tumours  consisting  of  Metha-A
sarcoma/macrophage  hybrids  had the  similar  histopathological  morphology as
tumours consisting of maternal Metha-A sarcoma cells. The tumours consisting of
hybrid cells had however greater growth rate, metastatic ability and vascular density;
tumour characteristics that have prognostic significance in a clinical context.

Consistent with in vivo findings, the expression of macrophage traits as surrogate
marker for macrophage-cancer cell fusion[4,71,118,134] by cancer cells in clinical tumour
material is associated with advanced tumour stage and poor prognosis[120-125,135,136],
indicating the importance of identifying and validating histopathological markers,
such as macrophage-specific marker CD163, to detect fusion events in clinical tumour
material. Accumulating evidence suggests that cell fusion results in the development
of stem cell properties and resistance to oncological treatment[33,115,127,137-140]. Cell fusion
may have a predictive value in cancer treatment and it should be verified by clinical
investigations.

Cell fusion might constitute a therapy target in cancer and can be counteracted by
several strategies. Tentatively, inhibition of the cell fusion process or infiltration of
cancer cell fusion partners, such as macrophages, might be possible treatment targets.
Inhibition of macrophage infiltration into tumour stroma might reduce the frequency
of macrophage-cancer cell fusion. Macrophage depletion might also reduce other
macrophage  related  tumour  promoting  mechanism  such  as  neo-angiogenesis.
Although these data are not related to macrophage-cancer cell fusion, several studies
show that macrophage depletion in tumour stroma is associated with inhibition of
tumour progression[141-144]. For example, Griesmann et al[145] showed in an experimental
mouse model  that  treatment  with liposomal  clondronate  decreased macrophage
infiltration  in  several  organs  and  resulted  in  significant  reduction  of  liver  and
pulmonary metastasis  of  pancreatic  cancer,  independently of  the presence of  an
endogenous primary tumour.

RATIONALE
Using histochemical markers along with genetic analyses it  is now clear that cell
fusion and hybrid formation are associated with metastasis and poor patient survival.
There is an association of polyploidy, produced by leucocyte-cancer cell fusion, with
therapy resistance. We may glimpse the engine that drives metastasis (Figures 1 and
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2).  This  information  opens  many  potential  targets  for  the  development  of  new
therapies:  (1)  Inhibition  of  the  fusion  process  itself  regarding  events  such  as
membrane attachment and heterokaryon formation; (2) Inhibition of the hybridization
processes involving integration of parental fusion partner genes into hybrid genomes;
and (3) Prevention of post-hybridization events involving activation of genes that
control cell migration, chemotaxis, intravasation, extravasation, and migration to
lymph nodes and distant metastases.

CONCLUSION
Cell fusion is a normal biological process that is essential during embryogenesis and
morphogenesis. Accumulating evidence indicates that fusion between leukocytes and
cancer cells occur in solid tumors and may contribute to tumor progression. These
data provide new insights into the role of leukocytes, such as macrophages, in tumor
biology  and  cell  fusion  as  a  potential  mechanism  in  tumor  metastasis  and  the
development of resistance to oncologic treatment.
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